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Abstract: By a fractional quadratic transformation, an indirect-PH curve can have rational offsets.
In this paper, I study properties of planar sextic indirect-PH curves, in terms of their Bézier control
polygon legs. With our results, sextic Bézier curves can be efficiently tested whether they are indirect-
PH curves. The main strategy to achieve our results is using complex representation of planar
parametric curve. Sextic indirect-PH curves can be classified into three classes according to different
factorizations of their hodographs. Necessary and sufficient conditions for all classes of sextic indirect-
PH curves can be described by non-linear complex systems. By analyzing these non-linear systems,
algebraic conditions for a sextic Bézier curve to be an indirect-PH curve are first discussed, then
geometric characteristics in terms of legs of its control polygon are revealed.
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1. Introduction

Bézier curves are fundamental in computer aided geometric design (CAGD) and they are broadly
applied in computer aided design and manufacturing (CAD/CAM) [1]. However, a Bézier curve, in
general, may not have rational offset curves [2], so offset approximation methods were proposed [3–5].
A class of planar polynomial curves that possesses rational offset curves are studied in this paper.
These curves provide a number of advantages in engineering applications, such as robotics, computer-
numerical-control (CNC) machining, motion planning, railway design, shape blending, etc. For
example, their arc-lengths can simply be computed by evaluating rational polynomials (avoiding the
need of numerical integrations), which speeds up algorithms for CNC machining [6].

A polynomial curve is called a Pythagorean hodograph (PH) [7] curve if the Euclidean norm of its
derivative (also called hodograph) is also a polynomial. Therefore, offsets of a PH curve are rational
curves and can be exactly represented in CAD systems [7]. So far, PH curves have been widely studied,
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e.g., rational PH curves [8, 9], Minkowski PH curves [10], spatial PH curves and higher dimensional
PH curves [9, 11], etc. Moreover, Hermite interpolation and curve design using various PH curves
are proposed [12–18]. More details and examples can be found in books and surveys [1, 19–21].
Interestingly, PH curves and polynomial minimal surfaces are intrinsically related and their algebraic
and geometric relationships have been well studied [22, 23].

However, a curve that has rational offsets is not necessary to become a PH curve. A properly-
parameterized planar polynomial curve has rational offsets if and only if the squared norm of its
hodograph has at most two complex roots (with nonzero imaginary part) of odd multiplicity [24].
These curves can be categorized into two cases, one are PH curves [7] and the others are indirect-PH
curves [24, 25].

In order to analyze and construct curves with rational offsets, algebraic methods such as the complex
variable model [24, 26] and quaternion model [27, 28] were usually used. Polynomial curves are
represented using Bézier form in CAD systems because Bézier control polygons provide an intuitive
way to dealing with curves. However, algebraic structure of polynomial curves with rational offsets
is not simply transferred to intuitive constraints on their control polygons. Farouki and Sakkalis [7]
introduced an elegant geometric characteristic for cubic PH curves, which are two constraints on the
lengths of legs and two interior angles of their Bézier control polygons. By introducing hyperbolic
functions, a class of quasi-Bézier curves possess PH property if their control polygons have similar
geometric properties with cubic PH curves [29].

Wang and Fang [30] derived geometric characteristics of quartic PH curves, which are also legs
and angles of their Bézier control polygons. This gives a geometric approach for construction of PH
quartics. Algebraic and geometric characteristics of PH curves of degree five to seven are further
studied [31–34].

Lu et al. studied cubic indirect-PH curves [25], which is extended to quartic indirect-PH curves [35].
Identification and construction of quintic indirect-PH curves can be divided into two classes, which
were discussed separately [36, 37]. The usage of control polygons was also proposed for designing
planar C2 PH quintic spline curves in [38]. Due to the increase in degree, the factorization of
polynomials varies. The higher the degree, the more complex the complex system needs to be
considered. Therefore, whether there is a unified method for identification of indirect-PH curves of
arbitrary degree is an open problem.

In this paper, I try to take the relevant work one step further to study sextic indirect-PH curves. The
complex variable model is employed to analyze characteristics of sextic indirect-PH curves. These
curves are first classified into three classes according to different factorizations of their hodographs,
and then necessary and sufficient conditions on their Bézier control polygons are studied, respectively.
One class of sextic indirect-PH curves are regular curves, while the other two classes may exhibit
cusps. The algebraic conditions for sextic indirect-PH curves are non-linear systems. Our main idea
is treating these non-linear systems using methods solving linear systems, e.g., Gaussian elimination,
geometric methods, etc. Furthermore, the geometric characteristics of these curves are presented, and
the results are in terms of legs of their Bézier control polygons.

