By a fractional quadratic transformation, an indirect-PH curve can have rational offsets. In this paper, I study properties of planar sextic indirect-PH curves, in terms of their Bézier control polygon legs. With our results, sextic Bézier curves can be efficiently tested whether they are indirect-PH curves. The main strategy to achieve our results is using complex representation of planar parametric curve. Sextic indirect-PH curves can be classified into three classes according to different factorizations of their hodographs. Necessary and sufficient conditions for all classes of sextic indirect-PH curves can be described by non-linear complex systems. By analyzing these non-linear systems, algebraic conditions for a sextic Bézier curve to be an indirect-PH curve are first discussed, then geometric characteristics in terms of legs of its control polygon are revealed.
Citation: Yujun Li. Characteristics of planar sextic indirect-PH curves[J]. AIMS Mathematics, 2024, 9(1): 2215-2231. doi: 10.3934/math.2024110
By a fractional quadratic transformation, an indirect-PH curve can have rational offsets. In this paper, I study properties of planar sextic indirect-PH curves, in terms of their Bézier control polygon legs. With our results, sextic Bézier curves can be efficiently tested whether they are indirect-PH curves. The main strategy to achieve our results is using complex representation of planar parametric curve. Sextic indirect-PH curves can be classified into three classes according to different factorizations of their hodographs. Necessary and sufficient conditions for all classes of sextic indirect-PH curves can be described by non-linear complex systems. By analyzing these non-linear systems, algebraic conditions for a sextic Bézier curve to be an indirect-PH curve are first discussed, then geometric characteristics in terms of legs of its control polygon are revealed.
[1] | G. Farin, J. Hoschek, M. S. Kim, Handbook of computer aided geometric design, Elsevier, 2002. https://doi.org/10.1016/B978-0-444-51104-1.X5000-X |
[2] | R. T. Farouki, C. A. Neff, Analytic properties of plane offset curves, Comput. Aided Geom. Design, 7 (1990), 83–99. http://doi.org/10.1016/0167-8396(90)90023-K doi: 10.1016/0167-8396(90)90023-K |
[3] | B. Pham, Offset curves and surfaces: A brief survey, Comput. Aided Design, 24 (1992), 223–229. http://doi.org/10.1016/0010-4485(92)90059-J doi: 10.1016/0010-4485(92)90059-J |
[4] | G. Elber, I. K. Lee, M. S. Kim, Comparing offset curve approximation methods, IEEE Comput. Graph. Appl., 17 (1997), 62–71. https://doi.org/10.1109/38.586019 doi: 10.1109/38.586019 |
[5] | T. Maekawa, An overview of offset curves and surfaces, Comput. Aided Design, 31 (1999), 165–173. http://doi.org/10.1016/S0010-4485(99)00013-5 doi: 10.1016/S0010-4485(99)00013-5 |
[6] | R. T. Farouki, J. Manjunathaiah, D. Nichlas, G. F. Yuan, S. Jee, Variable feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves, Comput. Aided Design, 30 (1998), 631–640. https://doi.org/10.1016/S0010-4485(98)00020-7 doi: 10.1016/S0010-4485(98)00020-7 |
[7] | R. T. Farouki, T. Sakkalis, Pythagorean hodographs, IBM J. Res. Dev., 34 (1990), 736–752. https://doi.org/10.1147/rd.345.0736 doi: 10.1147/rd.345.0736 |
