Research article

Generalized -Ricci soliton on Kenmotsu manifolds

  • Received: 05 December 2024 Revised: 17 March 2025 Accepted: 17 March 2025 Published: 28 March 2025
  • MSC : 53C15, 53C25, 53C44, 53D10

  • In the present paper, we examine generalized -Ricci solitons on Kenmotsu manifolds. To illustrate our findings, we present an example of a five-dimensional Kenmotsu manifold that admits the generalized -Ricci soliton.

    Citation: Yanlin Li, Shahroud Azami. Generalized -Ricci soliton on Kenmotsu manifolds[J]. AIMS Mathematics, 2025, 10(3): 7144-7153. doi: 10.3934/math.2025326

    Related Papers:

    [1] Yanlin Li, Dipen Ganguly, Santu Dey, Arindam Bhattacharyya . Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Mathematics, 2022, 7(4): 5408-5430. doi: 10.3934/math.2022300
    [2] Abdul Haseeb, Fatemah Mofarreh, Sudhakar Kumar Chaubey, Rajendra Prasad . A study of -Ricci–Yamabe solitons on LP-Kenmotsu manifolds. AIMS Mathematics, 2024, 9(8): 22532-22546. doi: 10.3934/math.20241096
    [3] Rajesh Kumar, Sameh Shenawy, Lalnunenga Colney, Nasser Bin Turki . Certain results on tangent bundle endowed with generalized Tanaka Webster connection (GTWC) on Kenmotsu manifolds. AIMS Mathematics, 2024, 9(11): 30364-30383. doi: 10.3934/math.20241465
    [4] Noura Alhouiti, Fatemah Mofarreh, Akram Ali, Fatemah Abdullah Alghamdi . On gradient normalized Ricci-harmonic solitons in sequential warped products. AIMS Mathematics, 2024, 9(9): 23221-23233. doi: 10.3934/math.20241129
    [5] Shahroud Azami, Mehdi Jafari, Nargis Jamal, Abdul Haseeb . Hyperbolic Ricci solitons on perfect fluid spacetimes. AIMS Mathematics, 2024, 9(7): 18929-18943. doi: 10.3934/math.2024921
    [6] Yusuf Dogru . η-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603
    [7] Mohd Danish Siddiqi, Fatemah Mofarreh . Schur-type inequality for solitonic hypersurfaces in (k,μ)-contact metric manifolds. AIMS Mathematics, 2024, 9(12): 36069-36081. doi: 10.3934/math.20241711
    [8] Yanlin Li, Aydin Gezer, Erkan Karakaş . Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Mathematics, 2023, 8(8): 17335-17353. doi: 10.3934/math.2023886
    [9] Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali . Geometric inequalities of PR-warped product submanifold in para-Kenmotsu manifold. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069
    [10] Richa Agarwal, Fatemah Mofarreh, Sarvesh Kumar Yadav, Shahid Ali, Abdul Haseeb . On Riemannian warped-twisted product submersions. AIMS Mathematics, 2024, 9(2): 2925-2937. doi: 10.3934/math.2024144
  • In the present paper, we examine generalized -Ricci solitons on Kenmotsu manifolds. To illustrate our findings, we present an example of a five-dimensional Kenmotsu manifold that admits the generalized -Ricci soliton.



    In [16], Kenmotsu introduced Kenmotsu manifolds (or KMs for short), which are a family of almost contact manifolds and intricately linked to warped product manifolds. Recently, the Einstein metrics have been generalized, and the Ricci soliton (or RS) is one of them, which was introduced by Hamilton [12].

