We characterize $ N(\kappa) $-paracontact metric manifolds (NKPMM) $ M^{2n+1} $ satisfying the Fischer-Marsden conjecture. We demostrate that, if an $ M^{2n+1} $ satisfies the Fischer-Marsden equation, then either $ M^{2n+1} $ with $ \kappa > -1 $ is a non-Einstein manifold or $ M^{2n+1} $ is locally isometric to $ \mathbb{E}^{n+1} \times \mathbb{H}^{n}(-4) $ for $ n > 1 $. For the $ 3 $-dimensional case, we show that $ M^3 $ is an Einstein manifold.
Citation: Sudhakar Kumar Chaubey, Meraj Ali Khan, Amna Salim Rashid Al Kaabi. $ N(\kappa) $-paracontact metric manifolds admitting the Fischer-Marsden conjecture[J]. AIMS Mathematics, 2024, 9(1): 2232-2243. doi: 10.3934/math.2024111
We characterize $ N(\kappa) $-paracontact metric manifolds (NKPMM) $ M^{2n+1} $ satisfying the Fischer-Marsden conjecture. We demostrate that, if an $ M^{2n+1} $ satisfies the Fischer-Marsden equation, then either $ M^{2n+1} $ with $ \kappa > -1 $ is a non-Einstein manifold or $ M^{2n+1} $ is locally isometric to $ \mathbb{E}^{n+1} \times \mathbb{H}^{n}(-4) $ for $ n > 1 $. For the $ 3 $-dimensional case, we show that $ M^3 $ is an Einstein manifold.
[1] | S. Kaneyuli, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173–187. https://doi.org/10.1017/s0027763000021565 doi: 10.1017/s0027763000021565 |
[2] | S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37–60. https://doi.org/10.1007/s10455-008-9147-3 doi: 10.1007/s10455-008-9147-3 |
[3] | G. Calvaruso, V. Martin-Molina, Paracontact metric structures on the unit tangent sphere bundle, Ann. Mat. Pura Appl., 194 (2015), 1359–1380. https://doi.org/10.1007/s10231-014-0424-4 doi: 10.1007/s10231-014-0424-4 |
[4] | B. Cappelletti-Montano, Bi-paracontact structures and Legendre foliations, Kodai Math. J., 33 (2010), 473–512. https://doi.org/10.2996/kmj/1288962554 doi: 10.2996/kmj/1288962554 |
[5] | A. M. Blaga, $\eta$-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30 (2016), 489–496. https://doi.org/10.2298/FIL1602489B doi: 10.2298/FIL1602489B |
[6] | G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55 (2011), 697–718. https://doi.org/10.1215/ijm/1359762409 doi: 10.1215/ijm/1359762409 |
[7] | G. Calvaruso, A. Perrone, Ricci solitons in three-dimensional paracontact geometry, J. Geom. Phys., 98 (2015), 1–12. https://doi.org/10.1016/j.geomphys.2015.07.021 doi: 10.1016/j.geomphys.2015.07.021 |
[8] | I. K. Erken, Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, Period. Math. Hungar., 80 (2020), 172–184. https://doi.org/10.1007/s10998-019-00303-3 doi: 10.1007/s10998-019-00303-3 |
[9] | Y. J. Suh, K. Mandal, Yamabe solitons on three-dimensional $N(k)$-paracontact metric manifolds, Bull. Iran. Math. Soc., 44 (2018), 183–191. http://doi.org/10.1007/s41980-018-0013-1 doi: 10.1007/s41980-018-0013-1 |
[10] | B. Cappelletti-Montano, I. Küpeli Erken, C. Murathan, Nullity conditions in paracontact geometry, Differ. Geom. Appl., 30 (2012), 665–693. https://doi.org/10.1016/j.difgeo.2012.09.006 doi: 10.1016/j.difgeo.2012.09.006 |
[11] | B. Cappelletti-Montano, A. Carriazo, V. Martin-Molina, Sasaki-Einstein and paraSasaki-Einstein metrics from $(\kappa, \mu)$-stuctures, J. Geom. Phys., 73 (2013), 20–36. https://doi.org/10.1016/j.geomphys.2013.05.001 doi: 10.1016/j.geomphys.2013.05.001 |
[12] | B. Cappelletti-Montano, L. Di Terlizzi, Geometric structures associated to a contact metric $(\kappa, \mu)$-space, Pacific J. Math., 246 (2010), 257–292. https://doi.org/10.2140/pjm.2010.246.257 doi: 10.2140/pjm.2010.246.257 |
[13] | S. Kaneyuki, M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 81–98. https://doi.org/10.3836/tjm/1270151571 doi: 10.3836/tjm/1270151571 |
[14] | D. G. Prakasha, K. K. Mirji, On $\phi$-symmetric $N(k)$-paracontact metric manifolds, J. Math., 2015 (2015), 728298. https://doi.org/10.1155/2015/728298 doi: 10.1155/2015/728298 |
[15] | V. Martin-Molina, Paracontact metric manifolds without a contact metric counterpart, Taiwanese J. Math., 19 (2015), 175–191. https://doi.org/10.11650/tjm.19.2015.4447 doi: 10.11650/tjm.19.2015.4447 |