[8] | H. Pottmann, Rational curves and surfaces with rational offsets, Comput. Aided Geom. Design, 12 (1995), 175–192. http://doi.org/10.1016/0167-8396(94)00008-G doi: 10.1016/0167-8396(94)00008-G |
[9] | R. T. Farouki, Z. Šír, Rational Pythagorean-hodograph space curves, Comput. Aided Geom. Design, 28 (2011), 75–88. http://doi.org/10.1016/j.cagd.2011.01.002 doi: 10.1016/j.cagd.2011.01.002 |
[10] | H. P. Moon, Minkowski Pythagorean hodographs, Comput. Aided Geom. Design, 16 (1999), 739–753. http://doi.org/10.1016/S0167-8396(99)00016-3 doi: 10.1016/S0167-8396(99)00016-3 |
[11] | T. Sakkalis, R. T. Farouki, Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3, J. Comput. Appl. Math., 236 (2012), 4375–4382. https://doi.org/10.1016/j.cam.2012.04.002 doi: 10.1016/j.cam.2012.04.002 |
[12] | R. T. Farouki, C. A. Neff, Hermite interpolation by Pythagorean hodograph quintics, Math. Comp., 64 (1995), 1589–1609. https://doi.org/10.2307/2153373 doi: 10.2307/2153373 |
[13] | H. P. Moon, R. T. Farouki, H. I. Choi, Construction and shape analysis of PH quintic Hermite interpolants, Comput. Aided Geom. Design, 18 (2001), 93–115. https://doi.org/10.1016/S0167-8396(01)00016-4 doi: 10.1016/S0167-8396(01)00016-4 |
[14] | J. Kosinka, B. Jüttler, $G^1$ Hermite interpolation by Minkowski Pythagorean hodograph cubics, Comput. Aided Geom. Design, 23 (2006), 401–418. https://doi.org/10.1016/j.cagd.2006.01.004 doi: 10.1016/j.cagd.2006.01.004 |
[15] | J. H. Kong, S. P. Jeong, S. Lee, G. I. Kim, $G^1$ Hermite interpolation with simple planar PH curves by speed reparametrization, Comput. Aided Geom. Design, 25 (2008), 214–229. http://doi.org/10.1016/j.cagd.2007.11.006 doi: 10.1016/j.cagd.2007.11.006 |
[16] | M. Byrtus, B. Bastl, $G^1$ Hermite interpolation by PH cubics revisited, Comput. Aided Geom. Design, 27 (2010), 622–630. http://doi.org/10.1016/j.cagd.2010.06.004 doi: 10.1016/j.cagd.2010.06.004 |
[17] | J. H. Kong, H. C. Lee, G. I. Kim, $C^1$ Hermite interpolation with PH curves by boundary data modification, J. Comput. Appl. Math., 248 (2013), 47–60. http://dx.doi.org/10.1016/j.cam.2013 doi: 10.1016/j.cam.2013 |
[18] | R. T. Farouki, Construction of $G^2$ rounded corners with Pythagorean hodograph curves, Comput. Aided Geom. Design, 31 (2014), 127–139. https://doi.org/10.1016/j.cagd.2014.02.002 doi: 10.1016/j.cagd.2014.02.002 |
[19] | R. T. Farouki, Pythagorean-Hodograph curves: Algebra and geometry inseparable, Heidelberg: Springer Berlin, 2007. https://doi.org/10.1007/978-3-540-73398-0 |
[20] | R. T. Farouki, B. Jüttler, C. Manni, Pythagorean-hodograph curves and related topics, Comput. Aided Geom. Design, 25 (2008), 203–204. http://doi.org/10.1016/j.cagd.2008.01.001 doi: 10.1016/j.cagd.2008.01.001 |
[21] | J. Kosinka, M. Lavicka, Pythagorean hodograph curves: A survey of recent advances, J. Geom. Graph., 18 (2014), 23–43. |
[22] | Y. X. Hao, A new method to construct polynomial minimal surfaces, Comp. Appl. Math., 39 (2020), 275. https://doi.org/10.1007/s40314-020-01324-2 doi: 10.1007/s40314-020-01324-2 |
[23] | L. Fang, Y. Peng, Y. Li, J. Cao, Classification of polynomial minimal surfaces, Comput. Aided Geom. Design, 96 (2022), 102106. https://doi.org/10.1016/j.cagd.2022.102106 doi: 10.1016/j.cagd.2022.102106 |
[24] | W. Lü, Offset-rational parametric plane curves, Comput. Aided Geom. Design, 12 (1995), 601–616. http://doi.org/10.1016/0167-8396(94)00036-R doi: 10.1016/0167-8396(94)00036-R |
