Research article

LS (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces

  • Received: 27 September 2019 Accepted: 05 December 2019 Published: 17 January 2020
  • MSC : 05C38, 05A15, 14L24, 51L10

  • Let $G$ be a transformation group and act on $X$. Any elements $x, y \in X$ are called the $G-$equivalent elements if there exist a transformation $g \in G$ such that $y = gx$ is satisfied. Similarly let $A = \left\{ x_{1}, x_{2}, ..., x_{n} \right\}$ and $B = \left\{ y_{1}, y_{2}, ..., y_{n} \right\}$ be any two subspaces of $X$ with $n-$elements. Then the subspaces $A$ and $B$ are called the $G-$equivalent subspaces if there exist a transformation $g \in G$ such that $y_{i} = gx_{i}$ is satisfied for every $i = 1, 2, ..., n$. The linear similarity transformations' group in 3 dimensional Euclidean space will be denoted by $LS(3)$. This paper presents the $G-$equivalence conditions of the subspaces $A$ and $B$ of 3-dimensional Euclidean space $E^{3}$ with $m-$elements where the transformation group $G = LS(3)$ is the linear similarity transformation group in $E^{3}$. Later the $G = LS(3)-$equivalence conditions of Bézier curves and surfaces are studied in terms of the rational $G = LS(3)$ invariants of their control points. Finally by using quadratic Bézier curves, a simple letter "S" is designed and two different shadow curves of this letter (composite curves) are obtained. Then it is emphasized that these shadow curves are $G = LS(3)-$ equivalent to designed letter "S".

    Citation: Muhsin Incesu. LS (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces[J]. AIMS Mathematics, 2020, 5(2): 1216-1246. doi: 10.3934/math.2020084

    Related Papers:

  • Let $G$ be a transformation group and act on $X$. Any elements $x, y \in X$ are called the $G-$equivalent elements if there exist a transformation $g \in G$ such that $y = gx$ is satisfied. Similarly let $A = \left\{ x_{1}, x_{2}, ..., x_{n} \right\}$ and $B = \left\{ y_{1}, y_{2}, ..., y_{n} \right\}$ be any two subspaces of $X$ with $n-$elements. Then the subspaces $A$ and $B$ are called the $G-$equivalent subspaces if there exist a transformation $g \in G$ such that $y_{i} = gx_{i}$ is satisfied for every $i = 1, 2, ..., n$. The linear similarity transformations' group in 3 dimensional Euclidean space will be denoted by $LS(3)$. This paper presents the $G-$equivalence conditions of the subspaces $A$ and $B$ of 3-dimensional Euclidean space $E^{3}$ with $m-$elements where the transformation group $G = LS(3)$ is the linear similarity transformation group in $E^{3}$. Later the $G = LS(3)-$equivalence conditions of Bézier curves and surfaces are studied in terms of the rational $G = LS(3)$ invariants of their control points. Finally by using quadratic Bézier curves, a simple letter "S" is designed and two different shadow curves of this letter (composite curves) are obtained. Then it is emphasized that these shadow curves are $G = LS(3)-$ equivalent to designed letter "S".