[16] | V. Martin-Molina, Local classification and examples of an important class of paracontact metric manifolds, Filomat, 29 (2015), 507–515. https://doi.org/10.2298/FIL1503507M doi: 10.2298/FIL1503507M |
[17] | J. P. Bourguignon, Une stratification de l'espace des structures riemanniennes, Compos. Math., 30 (1975), 1–41. |
[18] | A. E. Fischer, J. E. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc., 80 (1974), 479–484. https://doi.org/10.1090/S0002-9904-1974-13457-9 doi: 10.1090/S0002-9904-1974-13457-9 |
[19] | J. Corvino, Scalar curvature deformations and a gluing construction for the Einstein constraint equations, Commun. Math. Phys., 214 (2000), 137–189. https://doi.org/10.1007/PL00005533 doi: 10.1007/PL00005533 |
[20] | I. Al-Dayal, S. Deshmukh, M. D. Siddiqi, A characterization of GRW spacetimes, Mathematics, 9 (2021), 2209. https://doi.org/10.3390/math9182209 doi: 10.3390/math9182209 |
[21] | O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Japan, 34 (1982), 665–675. https://doi.org/10.2969/jmsj/03440665 doi: 10.2969/jmsj/03440665 |
[22] | P. Cernea, D. Guan, Killing fields generated by multiple solutions to the Fischer-Marsden equation, Int. J. Math., 26 (2015), 93–111. https://doi.org/10.1142/S0129167X15400066 doi: 10.1142/S0129167X15400066 |
[23] | D. S. Patra, A. Ghosh, The Fischer-Marsden conjecture and contact geometry, Period. Math. Hungar., 76 (2018), 207–216. https://doi.org/10.1007/s10998-017-0220-1 doi: 10.1007/s10998-017-0220-1 |
[24] | D. G. Prakasha, P. Veeresha, Venkatesha, The Fischer-Marsden conjecture on non-Kenmotsu $(\kappa, \mu)$-almost Kenmotsu manifolds, J. Geom., 110 (2019), 1. https://doi.org/10.1007/s00022-018-0457-8 doi: 10.1007/s00022-018-0457-8 |
[25] | S. K. Chaubey, U. C. De, Y. J. Suh, Kenmotsu manifolds satisfying the Fischer-Marsden equation, J. Korean Math. Soc., 58 (2021), 597–607. https://doi.org/10.4134/JKMS.j190602 doi: 10.4134/JKMS.j190602 |
[26] | S. K. Chaubey, Y. J. Suh, Ricci-Bourguignon solitons and Fischer-Marsden conjecture on generalized Sasakian-space-forms with $\beta$-Kenmotsu structure, J. Korean Math. Soc., 60 (2023), 341–358. https://doi.org/10.4134/JKMS.j220057 doi: 10.4134/JKMS.j220057 |
[27] | S. K. Chaubey, G. E. Vîlcu, Gradient Ricci solitons and Fischer-Marsden equation on cosymplectic manifolds, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 116 (2022), 186. https://doi.org/10.1007/s13398-022-01325-2 doi: 10.1007/s13398-022-01325-2 |
[28] | S. Deshmukh, H. Al-Sodais, G. E. Vîlcu, A note on some remarkable differential equations on a Riemannian manifold, J. Math. Anal. Appl., 519 (2023), 126778. https://doi.org/10.1016/j.jmaa.2022.126778 doi: 10.1016/j.jmaa.2022.126778 |
[29] | D. H. Hwang, Y. J. Suh, Fischer-Marsden conjecture for hypersurfaces of the complex hyperbolic space, J. Geom. Phys., 186 (2023), 104768. https://doi.org/10.1016/j.geomphys.2023.104768 doi: 10.1016/j.geomphys.2023.104768 |
[30] | Y. J. Suh, Fischer-Marsden conjecture on real hypersurfaces in the complex quadric, J. Math. Pures Appl., 177 (2023), 129–153. http://doi.org/10.1016/j.matpur.2023.06.010 doi: 10.1016/j.matpur.2023.06.010 |
[31] | Y. J. Suh, Fischer-Marsden conjecture on real hypersurfaces in the complex hyperbolic two-plane Grassmannians, Anal. Math. Phys., 12 (2022), 126. http://doi.org/10.1007/s13324-022-00738-x doi: 10.1007/s13324-022-00738-x |
[32] | V. Venkatesha, D. M. Naik, M. Devaraja, H. A. Kumara, Real hypersurfaces of complex space forms satisfying Fischer-Marsden equation, Ann. Univ. Ferrara, 67 (2021), 203–216. https://doi.org/10.1007/s11565-021-00361-x doi: 10.1007/s11565-021-00361-x |
[33] | U. C. De, S. Deshmukh, K. Mandal, On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons, Bull. Iran. Math. Soc., 43 (2017), 1571–1583. |
[34] | S. Zamkovoy, V. Tzanov, Non-existence of flat paracontact metric structure in dimension greater than or equal to five, arXiv: 0910.5838v1, 2011. https://doi.org/10.48550/arXiv.0910.5838 |