The rest of this paper is organized as follows: In Section 2, I recall some basic concepts and
properties of planar polynomial curves with rational offsets. Section 3 presents necessary and sufficient
conditions for a planar sextic curve to be an indirect-PH curve. Finally, I conclude the paper in
Section 4.
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2. Preliminaries

Let i =
√
−1 be the imaginary unit. For a complex number c ∈ C, I denote c the conjugate complex

of c, Re(c) and Im(c) the real and imaginary parts of c, respectively, and ‖c‖ the Euclidean norm of c,
i.e., ‖c‖2 = Re2(c) + Im2(c).

In the complex plane C, a planar curve P(t) = (x(t), y(t)) can be expressed as a complex function
P(t) = x(t) + iy(t). This complex representation is quite useful for analysis and construction of
PH curves [26, 30]. It is also used to present necessary and sufficient conditions for a properly-
parameterized polynomial curve to have rational offsets [24]:

Theorem 2.1. Let P(t) = x(t) + iy(t) be a properly-parameterized polynomial curve, it has rationally
parameterized offsets if and only if its hodograph P′(t) = x′(t) + iy′(t) satisfies

P′(t) = ρ(t)R(t)W2(t), (2.1)

where ρ(t) is a polynomial of t with real coefficients, R(t) and W(t) have forms

R(t) = λt + 1 + iµt,

W(t) = u(t) + iv(t),
(2.2)

λ, µ ∈ R, u(t) and v(t) are polynomial of t with real coefficients and they are relatively prime.

If µ = 0, I have ‖P′(t)‖2 = ρ2(t)‖W2(t)‖2, i.e., the Euclid norm of its hodograph is a real
polynomial ρ(t)‖W2(t)‖, then it is a PH curve and it has rational offsets [7]. However, following the
decomposition (2.1), a planar polynomial curve with rational offset curves may not be a PH curve, i.e.,
the case µ , 0, which means R(t) is a polynomial with complex coefficients. Let

b =
√

(λ + 1)2 + µ2,

c =
√

(λ + 2)2 + µ2,

and Bn
i (t) =

(
n
i

)
(1 − t)n−iti, i = 0, . . . , n, be Bernstein polynomials, after a quadratic parameter

transformation [24, 25]

t(s) =
B2

1(s) + (c − 1 + b)B2
2(s)

(c + 1 − b)B2
0(s) + (1 + b)B2

1(s) + (c − 1 + b)B2
2(s)

,

the offsets of this curve can be rational curves because

(λt + 1)2 + (µt)2 =

 (c + 1 − b)B2
0(s) +

c2−(1−b)2

2 B2
1(s) + b(c − 1 + b)B2

2(s)

(c + 1 − b)B2
0(s) + (1 + b)B2

1(s) + (c − 1 + b)B2
2(s)


2

.

Such a curve is called an indirect-PH curve [24, 25]. I study properties of sextic indirect-PH curves in
this paper.

Let Pi = xi + iyi, i = 0, . . . , n, be control points in the complex plane, a sextic Bézier curve is defined
by

P(t) =

6∑
i=0

PiB6
i (t),

AIMS Mathematics Volume 9, Issue 1, 2215–2231.



2218

whose hodograph can also be expressed in Bernstein form

P′(t) = 6
5∑

i=0

∆PiB5
i (t), (2.3)

where ∆Pi = Pi+1 − Pi is the first forward-difference of the i-th control point. Besides, I denote the
second forward-difference of the i-th control point as ∆2 Pi, i.e., ∆2 Pi = ∆Pi+1 − ∆Pi.

3. Characteristics of sextic indirect-PH curves

Following Theorem 2.1, a sextic indirect-PH curve’s hodograph has form (2.1), and the degrees
of ρ(t), R(t), W(t) are 0, 1, 2, or 2, 1, 1, or 4, 1, 0, which are called class I, class II, class III sextic
indirect-PH curves, respectively, in following discussion. Notably, all the polynomials will be written
in Bernstein form in this section. I may suppose that the three classes of sextic indirect-PH curves are
mutually exclusive, e.g., when W(t) is a degree 2 complex polynomial, it must have no real polynomial
factors. In the rest of this section, I study all three classes of sextic indirect-PH curves, respectively.

3.1. Class I sextic indirect-PH curve

Let Pi, i = 0, . . . , 6, be Bézier control points of a planar sextic curve, and Mi, i = 0, 1, be defined in
determinant form,

M0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∆2 P0 4∆2 P1∣∣∣∣∣∣ ∆P0 5∆P1

∆2 P0 4∆2 P1

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 10∆P2

∆2 P0 6∆2 P2

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∆2 P0 ∆2 P4∣∣∣∣∣∣ ∆P0 5∆P1

∆2 P0 4∆2 P1

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆2 P0 ∆2 P4∣∣∣∣∣∣ ∆P0 5∆P1

∆2 P0 4∆2 P1

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
4∆2 P3 ∆2 P4∣∣∣∣∣∣ ∆P0 5∆P4