    加载中


    [1] G. Birkhoff, Hydrodynamics, 2Eds., New Jersey: Princeton Univ. Press, 1960.
    [2] J. B. J. Fourier, Theoric Analytique de la Chaleur, 1822, English Transl. By A. Freeman, The Analytical Theory of Heat, Cambridge University Press, 1878.
    [3] M. Incesu, The Complete System of Point Invariants in the Similarity Geometry, Phd. Thesis, Karadeniz Technical University, Trabzon, 2008.
    [4] M. Nagata, Local Rings, Interscience, NY, 1962.
    [5] D. Hadjiev, Some questions in the theory of vector invariants, Math. USSR-Sbornic, 1 (1967), 383-396. doi: 10.1070/SM1967v001n03ABEH001988
    [6] F. Grosshans, Obsevable groups and Hilbert's problem, Am. J. Math., 95 (1973), 229-253. doi: 10.2307/2373655
    [7] F. Klein, A comperative review of recent researches in geometry (translated by Dr. M.W. Haskell), Bull. New York Math. Soc., 2 (1893), 215-249. doi: 10.1090/S0002-9904-1893-00147-X
    [8] P. W. Bridgman, Dimensional Analysis, 2Eds., Yale University Press, New Heaven, 1931.
    [9] L. I. Sedov, Similarity and Dimensional Method in Mechanics, English Tr. By V. Kisin, Mir Publishers, USSR, 1982.
    [10] H. L. Langhaar, Dimensional Analysis and Theory of Models, Wiley, 1951.
    [11] H. Weyl, The Classical Groups, Their Invariants and Representations, 2Eds., with suppl., Princeton, Princeton University Press, 1946.
    [12] D. Khadjiev, An Application of the Invariant Theory to the Differential Geometry of Curves, (in Russian) Fan, Tashkent, 1988.
    [13] M. Incesu, O. Gursoy, LS (2)-Equivalence conditions of control points and application to planar Bézier curves, New Trends Math. Sci., 5 (2017), 70-84.
    [14] Y. Sagiroglu, The equivalence problem for parametric curves in one-dimensional affine space, Int. Math. Forum, 6 (2011), 177-184.
    [15] Y. Sagiroglu, Equi-affine differential invariants of a pair of curves, TWMS J. Pure Appl. Math., 6 (2015), 238-245.
    [16] Y. Sagiroglu, O. Peksen, The equivalence Of Centro-Equiaffine curves, Turk. J. Math., 34 (2010), 95-104.
    [17] I. Oren, Complete system of invariants of subspaces of Lorentzian space, Iran. J. Sci. Technol. A, 40 (2016),1-8. doi: 10.1007/s40995-016-0003-1
    [18] I. Oren, On invariants of m-vector in Lorentzian geometry, Int. Electron. J. Geom., 9 (2016), 38-44.
    [19] D. Khadjiev, I. Oren, O. Peksen, Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry, Turk. J. Math., 37 (2013), 80-94.
    [20] M. Incesu, O. Gürsoy, Düzlemsel Bézier Eǧrilerinin S(2)-Denklik Şartları, MSU. J. Sci., 5 (2017), 471-477.
    [21] G. Farin, Curves and Surfaces for Computer Aided Geometric Design A Practical Guide, 2Eds., Academic Press Inc., San Diago, 1990.
    [22] R. Barnhill, R. F. Riesenfeld, Computer aided Geometric Design, Academic Press, 1974.
    [23] R. Farouki, V. T. Rajan, On the numerical condition of polynomials in Bernstein form, Comput. Aided Geom. D., 4 (1987), 191-216. doi: 10.1016/0167-8396(87)90012-4
    [24] G. Farin, Curvature continuity and offsets for piecewise conics, ACM T. Graphic, 8 (1989), 89-99. doi: 10.1145/62054.62056
    [25] R. Farouki, Exact offsets procedures for simple solids, Comput. Aided. Geom. D., 2 (1985), 257-279. doi: 10.1016/S0167-8396(85)80002-9
    [26] J. Hoschek, Offset curves in the plane, Comput. Aided. Des., 17 (1985), 77-82. doi: 10.1016/0010-4485(85)90249-0
    [27] W. Tiller, E. Hanson, Offsets of two-dimentional profiles, IEEE Comput. Graph., 4 (1984), 36-46.
    [28] H. Potmann, Rational curves and surfaces with rational offsets, Comput. Aided. Geom. D., 12 (1995), 175-192. doi: 10.1016/0167-8396(94)00008-G
    [29] R. Farouki, C. Manni, A. Sestini, Real-time CNC interpolators for Bézier conics, Comput. Aided. Geom. D., 18 (2001), 639-655. doi: 10.1016/S0167-8396(01)00058-9
    [30] F. Chen, J. Zheng, T. W. Sederberg, The mu-basis of rational ruled surface, Comput. Aided Geom. D., 18 (2001), 61-72. doi: 10.1016/S0167-8396(01)00012-7
    [31] H. Pottmann, P. Paukowitsch, Inflections of planar surface curves, Comput. Aided Geom. D., 14 (1997), 293-297. doi: 10.1016/S0167-8396(96)00052-0
    [32] R. Krasauskas, Toric surface patches, Adv. Comput. Math., 17 (2002), 89-113. doi: 10.1023/A:1015289823859
    [33] J. S. Reyes, Harmonic rational Bézier curves, p-Bézier curves and trigonometric polynomials, Comput. Aided Geom. D., 15 (1998), 909-923. doi: 10.1016/S0167-8396(98)00031-4
