In this study, we characterize $ LP $-Kenmotsu manifolds admitting $ * $-Ricci–Yamabe solitons ($ * $-RYSs) and gradient $ * $-Ricci–Yamabe solitons (gradient $ * $-RYSs). It is shown that an $ LP $-Kenmotsu manifold of dimension $ n $ admitting a $ * $-Ricci–Yamabe soliton obeys Poisson's equation. We also determine the necessary and sufficient conditions under which the Laplace equation is satisfied by $ LP $-Kenmotsu manifolds. Finally, by using a non-trivial example of an $ LP $-Kenmotsu manifold, we verify some results of our paper.
Citation: Abdul Haseeb, Fatemah Mofarreh, Sudhakar Kumar Chaubey, Rajendra Prasad. A study of $ * $-Ricci–Yamabe solitons on $ LP $-Kenmotsu manifolds[J]. AIMS Mathematics, 2024, 9(8): 22532-22546. doi: 10.3934/math.20241096
In this study, we characterize $ LP $-Kenmotsu manifolds admitting $ * $-Ricci–Yamabe solitons ($ * $-RYSs) and gradient $ * $-Ricci–Yamabe solitons (gradient $ * $-RYSs). It is shown that an $ LP $-Kenmotsu manifold of dimension $ n $ admitting a $ * $-Ricci–Yamabe soliton obeys Poisson's equation. We also determine the necessary and sufficient conditions under which the Laplace equation is satisfied by $ LP $-Kenmotsu manifolds. Finally, by using a non-trivial example of an $ LP $-Kenmotsu manifold, we verify some results of our paper.
[1] | R. S. Hamilton, Lectures on geometric flows (Unpublished manuscript), 1989. |
[2] | R. S. Hamilton, The Ricci flow on surfaces, 1986. |
[3] | W. Zeng, X. D. Gu, Ricci flow for shape analysis and surface registration, New York, NY: Springer, 2013. https://doi.org/10.1007/978-1-4614-8781-4 |
[4] | E. Barbosa, E. Ribeiro, On conformal solutions of the Yamabe flow, Arch. Math., 101 (2013), 79–89. https://doi.org/10.1007/s00013-013-0533-0 doi: 10.1007/s00013-013-0533-0 |
[5] | A. Barros, E. Ribeiro, Some characterizations for compact almost Ricci solitons, Proc. Amer. Math. Soc., 140 (2012), 1033–1040. https://doi.org/10.1090/S0002-9939-2011-11029-3 doi: 10.1090/S0002-9939-2011-11029-3 |
[6] | D. E. Blair, Riemannian geometry of contact and symplectic manifolds, MA: Birkhauser Boston, 2010. https://doi.org/10.1007/978-0-8176-4959-3 |
[7] | S. Tachibana, On almost-analytic vectors in almost-Kahlerian manifolds, Tohoku Math. J., 11 (1959), 247–265. https://doi.org/10.2748/tmj/1178244584 doi: 10.2748/tmj/1178244584 |
[8] | T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci $*$-tensor, Tokyo J. Math., 25 (2002), 473–483. https://doi.org/10.3836/tjm/1244208866 doi: 10.3836/tjm/1244208866 |
[9] | G. Kaimakamis, K. Panagiotidou, $*$-Ricci solitons of real hypersurfaces in non flat complex space forms, J. Geom. Phys., 86 (2014), 408–413. https://doi.org/10.1016/j.geomphys.2014.09.004 doi: 10.1016/j.geomphys.2014.09.004 |
[10] | S. Güler, M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turk. J. Math., 43 (2019), 2631–2641. https://doi.org/10.3906/mat-1902-38 doi: 10.3906/mat-1902-38 |
[11] | Y. Akrami, T. S. Koivisto, A. R. Solomon, The nature of spacetime in bigravity: Two metrics or none? Gen. Relativ. Grav., 47 (2015), 1838. https://doi.org/10.1007/s10714-014-1838-4 |
[12] | D. E. Allison, B. Unal, Geodesic structure of standard static space-times, J. Geom. Phys., 46 (2003), 193–200. https://doi.org/10.1016/S0393-0440(02)00154-7 doi: 10.1016/S0393-0440(02)00154-7 |
[13] | B. O'Neill, Semi-Riemannian geometry with applications to relativity, 1983. |
[14] | K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Sci., 12 (1989), 151–156. |
[15] | T. Mazur, On Lorentzian P-Sasakian manifolds, In: Classical analysis, Proceedings of 6th Symposium, Singapore: World Scientific, 1992,155–169. https://doi.org/10.1142/9789814537568 |
[16] | A. Haseeb, R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, Bol. Soc. Parana. Mat., 39 (2021), 201–220. https://doi.org/10.5269/bspm.40607 doi: 10.5269/bspm.40607 |
[17] | A. M. Blaga, Some geometrical aspects of Einstein, Ricci and Yamabe solitons, J. Geom. Symmetry Phys., 52 (2019), 17–26. https://doi.org/10.7546/jgsp-52-2019-17-26 doi: 10.7546/jgsp-52-2019-17-26 |