∆2 P0 ∆2 P4

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

M1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∆2 P0 4∆2 P3∣∣∣∣∣∣ ∆P0 5∆P1

∆2 P0 4∆2 P1

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 5∆P4

∆2 P0 ∆2 P4

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∆2 P0 ∆2 P4∣∣∣∣∣∣ ∆P0 5∆P1

∆2 P0 4∆2 P1

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6∆2 P2 ∆2 P4∣∣∣∣∣∣ ∆P0 10∆P3

∆2 P0 4∆2 P3

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
4∆2 P3 ∆2 P4∣∣∣∣∣∣ ∆P0 5∆P4

∆2 P0 ∆2 P4

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

then I give four complex numbers zi, i = 0, . . . , 3,

z0 =
M2

1∆P0

M2
0∆P5

, (3.1)

z1 =
M0

M1

√
6∆P5, (3.2)

z2 =
15M2

0∆P4 − 3M2
1∆P0

2M2
0

√
6∆P5

, (3.3)

z3 =
√

6∆P5. (3.4)
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A necessary and sufficient condition for a class I sextic indirect-PH curve can be described as
following theorem.

Theorem 3.1. A planar sextic Bézier curve is a class I sextic indirect-PH curve if and only if

6∆P0 = z0 z2
1,

30∆P1 = 4z0 z1 z2 + z2
1,

60∆P2 = 2z0 z1 z3 + 4z0 z2
2 + 4z1 z2,

60∆P3 = 4z0 z2 z3 + 2z1 z3 + 4z2
2,

30∆P4 = z0 z2
3 + 4z2 z3,

6∆P5 = z2
3.

(3.5)

Proof. Notably, the polynomials R(t) and W(t) of (2.1) can be written in Bernstein form. Hence, a
planar sextic Bézier curve with control points Pi, i = 0, . . . , 6 is an indirect-PH curve if and only if
there are zi ∈ C, i = 0, . . . , 3, such that

P′(t) = [z0(1 − t) + t][z1(1 − t)2 + 2z2(1 − t)t + z3t2]2,

which is expanded as

P′(t) =z0 z2
1(1 − t)5 + (4z0 z1 z2 + z2

1)(1 − t)4t

+ [z0(2z1 z3 + 4z2
2) + 4z1 z2](1 − t)3t2

+ [4z0 z2 z3 + (2z1 z3 + 4z2
2)](1 − t)2t3

+ (z0 z2
3 + 4z2 z3)(1 − t)t4 + z2

3t5,

thus, I may derive (3.5) by matching its coefficients with (2.3).
Although the control points are known, zi are all unknowns. It is necessary to solve all of them to

make sure whether the curve is an indirect-PH curve or not. Notably, the quadric polynomial W(t) =

z1(1 − t)2 + 2z2(1 − t)t + z3t2 is a common factor of P′(t) and P′′(t), I consider a system of equations

P′(t) = 6
5∑

i=0

∆PiB5
i (t) = 0, (3.6)

P′′(t) = 30
4∑

i=0

∆2 PiB4
i (t) = 0. (3.7)

Multiplying Eq (3.7) by 1 − t first, then eliminating the item (1 − t)5 with (3.6), and dividing a
non-zero factor t, I get a system of two quartic equations,

30
4∑

i=0

∆2 PiB4
i (t) = 0,∣∣∣∣∣∣ ∆P0 5∆P1

∆2 P0 4∆2 P1

∣∣∣∣∣∣ (1 − t)4 +

∣∣∣∣∣∣ ∆P0 10∆P2

∆2 P0 6∆2 P2

∣∣∣∣∣∣ (1 − t)3t +

∣∣∣∣∣∣ ∆P0 10∆P3

∆2 P0 4∆2 P3

∣∣∣∣∣∣ (1 − t)2t2

+

∣∣∣∣∣∣ ∆P0 5∆P4

∆2 P0 ∆2 P4

∣∣∣∣∣∣ (1 − t)t3 +

∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣ t4 = 0.
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Furthermore, by eliminating the items (1−t)4 and t4, respectively, I get a system of two cubic equations,∣∣∣∣∣∣∣∣∣
∆2 P0 4∆2 P1∣∣∣∣∣∣ ∆P0 5∆P1