    [34] B. Jüttler, M. G. Wagner, Computer-aided design with spatial rational B-Spline motions, J. Mech. Des-T. ASME, 118 (1996), 193-201. doi: 10.1115/1.2826869
    [35] Q. J. Ge, M. Sirchia, Computer aided geometric design of two-parameter freeform motions, J. Mech. Des-T. ASME, 121 (1999), 502-506. doi: 10.1115/1.2829489
    [36] C. Mavroidis, B. Roth, On the geometry of spatial polygons and screw polygons, J. Mech. Des.-T. ASME, 119 (1997), 246-252. doi: 10.1115/1.2826243
    [37] R. Cholewa, A. J. Nowak, R. A. Bialecki, et al., Cubic Bézier Splines for BEM heat transfer analysis of the 2-D continuous casting problems, Comput. Mech., 28 (2002), 282-290. doi: 10.1007/s00466-001-0288-5
    [38] M. Sarfraz, M. A. Khan, Automatic outline capture of Arabic fonts, Inform. Sci., 140 (2002), 269-281. doi: 10.1016/S0020-0255(01)00176-1
    [39] X. Xu, Integrating Advanced Computer-Aided Design, Manufacturing and Numerical Control: Principles and Implementations, IGI Global, Hershey, London, 2009.
    [40] H. K. Samanci, S. Celik, M. Incesu, The Bishop Frame of Bézier Curves, Life Sci. J., 12 (2015), 175-180.
    [41] V. Bulut, A. Caliskan, The Exchange Variations Between Bézier Directrix Curves of Two Developable Ruled Surfaces, J. Dynamical Sys. Geom. Theories, 13 (2015), 103-114. doi: 10.1080/1726037X.2015.1076225
    [42] H. K. Samanci, Generalized dual-variable Bernstein polynomials, Konuralp J. Math., 5 (2016), 56-67.
    [43] H. K. Samanci, Some geometric properties of the spacelike Bézier curve with a timelike principal normal in Minkowski 3-space, Cumhuriyet Sci. J., 39, (2018), 71-79.
    [44] E. Erkan, S. Yuce, Serret-Frenet frame and curvatures of Bézier curves, Mathematics, 6 (2018), 321-351. doi: 10.3390/math6120321
    [45] G. Hu, J. L. Wu, X. Q. Qin, A newapproach in designing of local controlled developable H-Bézier surfaces, Adv. Eng. Soft., 121 (2018), 26-38. doi: 10.1016/j.advengsoft.2018.03.003
    [46] G. Hu, J. L. Wu, X. Q. Qin, A novel extension of the Bézier model and its applications to surface modeling, Adv. Eng. Soft., 125 (2018), 27-54. doi: 10.1016/j.advengsoft.2018.09.002
    [47] H. K. Samanci, O. Kalkan, S. Celik, The timelike Bézier spline in Minkowski 3-space, J. Sci. Arts, 19 (2019), 357-374.
    [48] G. Hu, J. L. Wu, Generalized quartic H-Bézier curves: Construction and application to developable surfaces, Adv. Eng. Soft., 138 (2019), 102723.
    [49] P. Y. Gousenbourger, E. Massart, P. A. Absil, Data fitting on manifolds with composite Bézier-like curves and blinded cubic splines, J. Math. Imaging Vis., 61 (2019), 645-671. doi: 10.1007/s10851-018-0865-2
    [50] F. AlMachot, M. Ali, A. H. Mosa, et al., Real-time raindrop detection based on cellular neural networks for ADAS, J. Real-Time Image Pr., 16 (2019), 931-943. doi: 10.1007/s11554-016-0569-z
    [51] S. Baydas, B. Karakas, Detecting a curve as a Bézier curve, J. Taibah Univ. Sci., 13 (2019), 522-528. doi: 10.1080/16583655.2019.1601913
    [52] N. Ausheva, V. Olevskyi, Y. Olevska, Modelling of minimal surface based on an isotropic Bézier curve of fifth Order, J. Geom. Symmetry Phys., 52 (2019), 1-15. doi: 10.7546/jgsp-52-2019-1-15
    [53] M. Incesu, O. Gursoy, The similarity invariants of Bézier curves and surfaces, Nat. Math. Symp., Ataturk University, Erzurum, Turkey, 2007.
    [54] D. Marsh, Applied geometry for computer graphics and CAD, Springer-Verlag London Berlin Heidelberg, London, 1999.
    [55] Wikipedia, the free encyclopedia. (2019) Available from: https://en.wikipedia.org/wiki/B/ezier_curve.
    [56] LÝnoType, Font Technology, Monotype GmbH. (2017) Available from: https://web.archive.org/web/20170703232935/https://www.linotype.com/8120/the-difference-between-cff-and-ttf.html.
    [57] The Mathematics behind Font Shapes, Bézier Curves and More, jdhao's blog. (2018) Available from: https://jdhao.github.io/2018/11/27/font_shape_mathematics_bezier_curves/.
    [58] TrueType fundamentals, Microsoft truetype font documentation. (2019) Available from: https://docs.microsoft.com/en-us/typography/opentype/spec/ttch01#from-design-to-font-file.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3160) PDF downloads(324) Cited by(6)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog