Citation: Huriye Kadakal. Hermite-Hadamard type inequalities for subadditive functions[J]. AIMS Mathematics, 2020, 5(2): 930-939. doi: 10.3934/math.2020064
[1] | A. O. Akdemir, M. E. Özdemir, F. Sevinç, Some inequalities for GG-convex functions, Turkish J. Ineq., 2 (2018), 78-86. |
[2] | R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1975. |
[3] | D. Ruelle, Ergodic theory of differentiable dynamical systems, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 50 (1979), 27-58. |
[4] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95. |
[5] | V. Hutson, The stability under perturbations of repulsive sets, J. Differ. Equations, 76 (1988), 77-90. doi: 10.1016/0022-0396(88)90064-2 |
[6] | J. Hadamard, Etude sur les proprietes des fonctions entieres en particulier d'une fonction consideree par Riemann, J. Math. Pure. Appl., (1893), 171-216. |
[7] | İ. İşcan, Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences, 4 (2016), 140-150. doi: 10.20852/ntmsci.2016318838 |
[8] | V. I. Oseledec, A multiplicative ergodic theorem. Ljapunov Characteristic Numbers for Dynamical Systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. |
[9] | S. Özcan and İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 201. |
[10] | S. Özcan, Some integral inequalities for harmonically (α, s)-convex functions, Journal of Function Spaces, 2019 (2019), 1-8. |
[11] | S. C. Rambaud, S. Cruz and M. J. M. Torrecillas, Some characterizations of (strongly) subadditive discounting functions, Appl. Math. Comput., 243 (2014), 368-378. |
[12] | M. B. Ruskai, Inequalities for Quantum Entropy: A Review with Conditions for Equality, J. Math. Phys., 43 (2002), 4358-4375. doi: 10.1063/1.1497701 |
[13] | J. Sándor, Generelizations of Lehman's inequality, Soochow Journal of Mathematics, 32 (2006), 301-309. |
[14] | G. H. Toader, On generalization of the convexity, Mathematica, 30 (1988), 83-87. |
[15] | M. J. Vivas-Cortez, R. Liko, A. Kashuri, et al. New Quantum sstimates of trapezium-type inequalities for generalized φ-convex functions, Mathematics, 7 (2019), 1047. |