Let $ \mathfrak{R}_{l, k} = {\mathbb F}_{p^m}[u_1, u_2, \cdots, u_k]/ \langle u_{i}^{l} = u_{i}, u_iu_j = u_ju_i = 0 \rangle $, where $ p $ is a prime, $ l $ is a positive integer, $ (l-1)\mid(p-1) $ and $ 1\leq i, j\leq k $. First, we define a Gray map $ \phi_{l, k} $ from $ \mathfrak{R}_{l, k}^n $ to $ {\mathbb F}_{p^m}^{((l-1)k+1)n} $, and study its Gray image. Further, we study the algebraic structure of $ \sigma $-self-orthogonal and $ \sigma $-dual-containing constacyclic codes over $ \mathfrak{R}_{l, k} $, and give the necessary and sufficient conditions for $ \lambda $-constacyclic codes over $ \mathfrak{R}_{l, k} $ to satisfy $ \sigma $-self-orthogonal and $ \sigma $-dual-containing. Finally, we construct quantum codes from $ \sigma $-dual-containing constacyclic codes over $ \mathfrak{R}_{l, k} $ using the CSS construction or Hermitian construction and compare new codes our obtained better than the existing codes in some recent references.
Citation: Xiying Zheng, Bo Kong, Yao Yu. Quantum codes from $ \sigma $-dual-containing constacyclic codes over $ \mathfrak{R}_{l, k} $[J]. AIMS Mathematics, 2023, 8(10): 24075-24086. doi: 10.3934/math.20231227
Let $ \mathfrak{R}_{l, k} = {\mathbb F}_{p^m}[u_1, u_2, \cdots, u_k]/ \langle u_{i}^{l} = u_{i}, u_iu_j = u_ju_i = 0 \rangle $, where $ p $ is a prime, $ l $ is a positive integer, $ (l-1)\mid(p-1) $ and $ 1\leq i, j\leq k $. First, we define a Gray map $ \phi_{l, k} $ from $ \mathfrak{R}_{l, k}^n $ to $ {\mathbb F}_{p^m}^{((l-1)k+1)n} $, and study its Gray image. Further, we study the algebraic structure of $ \sigma $-self-orthogonal and $ \sigma $-dual-containing constacyclic codes over $ \mathfrak{R}_{l, k} $, and give the necessary and sufficient conditions for $ \lambda $-constacyclic codes over $ \mathfrak{R}_{l, k} $ to satisfy $ \sigma $-self-orthogonal and $ \sigma $-dual-containing. Finally, we construct quantum codes from $ \sigma $-dual-containing constacyclic codes over $ \mathfrak{R}_{l, k} $ using the CSS construction or Hermitian construction and compare new codes our obtained better than the existing codes in some recent references.