    In 2017, Cattino et al. [4] defined the Einstein-type manifold, also known as the generalized Ricci soliton (GRS), as an extension of Einstein manifolds. Due to the interesting and important subject of studying the GRSs in geometry and physics, many researchers have researched this topic. These solitons pertain to geometric flows and illustrate characteristics of particular manifolds. For more details, see [8,14,17,22]. In [3], Calvaruso investigated the GRS equation both in Riemannian and Lorentzian settings on some Lie groups. In [1], the second author classified GRSs on Lie groups of three dimensions related to some connections. Azami examined the Kobayashi-Nomizu connections and canonical connections within Lie groups of three dimensions, successfully identifying all the GRSs associated with these structures. Recently, many authors have studied generalized η-RSs, almost RSs, Ricci-Yamabe solitons, -Ricci-Yamabe solitons, and their properties on KMs [18,19,20]. Sharma [28] studied the RS on contact manifolds. Then Dey [9] investigated -η-Ricci-Yamabe solitons on contact geometry. Yoldas [36] examined η-Ricci-Yamabe solitons on KMs. Chen [5] recently demonstrated the existence of a real hypersurface within a non-flat complex space form that fulfills the criteria of a -RS. Moreover, Wang [32] proved that if a three-dimensional KM M satisfies a -RS, then the manifold M becomes locally isometric to the hyperbolic space H3(1). Additional studies on -Ricci solitons and generalized Ricci solitons are available in [10,13,23,24,25].

    The -Ricci tensor, as referenced in [11,30], is defined by the equation

    S(Z1,Z2)=12(trace{R(Z1,ϕZ2)ϕ})=12trace{Z3R(Z1,ϕZ2)ϕZ3},

    for all vector fields Z1,Z2, and Z3 on the manifold M where R is the Riemannian curvature and ϕ represents a (1,1)-tensor field. A manifold (M,g) is classified as -η-Einstein if functions a and b exist that satisfy the equation

    S=ag+bηη.

    Additionally, the manifold M is designated as a -Einstein manifold when b=0.

    In the following discussion, we present the idea of the generalized -Ricci soliton (or -GRS), highlighting its similarities to the well-known concept of GRSs.

    Definition 1.1. A pseudo-Riemannian manifold (Mn,g) characterized by a -Ricci tensor S and a -scalar curvature defined as r=Tr(S) is referred to as a -GRS whenever there are a vector field V, a smooth function λ, and constants α,β,μ,ρ such that the following equation holds:

    αS+β2LVg+μVV=(ρr+λ)g, (1.1)

    where LV denotes the Lie derivative indirection V, and V(U)=g(V,U). The constants (α,β,μ) cannot all be zero simultaneously. A -GRS is called expanding, steady, or shrinking if λ, is negative, zero, or positive, respectively.

    The generalized -Ricci soliton is a generalization of

    (1) the -V-Einstein equation (if α0 and β=0),

    (2) the -RS [15,31] (if α=β=1 and ρ=μ=0),

    (3) the -Ricci-Yamabe soliton [9] (if β0 and μ=0).

    Motivated by [1,3,21,29] and the works presented above, we study -GRSs on KMs. We present an example of -GRS on a five-dimensional KM.

    The structure of the article is organized in a specific manner. Section 2 introduces key concepts and formulas related to KMs, which are referenced in subsequent sections of the paper. In the final section, we outline the primary results, accompanied by their proofs, and provide an illustrative example.

    Consider a Riemannian manifold (M,g) of (2n+1) dimensions. This manifold is referred to as an almost contact metric manifold characterized by the structure (ϕ,ξ,η,g) if it possesses a vector field ξ on M, a (1,1)-tensor field ϕ, and a 1-form η that satisfy the following conditions:

    ηϕ=0,ϕ2(U)=U+η(U)ξ,η(ξ)=1,ϕ(ξ)=0, (2.1)
    η(U1)=g(U1,ξ),g(ϕU,ϕU1)=g(U,U1)η(U)η(U1),U,U1X(M). (2.2)

    In addition, it is called a KM [16] whenever

    (Z1ϕ)Z2=g(Z1,ϕZ2)ξη(Z1)ϕZ2, (2.3)
    Z1ξ=Z1η(Z1)ξ. (2.4)

    The symbol represents the Levi-Civita connection of g. For a KM with a Riemannian curvature tensor R the following equations are true [2,26]:

    R(Z1,U1)ξ=η(Z1)U1η(U1)Z1, (2.5)
    R(Z1,ξ)U1=η(U1)Z1+g(Z1,U1)ξ, (2.6)
    η(R(Z1,U1)U)=g(Z1,U)η(U1)g(U1,U)η(Z1), (2.7)

    for all vector fields Z1,U1,U. We also have

    S(Z1,ξ)=2nη(Z1), (2.8)
    S(ϕZ1,ϕZ2)=S(Z1,Z2)+2nη(Z1)η(Z2), (2.9)
    (Z1η)Z2=g(Z1,Z2)η(Z1)η(Z2), (2.10)

    for all vector fields Z1,Z2 where S is the Ricci tensor of g. By the definition of a Lie derivative, it follows that

    (Lξg)(Z1,Z2)=g(Z1ξ,Z2)+g(Z1,Z2ξ). (2.11)

    Applying (2.4) to (2.11), we infer

    (Lξg)=2[gηη]. (2.12)

    In the following, we recall the formula that expresses the -Ricci tensor in terms of the Ricci tensor, and we need it to prove our results. In [31], Venkatesha et al. proved the following proposition by the Bianchi identity.

    Proposition 2.1. On a KM of 2n+1 dimensions the -Ricci tensor is determined as follows:

    S(Z1,U1)=S(Z1,U1)+(2n1)g(Z1,U1)+η(Z1)η(U1). (2.13)

    Let {ei}2n+1i=1 be a local orthonormal frame. By considering Z1=ei and U1=ei in (2.13) and summing over i from 1 to 2n+1, we deduce

    r=r+4n2. (2.14)

    Notice that the generalized -Ricci soliton is a generalized form of the η-Ricci soliton when V=ξ, ρ=0, α=12, and β=1.

    In this section, we present our main results, along with their proofs.

    Theorem 3.1. Let a KM of 2n+1 dimensions be a -GRS (g,ξ,α,β,μ,ρ,λ), where ξ represents the Reeb vector field. The -GRS becomes shrinking, steady, or expanding if μρ(r+4n2) is positive, zero, or negative, respectively.

    Proof. Suppose M is a KM of 2n+1 dimensions. We plug V=ξ into the identity (1.1) on M to achieve

    αS(Z1,U1)+β2Lξg(Z1,U1)+μξ(Z1)ξ(U1)=(ρr+λ)g(Z1,U1), (3.1)

    for all vector fields Z1,U1. If we use the equations ξ(Z1)ξ(U1)=η(Z1)η(U1), (2.12), and (2.13), Eq (3.1) becomes

    αS(Z1,U1)+[(2n1)α+βρrλ]g(Z1,U1)+[αβ+μ]η(Z1)η(U1)=0. (3.2)

    Now, we consider U1=ξ in Eq (3.2) and use (2.1) and (2.8), thus arriving at

    [μρrλ]η(Z1)=0. (3.3)

    Since Z1 is arbitrary, we conclude that λ=μρr. Using (2.14), we obtain

    λ=μρ(r+4n2). (3.4)

    This completes the proof of the theorem.

    Now, from Theorem 3.1, we get the following corollary.

    Corollary 3.1. If a KM of 2n+1 dimensions is a -GRS (g,ξ,α,β,μ,ρ,λ) with α0 and a Reeb vector field ξ, then KM is -η-Einstein.

    Proof. If α0, then from (3.1), we obtain

    S(Z1,U1)=1α(ρr+λβ)g(Z1,U1)+1α(βμ)η(Z1)η(U1).

    This proves that KM is -η-Einstein.

    Theorem 3.2. If a KM of 2n+1 dimensions possesses a -GRS (g,f,α,β,μ,ρ,λ) such that β0 then

    Δf+μβ|f|2=αβ(r+4n2)+1β(ρ(r+4n2)+λ)(2n+1). (3.5)

    Proof. If we take the trace from the sides of Eq (1.1), it follows that

    αr+βdivV+μ|V|2=(ρr+λ)(2n+1). (3.6)

    If V=f, then we deduce that divV=Δf. From (3.6), we can derive (3.5).