∆2 P0 4∆2 P1

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 10∆P2

∆2 P0 6∆2 P2

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (1 − t)3 +

∣∣∣∣∣∣∣∣∣
∆2 P0 6∆2 P2∣∣∣∣∣∣ ∆P0 5∆P1

∆2 P0 4∆2 P1

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 10∆P3

∆2 P0 4∆2 P3

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (1 − t)2t

+

∣∣∣∣∣∣∣∣∣
∆2 P0 4∆2 P3∣∣∣∣∣∣ ∆P0 5∆P1

∆2 P0 4∆2 P1

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 5∆P4

∆2 P0 ∆2 P4

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (1 − t)t2 +

∣∣∣∣∣∣∣∣∣
∆2 P0 ∆2 P4∣∣∣∣∣∣ ∆P0 5∆P1

∆2 P0 4∆2 P1

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ t3 = 0,

∣∣∣∣∣∣∣∣∣
∆2 P0 ∆2 P4∣∣∣∣∣∣ ∆P0 5∆P1

∆2 P0 4∆2 P1

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (1 − t)3 +

∣∣∣∣∣∣∣∣∣
4∆2 P1 ∆2 P4∣∣∣∣∣∣ ∆P0 10∆P2

∆2 P0 6∆2 P2

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (1 − t)2t

+

∣∣∣∣∣∣∣∣∣
6∆2 P2 ∆2 P4∣∣∣∣∣∣ ∆P0 10∆P3

∆2 P0 4∆2 P3

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (1 − t)t2 +

∣∣∣∣∣∣∣∣∣
4∆2 P3 ∆2 P4∣∣∣∣∣∣ ∆P0 5∆P4

∆2 P0 ∆2 P4

∣∣∣∣∣∣
∣∣∣∣∣∣ ∆P0 ∆P5

∆2 P0 0

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ t3 = 0.

In the same way, I may further reduce the degree of above system by first eliminating (1− t)3 and t3,
and then dividing t and (1 − t), respectively. Thus, I will get a system of two quadric equations, which
both shall be kW(t) = 0, for some k ∈ R.

Therefore, I can compute z1
M0

= z3
M1

, and suppose that z3 =
√

6∆P5, which gives an expression of
z1 as (3.2). Moreover, I substitute z1 into the first equation of the system (3.5) to get (3.1). At last, I
get (3.3) by substituting z0, z1 and z3 into the fourth equation of the system (3.5).

In contrast, if zi defined by (3.1)–(3.4) make the system (3.5) holds, it is obvious that the curve is
an indirect-PH curve. �

Notably, there are no real roots for P′(t) = 0, therefore, a class I sextic indirect-PH curve is a regular
curve, i.e., there are no cusps on the curve. To further indicate the properties of its control polygon,
I introduce some auxiliary points, as shown in Figure 1. Let points Qi, i = 0, . . . , 5, are defined as
follows,

Q0 = P1 +
z2

1

30
= P2 −

2z0 z1 z2

15
,

Q1 = P2 +
z1 z2

15
,

Q2 = Q1 +
z0 z2

2

30
= P3 −

z0 z1 z3

30
,

Q3 = P3 +
z2

2

15
,

Q4 = Q3 +
z1 z3

30
= P4 −

z0 z2 z3

15
,

Q5 = P4 +
2z2 z3

15
= P5 −

z0 z2
3

30
,

then, I have

z0 =
∆P0

5(Q0 − P1)
=

2(P2 − Q0)
5(Q1 − P2)

=
2∆Q1

Q3 − P3
=

P3 − Q2

2∆Q3
=

5(P4 − Q4)
2(Q5 − P4)

=
5(P5 − Q4)

∆P5
.
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Figure 1. An example of a class I sextic indirect-PH curve with its Bézier control points and
auxiliary points.

Figure 2 gives examples for testing whether a given Bézier curve is a class I sextic indirect-PH
curve or not. To do that, I have to do approximate computation, because the data for control polygons
in practical operation are not always keeping accurate. Farouki et al. [39] proposed a robust PH
identification by choosing a relative tolerance ε for algebraic constraints for control polygon, that
is 102 − 103 larger than machine unit, this is η ≈ 2.22 × 10−16.

P
0

P
1

P
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P
3

P
4

P
5

P
6

(a)

P
0

P
1

P
2

P
3

P
4

P
5

P
6

(b)

Figure 2. Test of class I sextic indirect-PH curves. (a) The curve is a class I sextic indirect-
PH curve. (b) The curve is not a class I sextic indirect-PH curve.

In Figure 2(a), the control points are P0 = 0, P1 = 0.7500 + 6.7292i, P2 = 3.1083 + 11.2625i,
P3 = 6.8083+12.3208i, P4 = 10.2250+10.1208i, P5 = 10.5583+6.9708i and P6 = 9.0583+0.3042i.
I compute z0 = 2−1.5i, z1 = 2+3.5i, z2 = 3+2i, z3 = 4−5i, thus the differences between the right- and
left-hand sides of equations in (3.5) are 3.5527× 10−15, 3.8658× 10−13, 6.8109× 10−13, 6.3870× 10−13,
1.7764 × 10−14, 0, respectively, so the curve is a class I sextic indirect-PH curve.