[18] | S. Deshmukh, B. Y. Chen, A note on Yamabe solitons, Balkan J. Geom. Appl., 23 (2018), 37–43. |
[19] | S. Chidananda, V. Venkatesha, Yamabe and Riemann solitons on Lorentzian para-Sasakian manifold, Commun. Korean Math. Soc., 37 (2022), 213–228. https://doi.org/10.4134/CKMS.c200365 doi: 10.4134/CKMS.c200365 |
[20] | A. Haseeb, H. Almusawa, Some results on Lorentzian para-Kenmotsu manifolds admitting $\eta$-Ricci solitons, Palestine J. Math., 11 (2022), 205–213. |
[21] | A. Haseeb, U. C. De, $\eta$-Ricci solitons in $\epsilon$-Kenmotsu manifolds, J. Geom., 110 (2019), 34. https://doi.org/10.1007/s00022-019-0490-2 doi: 10.1007/s00022-019-0490-2 |
[22] | M. A. Lone, I. F. Harry, Ricci solitons on Lorentz-Sasakian space forms, J. Geom. Phys., 178 (2022), 104547. https://doi.org/10.1016/j.geomphys.2022.104547 doi: 10.1016/j.geomphys.2022.104547 |
[23] | A. Haseeb, M. Bilal, S. K. Chaubey, A. A. H. Ahmadini, ${\zeta}$-conformally flat LP-Kenmotsu manifolds and Ricci-Yamabe solitons, Mathematics, 11 (2023), 212. https://doi.org/10.3390/math11010212 doi: 10.3390/math11010212 |
[24] | J. P. Singh, M. Khatri, On Ricci-Yamabe soliton and geometrical structure in a perfect fluid spacetime, Afr. Mat., 32 (2021), 1645–1656. https://doi.org/10.1007/s13370-021-00925-2 doi: 10.1007/s13370-021-00925-2 |
[25] | Y. J. Suh, U. C. De, Yamabe solitons and Ricci solitons on almost co-Kahler manifolds, Can. Math. Bull., 62 (2019), 653–661. https://doi.org/10.4153/S0008439518000693 doi: 10.4153/S0008439518000693 |
[26] | H. I. Yoldas, On Kenmotsu manifolds admitting $\eta$-Ricci-Yamabe solitons, Int. J. Geom. Methods M., 18 (2021), 2150189. https://doi.org/10.1142/s0219887821501899 doi: 10.1142/s0219887821501899 |
[27] | P. Zhang, Y. Li, S. Roy, S. Dey, A. Bhattacharyya, Geometrical structure in a perfect fuid spacetime with conformal Ricci Yamabe soliton, Symmetry, 14 (2022), 594. https://doi.org/10.3390/sym14030594 doi: 10.3390/sym14030594 |
[28] | D. Dey, $*$-Ricci-Yamabe soliton and contact geometry, arXiv: 2109.04220v1. https://doi.org/10.48550/arXiv.2109.04220 |
[29] | S. Dey, P. Laurian-ioan Laurian-ıoan, S. Roy, Geometry of $*$-$k$-Ricci-Yamabe soliton and gradient $*$-k-Ricci-Yamabe soliton on Kenmotsu manifolds, Hacet. J. Math. Stat., 52 (2023), 907–922. https://doi.org/10.15672/hujms.1074722 doi: 10.15672/hujms.1074722 |
[30] | A. Ghosh, D. S. Patra, $*$-Ricci solitons within the framework of Sasakian and $(K, \mu)$-contact manifold, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850120. https://doi.org/10.1142/S0219887818501207 doi: 10.1142/S0219887818501207 |
[31] | A. Haseeb, S. K. Chaubey, Lorentzian para-Sasakian manifolds and $*$-Ricci solitons, Kragujev. J. Math., 48 (2024), 167–179. https://doi.org/10.46793/KgJMat2402.167H doi: 10.46793/KgJMat2402.167H |
[32] | A. Haseeb, R. Prasad, F. Mofarreh, Sasakian manifolds admitting $*$-$\eta$-Ricci-Yamabe solitons, Adv. Math. Phys., 2022 (2022), 5718736. https://doi.org/10.1155/2022/5718736 doi: 10.1155/2022/5718736 |
[33] | Venkatesha, D. M. Naik, H. A. Kumara, $*$-Ricci solitons and gradient almost $*$-Ricci solitons on Kenmotsu manifolds, Math. Slovaca, 69 (2019), 1447–1458. https://doi.org/10.1515/ms-2017-0321 doi: 10.1515/ms-2017-0321 |
[34] | S. Azami, M. Jafari, N. Jamal, A. Haseeb, Hyperbolic Ricci solitons on perfect fluid spacetimes, AIMS Mathematics, 9 (2024), 18929–18943. https://doi.org/10.3934/math.2024921 doi: 10.3934/math.2024921 |
[35] | A. Haseeb, R. Prasad, Some results on Lorentzian para-Kenmotsu manifolds, Bull. Transilvania Univ. Brasov, 13 (2020), 185–198. https://doi.org/10.31926/but.mif.2020.13.62.1.14 doi: 10.31926/but.mif.2020.13.62.1.14 |
[36] | Y. Li, A. Haseeb, M. Ali, $LP$-Kenmotsu manifolds admitting $\eta$-Ricci solitons and spacetime, J. Math., 2022 (2022), 6605127. https://doi.org/10.1155/2022/6605127 doi: 10.1155/2022/6605127 |
[37] | R. Prasad, A. Haseeb, V. Kumar, $\eta$-Ricci-Yamabe and $*$-$\eta$-Ricci-Yamabe solitons in Lorentzian para-Kenmotsu manifolds, Analysis, 2024. https://doi.org/10.1515/anly-2023-0039 |
[38] | K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, 1970. |