    Since Δ(eμβf)=μβ(Δf+μβ|f|2)eμβf, we can rewrite (3.5) as follows:

    Δ(eμβf)=μβ{αβ(r+4n2)+1β(ρ(r+4n2)+λ)(2n+1)}eμβf. (3.7)

    Now consider a closed KM of 2n+1 dimensions that admits a -GRS (g,f,α,β,μ,ρ,λ) such that β0 and μ0. In this case, by integrating (3.7) and using MΔ(eμβf)dν=0, we deduce that

    M{(2n+1)λ+(ρ(2n+1)α)r+4n2(2n+1)ρ4n2α}eμβfdν=0. (3.8)

    Let G=(2n+1)λ+(ρ(2n+1)α)r+4n2(2n+1)ρ4n2α. Since eμβf>0, we can deduce the following corollary.

    Corollary 3.2. If a closed KM of 2n+1 dimensions admits a -GRS (g,f,α,β,μ,ρ,λ) such that β0 and μ0, then G=0 or G<0 for some points Geμβf.

    Definition 3.1. A conformal Killing vector field (or CKVF) W is defined as a vector field that satisfies the equation

    LWg=2hg, (3.9)

    where h is a smooth function. The CKVF W is called: Proper if h is non-constant, homothetic if h is constant, and Killing if h=0.

    Theorem 3.3. If a KM of 2n+1 dimensions possesses a -GRS (g,W,α,β,μ,ρ,λ), in which W is a CKVF such that LWg=2hg, then the following equation holds:

    βhξ+μη(W)Wρ(r+4n2)ξλξ=0. (3.10)

    Proof. We have W(ξ)=g(W,ξ)=η(W) and W(Z1)=g(W,Z1). Therefore, we deduce that

    μW(Z1)W(ξ)=g(μη(W)W,Z1).

    Suppose that the vector field W is a CKVF and satisfies (3.9). By (3.9), (2.13), and (1.1), we have

    α(S(Z1,U1)+(2n1)g(Z1,U1)+η(Z1)η(U1))+βhg(Z1,U1)+μW(Z1)W(U1)=(ρr+λ)g(Z1,U1). (3.11)

    By inserting U1=ξ in (3.11) and using (2.8), we obtain

    g(βhξ+μη(W)Wρ(r+4n2)ξλξ,Z1)=0. (3.12)

    Since Z1 is arbitraray, Eq (3.12) yields Eq (3.10).

    Corollary 3.3. If a KM of 2n+1 dimensions possesses a -GRS (g,W,α,β,μ,ρ,λ), where W is perpendicular to ξ and is a CKVF such that LWg=2hg, then the following equation holds:

    λ=βhρ(r+4n2).

    Proof. If W is perpendicular to ξ, then η(W)=0, and Eq (3.10) leads to (βhρ(r+4n2)λ)ξ=0. Since ξ0, we obtain βhρ(r+4n2)λ=0.

    Corollary 3.4. If a KM of 2n+1 dimensions possesses a -GRS (g,W,α,β,μ,ρ,λ), where W is a CKVF and α0, then the KM is -W-Einstein.

    Proof. From (3.11), if α0, then we get the following equation:

    S(Z1,U1)=1α{(ρr+λβh)g(Z1,U1)μW(Z1)W(U1)},

    which shows that the KM is -W-Einstein.

    Definition 3.2. A torse-forming vector field W (TFVF) [34] is defined as a vector field that satisfies the equation

    Z1W=hZ1+ϑ(Z1)W, (3.13)

    where h is a smooth function and ϑ is a 1-form. The TFVF becomes concircular [33], concurrent [27,35], parallel, and torqued [6] ϑ vanishes identically, h=1, h=ϑ=0 ϑ(W)=0, respectively.