In Figure 2(b), I have P0 = 0, P1 = 0.7500 + 6.7292i, P2 = 3.1083 + 10.2625i, P3 = 6.8083 +

11.3208i, P4 = 10.2250 + 9.1208i, P5 = 10.5583 + 6.9708i and P6 = 9.0583 + 0.3042i. I have
z0 = −4.0983 − 1.5577i, z1 = −1.5866 + 2.5978i, z2 = 8.2558 − 4.8334i and z3 = 4 − 5i. The
differences between the right- and left-hand sides of equations in (3.5) are 1.2809 × 10−14, 599.3607,
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1715.3, 952.5519, 2.2749×10−14 and 0, respectively, the curve is not a class I sextic indirect-PH curve.

3.2. Class II sextic indirect-PH curve

Let

a0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ Im(∆P0∆P5) 5Im(∆P4∆P5)
5Im(∆P0∆P1) Im(∆P0∆P5)

∣∣∣∣∣∣
∣∣∣∣∣∣10Im(∆P3∆P5) 5Im(∆P4∆P5)
5Im(∆P0∆P4) Im(∆P0∆P5)

∣∣∣∣∣∣∣∣∣∣∣∣ Im(∆P0∆P5) 5Im(∆P1∆P5)
5Im(∆P0∆P1) 10Im(∆P0∆P2)

∣∣∣∣∣∣
∣∣∣∣∣∣ Im(∆P0∆P5) 5Im(∆P4∆P5)
5Im(∆P0∆P1) Im(∆P0∆P5)

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

a1 =
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ 5Im(∆P1∆P5) 5Im(∆P4∆P5)
10Im(∆P0∆P2) Im(∆P0∆P5)

∣∣∣∣∣∣
∣∣∣∣∣∣10Im(∆P3∆P5) 5Im(∆P4∆P5)
5Im(∆P0∆P4) Im(∆P0∆P5)

∣∣∣∣∣∣∣∣∣∣∣∣ Im(∆P0∆P5) 10Im(∆P2∆P5)
5Im(∆P0∆P1) 10Im(∆P0∆P3)

∣∣∣∣∣∣
∣∣∣∣∣∣ Im(∆P0∆P5) 5Im(∆P4∆P5)
5Im(∆P0∆P1) Im(∆P0∆P5)

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

a2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣10Im(∆P2∆P5) 5Im(∆P4∆P5)
10Im(∆P0∆P3) Im(∆P0∆P5)

∣∣∣∣∣∣
∣∣∣∣∣∣10Im(∆P3∆P5) 5Im(∆P4∆P5)
5Im(∆P0∆P4) Im(∆P0∆P5)

∣∣∣∣∣∣∣∣∣∣∣∣ Im(∆P0∆P5) 10Im(∆P3∆P5)
5Im(∆P0∆P1) 5Im(∆P0∆P4)

∣∣∣∣∣∣
∣∣∣∣∣∣ Im(∆P0∆P5) 5Im(∆P4∆P5)
5Im(∆P0∆P1) Im(∆P0∆P5)

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(3.8)

Let

z0 =
a2∆P0

a0∆P5

(
36a0 A∆P5 − 2a0a2B2

324∆P0∆P5 − a0a2 AB

)2

, (3.9)

z1 =
324∆P0∆P5 − a0a2 AB
36a0 A∆P5 − 2a0a2B2

√
6∆P5

a2
, (3.10)

z2 =

√
6∆P5

a2
, (3.11)

where

A =
30∆P1a0 − 12a1∆P0

a2
0

,

B =
30∆P4a2 − 12a1∆P5

a2
2

.

Then a characteristic of class II sextic indirect-PH curves is given as following theorem.

Theorem 3.2. A planar sextic Bézier curve is a class II sextic indirect-PH curve if and only if

6∆P0 = a0 z0 z2
1,

30∆P1 = a0(z2
1 + 2z0 z1 z2) + 2a1 z0 z2

1,

60∆P2 = a0(z0 z2
2 + 2z1 z2) + 2a1(z2

1 + 2z0 z1 z2) + z0 z2
1,

60∆P3 = a0 z2
2 + 2a1(z0 z2

2 + 2z1 z2) + a2(z2
1 + 2z0 z1 z2),

30∆P4 = 2a1 z2
2 + a2(z0 z2

2 + 2z1 z2),
6∆P5 = a2 z2

2.