[25] | X. J. Lu, J. Zheng, Y. Cai, G. Zhao, Geometric characteristics of a class of cubic curves with rational offsets, Comput. Aided Design, 70 (2015), 26–45. http://doi.org/10.1016/j.cad.2015.07.006 doi: 10.1016/j.cad.2015.07.006 |
[26] | R. T. Farouki, The conformal map $z \rightarrow z^2$ of the hodograph plane, Comput. Aided Geom. Design, 11 (1994), 363–390. http://doi.org/10.1016/0167-8396(94)90204-6 |
[27] | H. I. Choi, D. S. Lee, H. P. Moon, Clifford algebra, spin representation, and rational parameterization of curves and surfaces, IBM J. Res. Dev., 17 (2002), 5–48. https://doi.org/10.1023/A: 1015294029079 |
[28] | R. T. Farouki, M. Al-Kandari, T. Sakkalis, Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves, Adv. Comput. Math., 17 (2002), 369–383. https://doi.org/10.1023/A:1016280811626 doi: 10.1023/A:1016280811626 |
[29] | L. Fang, Y. Li, Algebraic and geometric characterizations of a class of algebraic-hyperbolic Pythagorean-hodograph curves, Comput. Aided Geom. Design, 97 (2022), 102121. https://doi.org/10.1016/j.cagd.2022.102121 doi: 10.1016/j.cagd.2022.102121 |
[30] | G. Wang, L. Fang, On control polygons of quartic Pythagorean-hodograph curves, Comput. Aided Geom. Design, 26 (2009), 1006–1015. https://doi.org/10.1016/j.cagd.2009.08.003 |
[31] | Z. Zheng, G. Wang, P. Yang, On control polygons of Pythagorean hodograph septic curves, J. Comput. Appl. Math., 296 (2016), 212–227. https://doi.org/10.1016/j.cam.2015.09.006 doi: 10.1016/j.cam.2015.09.006 |
[32] | L. Fang, G. Wang, Geometric characteristics of planar quintic Pythagorean hodograph curves, J. Comput. Appl. Math., 330 (2018), 117–127. https://doi.org/10.1016/j.cam.2017.08.014 doi: 10.1016/j.cam.2017.08.014 |
[33] | Y. Li, L. Fang, J. Cao, G. Wang, Identification of two classes of planar septic Pythagorean hodograph curves, J. Comput. Appl. Math., 348 (2019), 383–400. https://doi.org/10.1016/j.cam.2018.09.002 doi: 10.1016/j.cam.2018.09.002 |
[34] | Y. Li, L. Fang, Z. Zheng, J. Cao, On control polygons of planar sextic Pythagorean hodograph curves, Mathematics, 11 (2023), 383. https://doi.org/10.3390/math11020383 doi: 10.3390/math11020383 |
[35] | K. Hormann, J. Zheng, Algebraic and geometric characterizations of a class of planar quartic curves with rational offsets, Comput. Aided Geom. Design, 79 (2020), 101873. https://doi.org/10.1016/j.cagd.2020.101873 doi: 10.1016/j.cagd.2020.101873 |
[36] | L. Fang, G. Wang, Construction of a class of quintic curves with rational offsets (in Chinese), Sci. Sin. Inform., 47 (2017), 1694–1704. http://doi.org/10.1360/N112016-00240 doi: 10.1360/N112016-00240 |
[37] | Y. Li, L. Fang, Geometric characteristics of quintic indirect-PH curves (in Chinese), Sci. Sin. Inform., 51 (2021), 808–821. https://doi.org/10.1360/SSI-2019-0219 doi: 10.1360/SSI-2019-0219 |
[38] | F. Pelosi, M. L. Sampoli, R. T. Farouki, C. Manni, A control polygon scheme for design of planar $C^2$ PH quintic spline curves, Comput. Aided Geom. Design, 24 (2007), 28–52. https://doi.org/10.1016/j.cagd.2006.09.005 doi: 10.1016/j.cagd.2006.09.005 |
[39] | R. T. Farouki, C. Giannelli, A. Sestini, Identification and "reverse engineering" of Pythagorean-hodograph curves, Comput. Aided Geom. Design, 34 (2015), 21–36. https://doi.org/10.1016/j.cagd.2015.04.001 doi: 10.1016/j.cagd.2015.04.001 |