[1] | A. R. Calderbank, P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A, 54 (1996), 1098–1105. https://doi.org/10.1103/PhysRevA.54.1098 doi: 10.1103/PhysRevA.54.1098 |
[2] | A. M. Steane, Simple quantum error-correcting codes, Phys. Rev. A, 54 (1996), 4741–4751. https://doi.org/10.1103/PhysRevA.54.4741 doi: 10.1103/PhysRevA.54.4741 |
[3] | A. R. Calderbank, E. M. Rains, P. W. Shor, N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inf. Theory, 44 (1998), 1369–1387. https://doi.org/10.1109/ISIT.1997.613213 doi: 10.1109/ISIT.1997.613213 |
[4] | A. Ketkar, A. Klappenecker, S. Kumar, P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inf. Theory, 52 (2006), 4892–4914. https://doi.org/10.1109/TIT.2006.8836123 doi: 10.1109/TIT.2006.8836123 |
[5] | Y. Fan, L. Zhang, Galois self-dual constacyclic codes, Des. Codes Cryptogr., 84 (2017), 473–492. https://doi.org/10.1007/s10623-016-0282-8 doi: 10.1007/s10623-016-0282-8 |
[6] | X. Liu, Y. Fan, H. Liu, Galois LCD codes over finite fields, Finite Fields Appl., 49 (2018), 227–242. https://doi.org/10.1016/j.ffa.2017.10.001 doi: 10.1016/j.ffa.2017.10.001 |
[7] | H. Liu, X. Pan, Galois hulls of linear codes over finite fields, Des. Codes Cryptogr., 88 (2020), 241–255. https://doi.org/10.1007/s10623-019-00681-2 doi: 10.1007/s10623-019-00681-2 |
[8] | H. Liu, J. Liu, On $\sigma$-self-orthogonal constacyclic codes over ${\mathbb F}_{p^m}+u{\mathbb F}_{p^m}$, Adv. Math. Commun., 16 (2022), 643–665. https://doi.org/10.3934/amc.2020127 doi: 10.3934/amc.2020127 |
[9] | Y. Fu, H. Liu, Galois self-dual extended duadic constacyclic codes, Disc. Math., 346 (2023), 113167. https://doi.org/10.1016/j.disc.2022.113167 doi: 10.1016/j.disc.2022.113167 |
[10] | S. Huang, S. Zhu, J. Li, Three classes of optimal Hermitian dual-containing codes and quantum codes, Quantum Inf. Process., 22 (2023), 45. https://doi.org/10.1007/s11128-022-03791-4 doi: 10.1007/s11128-022-03791-4 |
[11] | H. Islam, O. Prakash, New quantum codes from constacyclic and additive constacyclic codes, Quantum Inf. Process., 19 (2020), 319. https://doi.org/10.1007/s11128-020-02825-z doi: 10.1007/s11128-020-02825-z |
[12] | K. Gowdhaman, C. Mohan, D. Chinnapillai, J. Gao, Construction of quantum codes from $\lambda $-constacyclic codes over the ring $\frac{\mathbb {F}_p[u, v]}{\langle v^3-v, u^3-u, uv-vu\rangle }$, J. Appl. Math. Comput., 65 (2021), 611–622. https://doi.org/10.1007/s12190-020-01407-7 doi: 10.1007/s12190-020-01407-7 |
[13] | H. Islam, O. Prakash, Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring, Cryptogr. Commun., 14 (2022), 59–73. https://doi.org/10.1007/s12095-021-00516-9 doi: 10.1007/s12095-021-00516-9 |
[14] | B. Kong, X. Zheng, Non-binary quantum codes from constacyclic codes over ${\mathbb F}_{q}[u_1, u_2, \cdots, u_k]/\langle u^{3}_{i} = u_{i}, u_iu_j = u_ju_i\rangle$, Open Math., 20 (2022), 1013–1020. https://doi.org/10.1515/math-2022-0459 doi: 10.1515/math-2022-0459 |
[15] | B. Kong, X. Zheng, Quantum codes from constacyclic codes over $S_{k}$, EPJ Quantum Technol., 10 (2023), 3. https://doi.org/10.1140/epjqt/s40507-023-00160-7 doi: 10.1140/epjqt/s40507-023-00160-7 |
[16] | X. Liu, L. Yu, P. Hu, New entanglement-assisted quantum codes from $k$-Galois dual codes, Finite Fields Appl., 55 (2019), 21–32. https://doi.org/10.1016/j.ffa.2018.09.001 doi: 10.1016/j.ffa.2018.09.001 |
[17] | X. Liu, H. Liu, L. Yu, New EAQEC codes constructed from Galois LCD codes, Quantum Inf. Process., 19 (2020), 20. https://doi.org/10.1007/s11128-019-2515-z doi: 10.1007/s11128-019-2515-z |
[18] | H. Li, An open problem of $k$-Galois hulls and its application, Disc. Math., 346 (2023), 113361. https://doi.org/10.1016/j.disc.2023.113361 doi: 10.1016/j.disc.2023.113361 |