(3.12)
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Proof. According to Theorem 2.1, a planar curve is a class II sextic indirect-PH curve if and only if
there are ai ∈ R, zi ∈ C, i = 0, 1, 2, such that its hodograph has form

P′(t) = [a0(1 − t)2 + 2a1(1 − t)t + a2t2][z0(1 − t) + t][z1(1 − t) + z2t]2,

which is expanded as

P′(t) =a0 z0 z2
1(1 − t)5 + [a0(z2

1 + 2z0 z1 z2) + 2a1 z0 z2
1](1 − t)4t

+ [a0(z0 z2
2 + 2z1 z2) + 2a1(z2

1 + 2z0 z1 z2) + z0 z2
1](1 − t)3t2

+ [a0 z2
2 + 2a1(z0 z2

2 + 2z1 z2) + a2(z2
1 + 2z0 z1 z2)](1 − t)2t3

+ [2a1 z2
2 + a2(z0 z2

2 + 2z1 z2)](1 − t)t4 + a2 z2
2t5,

thus the conditions (3.12) are immediately followed by matching its coefficients with (2.3).
For a given Bézier curve, I have to find such ai, zi, i = 0, 1, 2, to make (3.12) hold. Note that

ρ(t) = a0(1 − t)2 + 2a1(1 − t)t + a2t2 is a common factor of P′(t) and P′(t), so I consider a system of
equations

P′(t) = 6
5∑

i=0

∆PiB5
i (t) = 0,

P′(t) = 6
5∑

i=0

∆PiB5
i (t) = 0.

To reduce the degree of the system, I eliminate the items (1 − t)5 and t5, and divide non-zero items
t and 1 − t, respectively. Moreover, because

∆Pi∆P j − ∆P j∆Pi = 2Im(∆Pi∆P j),

I derive

Im(∆P0∆P5)(1 − t)4 + 5Im(∆P1∆P5)(1 − t)3t + 10Im(∆P2∆P5)(1 − t)2t2 + 10Im(∆P3∆P5)(1 − t)t3

+ 5Im(∆P4∆P5)t4 = 0,

5Im(∆P0∆P1)(1 − t)4 + 10Im(∆P0∆P2)(1 − t)3t + 10Im(∆P0∆P3)(1 − t)2t2 + 5Im(∆P0∆P4)(1 − t)t3

+ Im(∆P0∆P5)t4 = 0.

Again, eliminating the items (1 − t)4 and t4, respectively, I get∣∣∣∣∣∣ Im(∆P0∆P5) 5Im(∆P4∆P5)
5Im(∆P0∆P1) Im(∆P0∆P5)

∣∣∣∣∣∣ (1 − t)3 +

∣∣∣∣∣∣ 5Im(∆P1∆P5) 5Im(∆P4∆P5)
10Im(∆P0∆P2) Im(∆P0∆P5)

∣∣∣∣∣∣ (1 − t)2t

+

∣∣∣∣∣∣10Im(∆P2∆P5) 5Im(∆P4∆P5)
10Im(∆P0∆P3) Im(∆P0∆P5)

∣∣∣∣∣∣ (1 − t)t2 +

∣∣∣∣∣∣10Im(∆P3∆P5) 5Im(∆P4∆P5)
5Im(∆P0∆P4) Im(∆P0∆P5)

∣∣∣∣∣∣ t3 = 0,∣∣∣∣∣∣ Im(∆P0∆P5) 5Im(∆P1∆P5)
5Im(∆P0∆P1) 10Im(∆P0∆P2)

∣∣∣∣∣∣ (1 − t)3 +

∣∣∣∣∣∣ Im(∆P0∆P5) 10Im(∆P2∆P5)
5Im(∆P0∆P1) 10Im(∆P0∆P3)

∣∣∣∣∣∣ (1 − t)2t
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+

∣∣∣∣∣∣ Im(∆P0∆P5) 10Im(∆P3∆P5)
5Im(∆P0∆P1) 5Im(∆P0∆P4)

∣∣∣∣∣∣ (1 − t)t2 +

∣∣∣∣∣∣ Im(∆P0∆P5) 5Im(∆P4∆P5)
5Im(∆P0∆P1) Im(∆P0∆P5)

∣∣∣∣∣∣ t3 = 0.

I further reduce the degree of the system using the same method, thus I can get a system of two
quadric equations. If the given curve is a sextic indirect-PH curve, then both quadric equations shall be
compatible, that is they both have form kρ(t) = 0, for some k ∈ R. Therefore, I may give ai, i = 0, 1, 2,
as (3.8).

Now, I substitute ai, i = 0, 1, 2, into the second and fifth equations of (3.12), and I get

z2
1 + 2z0 z1 z2 = A =

30a0∆P1 − 12a1∆P0

a2
0

,

z0 z2
2 + 2z1 z2 = B =

30a2∆P4 − 12a1∆P5

a2
2

.

Moreover, it is known that a0 z0 z2
1 = 6∆P0, and a2 z2

2 = 6∆P5, thus I get z2 =

√
6∆P5

a2
, and

a0 z3
1 − a0 Az1 + 12∆P0 z2 = 0,

2a0 z3
1 z2 − a0Bz2

1 + 6∆P0 z2
2 = 0.