    Theorem 3.4. If a KM of 2n+1 dimensions satisfies a -GRS (g,W,α,β,μ,ρ,λ) such that W is a TFVF and admits (3.13), then

    λ=12n+1[α(r+1)+βϑ(W)+μ|W|2]+α(2n1)+βhρ(r+4n2). (3.14)

    Proof. Suppose a KM of 2n+1 dimensions satisfies a -GRS (g,W,α,β,μ,ρ,λ) such that W is a TFVF and admits (3.13). Then from (1.1) and (2.13), we get

    α(S(Z1,U1)+(2n1)g(Z1,U1)+η(Z1)η(U1))+β2(LWg)(Z1,U1)+μW(Z1)W(U1)=(ρr+λ)g(Z1,U1). (3.15)

    On the other hand, by using (3.13), we arrive at

    (LWg)(Z1,U1)=g(Z1W,U1)+g(W,Z1U1)=2hg(Z1,U1)+ϑ(Z1)g(W,U1)+ϑ(U1)g(W,Z1), (3.16)

    for all vector fields Z1,U1. Substituting (3.16) into (3.15), we infer that

    αS(Z1,U1)+[α(2n1)+βhρ(r+4n2)λ]g(Z1,U1)+αη(Z1)η(U1)=β2[ϑ(Z1)g(W,U1)+ϑ(U1)g(W,Z1)]μg(W,Z1)g(W,U1). (3.17)

    Taking the trace of Eq (3.17), one gets

    αr+[α(2n1)+βhρ(r+4n2)λ](2n+1)+α=βϑ(W)μ|W|2. (3.18)

    Solving Eq (3.18) with respect to λ yields Eq (3.14).

    In the following, we present an example of a -GRS that describes some of the our theorems.

    Example 3.1. We denote the standard coordinates of R5 as (y1,y2,y3,y4,y5) and assume that M=R5. We consider the vector fields

    u1=ey5y1,u2=ey5y2,u3=ey5y3,u4=ey5y4,u5=y5,

    which are linearly independent. The metric tensor g on the manifold M is characterized by the following expression: g(ui,ui)=1 if i{1,,5}; otherwise, g(ui,uj)=0. The configuration (ϕ,ξ,η) on the manifold M is defined as follows:

    ϕ=(0010000010100000100000000),ξ=u5,η(Z1)=g(Z1,u5),Z1X(M).

    Notice that, η(ξ)=1, ϕ2(Z1)=Z1+η(Z1)ξ, and g(ϕZ1,ϕY2)=g(Z1,Y2)η(Z1)η(Y2). We also find [ui,u5]=ui for i=1,2,3,4, and the other brackets are equal to zero. Then uiui=u5 and uiu5=u1 for i=1,2,3,4, and the other connections are equal to zero.

    Identities (2.3) and (2.4) hold, and thus (M,ϕ,ξ,η,g) denotes a KM. Hence, we obtain

    S=(4000004000004000004000004)=4g,

    and r=20. We also get

    S=(10000010000014000001000000)=g+ηη,

    and r=4. We get Lξg=2g2ηη. Therefore, (g,ξ,α,β,μ=βα,λ=βα+4ρ) is a -GRS on the KM M. It is also shrinking, steady, or expanding if β+4ρ>α, β+4ρ=α, or β+4ρ<α, respectively.

    In this paper, we consider -GRSs on KMs. We prove if a KM of 2n+1 dimensions admits the -GRS (g,ξ,α,β,μ,ρ,λ), where ξ represents the Reeb vector field, then it is shrinking, steady, or expanding when μρ(r+4n2) is positive, zero, or negative, respectively. Moreover, in this case, it is a -η-Einstein manifold. We then establish if a KM of 2n+1 dimensions which admits a -GRS (g,f,α,β,μ,ρ,λ), then we obtain the Laplacian of f in terms of a soliton structure. We also study KMs that admit -GRSs such that their potential vector fields are CKVFs or TFVFs. To illustrate our results, we give an example of a five-dimensional Kenmotsu manifold that admits the generalized -Ricci soliton.

    Yanlin Li: Methodology, writing-review and editing; Shahroud Azami: Writing-original draft, writing-review and editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

    The authors declare no conflict of interest.