By eliminating the item z3
1 and the constant item, respectively, I can derive

3a0 z2 z2
1 − 2a0Bz1 + a0 Az2 = 0,

a0Bz2
1 − 2a0 Az2 z1 + 18∆P0 z2

2 = 0,

which gives a solution of z1 as (3.10). Finally, by substituting it into a0 z0 z2
1 = 6∆P0, I get a solution of

z0 as (3.9).
In contrast, if the given ai, zi, i = 0, 1, 2, make the system (3.12) hold, it is obvious that the given

curve is a class II sextic indirect-PH curve. �

Figure 3 gives an example of a class II sextic indirect-PH curve. In this figure, auxiliary points Qi,
i = 0, . . . , 5, are given as follow:

Q0 = P1 +
a1 z0 z2

1

15
= P2 −

a0 A
30

,

Q1 = P2 +
a2 z0 z2

1

60
,

Q2 = Q1 +
a1 A
30

= P3 −
a0B
60

,

Q3 = P3 +
a2 A
60

,

Q4 = Q3 +
a1B
30

= P4 −
a0 z2

2

60
,

Q5 = P4 +
a2B
30

= P5 −
a1 z2

2

15
.
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Therefore, I may further get

2∆P0 : 5(Q0 − P1) : 20(Q1 − P2)
=(P2 − Q0) : ∆Q1 : 2(Q3 − P3)
=2(P3 − Q2) : ∆Q3 : (Q5 − P4)
=20(P4 − Q3) : 5(P5 − Q5) : 2∆P5

=a0 : a1 : a2.

P
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P
1

P
2 P

3

P
4

P
5

P
6

Q
0

Q
1

Q
2 Q

3

Q
4

Q
5

Figure 3. An example of a class II sextic indirect-PH curve with its Bézier control points
and auxiliary points.

In Figure 4(a), I assign P0 = 0, P1 = −0.1667 + 1.5167i, P2 = 0.1167 + 3.8797i, P3 = 2.3157 +

3.8716ii, P4 = 3.2626+2.7807i, P5 = 3.0484+1.0170i, P6 = 2.4465−0.7830i. I have a0 = −238.5820,
a1 = −954.3280, a2 = −572.5968, z0 = 2 − 0.8i, z1 = −0.1144 + 0.0687i, z2 = 0.1144 + 0.0824i, the
differences between the right- and left-hand sides of equations in (3.12) are 1.6653 × 10−16, 1.1102 ×
10−16, 1.9861 × 10−15, 8.8818 × 10−16, 4.4409 × 10−16, 0, respectively, so the curve can be classified
as a class II sextic indirect-PH curve. Moreover, it is clear the real roots of ρ(t) = 0 are the parameter
values of the cusps. However, in this example, the curve is a regular curve because a2

1 − a0a2 < 0.

In Figure 4(b), I assign P0 = 0, P1 = −0.1667 + 1.5167i, P2 = 0.1167 + 2.8797i, P3 = 2.3157 +

2.8716ii, P4 = 3.2626+1.7807i, P5 = 3.0484+1.0170i, P6 = 2.4465−0.7830i. I have a0 = −982.4731,
a1 = −2022.3, a2 = −2093.1, z0 = 1.2214 + 1.0446i, z1 = −0.0356 + 0.0673i, z2 = 0.0599 + 0.0431i,
the differences between the right- and left-hand sides of equations in (3.12) are 7.5758×10−16, 4.7429×
10−16, 1.4714, 1.1718, 0, 4.4409 × 10−16, respectively, so the curve is not a class II sextic indirect-PH
curve.
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Figure 4. Test of class II sextic indirect-PH curves. (a) The curve is a class II sextic indirect-
PH curve. (b) The curve is not a class II sextic indirect-PH curve.

3.3. Class III sextic indirect-PH curve

For a class III sextic indirect-PH curve, let Pi, i = 0, . . . , 6, be its Bézier control points, then
auxiliary points Qi, i = 0, 1, 2, 3, are constructed such that points Q0 and Q3 are on lines P0 P1 and P5 P6,
respectively, and they further satisfy P0 P1 � P2Q1 � P3Q2 � P4Q3 and Q0 P2 �Q1 P3 �Q2 P4 � P5 P6, see
Figure 5. Thus, a necessary and sufficient condition for sextic indirect-PH curves is given as following
theorem.
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Q
1

Q
2

Q
3

Figure 5. An example of a class III sextic indirect-PH curve with its Bézier control points
and auxiliary points.

Theorem 3.3. A planar Bézier curve is a class III sextic indirect-PH curve if and only if

12∆P0 : 15(Q0 − P1) : 20(Q1 − P2) : 30(Q2 − P3) : 60(Q3 − P4)
=60(P2 − Q0) : 30(P3 − Q1) : 20(P4 − Q2) : 15(P5 − Q3) : 12∆P5.

(3.13)

Proof. The hodograph of a class III sextic indirect-PH curve has form

P′(t) = [a0(1 − t)4 + 4a1(1 − t)3t + 6a2(1 − t)2t2 + 4a3(1 − t)t3 + a4t4][z0(1 − t) + z1t],
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for some ai ∈ R, i = 0, . . . , 4, and z j ∈ C, j = 0, 1, which is expanded as

P′(t) =a0 z0(1 − t)5 + (a0 z1 + 4a1 z0)(1 − t)4t + (4a1 z1 + 6a2 z0)(1 − t)3t2 + (6a2 z1 + 4a3 z0)(1 − t)2t3

+ a4(4a3 z1 + z0)(1 − t)t4 + a4 z1t5.

By matching its coefficients with (2.3), I get

6∆P0 = a0 z0,

30∆P1 = a0 z1 + 4a1 z0,

60∆P2 = 4a1 z1 + 6a2 z0,

60∆P3 = 6a2 z1 + 4a3 z0,

30∆P4 = 4a3 z1 + a4 z0,

6∆P5 = a4 z1.

Let
Q0 = P1 +

2a1

15
z0 = P2 −

a0

30
z1,

Q1 = P2 +
a2

10
z0 = P3 −

a1

15
z1,

Q2 = P3 +
a3

15
z0 = P4 −

a2

10
z1,

Q3 = P4 +
a4

30
z0 = P5 −

2a3

15
z1,

(3.14)

then

12∆P0 : 15(Q0 − P1) : 20(Q1 − P2) : 30(Q2 − P3) : 60(Q3 − P4) = a0 : a1 : a2 : a3 : a4,

60(P2 − Q0) : 30(P3 − Q1) : 20(P4 − Q2) : 15(P5 − Q3) : 12(∆P5) = a0 : a1 : a2 : a3 : a4,

which immediately gives (3.13).
In contrast, if there are points Qi, i = 0, 1, 2, 3, such that (3.13) holds, then ai, i = 0, . . . , 4, are not

difficult to be determined, e.g., I may suppose a0 = 1 or a4 = 1. Following (3.14), I can get

z0 =
6∆P0

a0
=

15(Q0 − P1)
2a1

=
10(Q1 − P2)

a2
=

15(Q2 − P3)
a3

=
30(Q3 − P4)

a4
,

z1 =
30(P2 − Q0)

a0
=

15(P3 − Q1)
a1

=
10(P4 − Q2)

a2
=

15(P5 − Q3)
2a3

=
6∆P5

a4
.

�

In Figure 6(a), I give an example that P0 = 0, P1 = 0.6782 + 1.5224i, P2 = 1.1537 + 1.8361i,
P3 = 1.7648 + 2.4542i, P4 = 2.5129 + 1.8728i, P5 = 3.0569 + 1.5867i, P6 = 4.0777 + 0.1101i. Thus,
I have

12∆P0 : 15(Q0 − P1) : 20(Q1 − P2) : 30(Q2 − P3) : 60(Q3 − P4)
=60(P2 − Q0) : 30(P3 − Q1) : 20(P4 − Q2) : 15(P5 − Q3) : 12∆P5

=2 : 1 : 2 : 1 : 2,
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which means the curve is a class III sextic indirect-PH curve.
In Figure 6(b), I assign P0 = 0, P1 = 0.6782+1.5224i, P2 = 1.1537+2.0361i, P3 = 1.7648+2.3542i,

P4 = 2.5129 + 2.0728i, P5 = 3.0569 + 1.5867i, P6 = 4.0777 + 0.1101i and I have

12∆P0 : 15(Q0 − P1) : 20(Q1 − P2) : 30(Q2 − P3) : 60(Q3 − P4)
= 1.6551 : 0.9989 : 1.3326 : 1.3314 : 1,

60(P2 − Q0) : 30(P3 − Q1) : 20(P4 − Q2) : 15(P5 − Q3) : 12∆P5

= 0.7346 : 0.6990 : 0.8673 : 0.5663 : 1,

which are not equal, so the curve is not a class III sextic indirect-PH curve.
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Figure 6. Test of class III sextic indirect-PH curves. (a) The curve is a class III sextic
indirect-PH curve. (b) The curve is not a class III sextic indirect-PH curve.

4. Conclusions

In this paper, I study characteristics of sextic indirect-PH curves. Following our results, whether a
sextic polynomial curve is an indirect-PH curve or not can be determined by its Bézier control polygon.
The methods I used are quite fundamental, which can be extended to study geometric properties of
other polynomial curves with rational offsets.

Note that several open problems need to be addressed for future research to advance. First, the
geometric construction of sextic indirect-PH curves is not yet clear. For example, given endpoints with
specified continuous constraints, constructing a curve that meets the indirect-PH property is possible.
Second, it requires developing new theories and techniques to give a unified approach to identifying
indirect PH curves of an arbitrary degree. Finally, how to apply indirect-PH curves to construct spline
curves can further enable designers to complete free geometry modeling.
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