    [1] S. Azami, Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections, J. Nonlinear Math. Phys., 30 (2023), 1–33. https://doi.org/10.1007/s44198-022-00069-2 doi: 10.1007/s44198-022-00069-2
    [2] C. S. Bagewadi, V. S. Prasad, Note on Kenmotsu manifolds, Bull. Calcutta Math. Soc., 91 (1999), 379–384.
    [3] G. Calvaruso, Three-dimensional homogeneous generalized Ricci solitons, Mediterr. J. Math., 14 (2017), 1–21. https://doi.org/10.1007/s00009-017-1019-2 doi: 10.1007/s00009-017-1019-2
    [4] G. Catino, P. Mastrolia, D. D. Monticelli, M. Rigoli, On the geometry of gradient Einstein-type manifolds, Pac. J. Math., 286 (2017), 39–67. https://doi.org/10.2140/pjm.2017.286.39 doi: 10.2140/pjm.2017.286.39
    [5] X. Chen, Real hypersurfaces with -Ricci solitons of non-flat complex space forms, Tokyo J. Math., 41 (2018), 433–451. https://doi.org/10.3836/tjm/1502179275 doi: 10.3836/tjm/1502179275
    [6] B. Y. Chen, Classification of torqued vector fields and its applications to Ricci solitons, Kragujev. J. Math., 41 (2017), 239–250. https://doi.org/10.5937/KgJMath1702239C doi: 10.5937/KgJMath1702239C
    [7] B. Y. Chen, A simple characterization of generalized Robertson-Walker space-times, Gen. Relat. Gravit., 46 (2014), 1833. https://doi.org/10.1007/s10714-014-1833-9 doi: 10.1007/s10714-014-1833-9
    [8] P. T. Chrusciel, H. S. Reall, P. Tod, On non-existence of static vacuum black holes with degenerate components of the event horizon, Classical Quant. Grav., 23 (2006), 549–554. https://dx.doi.org/10.1088/0264-9381/23/2/018 doi: 10.1088/0264-9381/23/2/018
    [9] D. Dey, S. Sarkar, A. Bhattacharyya, -η-Ricci soliton and contact geometry, Ric. Mat., 73 (2024), 1203–1221. https://doi.org/10.1007/s11587-021-00667-0 doi: 10.1007/s11587-021-00667-0
    [10] R. S. Gupta, S. Rani, -Ricci soliton on GSSF with Sasakian metric, Note Mat., 42 (2022), 95–108. https://doi.org/10.1285/i15900932v42n1p95 doi: 10.1285/i15900932v42n1p95
    [11] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci -tensor, Tokyo J. Math., 25 (2002), 473–483. https://doi.org/10.3836/tjm/1244208866 doi: 10.3836/tjm/1244208866
    [12] R. S. Hamilton, The Ricci flow on surfaces in Mathematics and General Relativity, Contemps. Math., 71 (1988), 237–262.
    [13] A. Haseeb, S. K. Chaubey, Lorentzian Para-Sasakian Manifolds and -Ricci Solitons, Kragujev. J. Math., 48 (2024), 167–179. https://doi.org/10.46793/KgJMat2402.167H doi: 10.46793/KgJMat2402.167H
    [14] J. Jezierski, On the existence of Kundt's metrics and degenerate (or extermal) Killing horizons, Classical Quant. Grav., 26 (2009), 035011. http://dx.doi.org/10.1088/0264-9381/26/3/035011 doi: 10.1088/0264-9381/26/3/035011
    [15] G. Kaimkamis, K. Panagiotidou, -Ricci solitons of real hypersurface in non-flat complex space forms, J. Geom. Phys., 76 (2014), 408–413. https://doi.org/10.1016/j.geomphys.2014.09.004 doi: 10.1016/j.geomphys.2014.09.004
    [16] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93–103. https://doi.org/10.2748/tmj/1178241594 doi: 10.2748/tmj/1178241594
    [17] H. K. Kunduri, J. Lucietti, Classifiction of near-horizon geometries of extermal black holes, Living Rev. Relativ., 16 (2013). https://doi.org/10.12942/lrr-2013-8 doi: 10.12942/lrr-2013-8
    [18] Y. Li, S. Bhattacharyya, S. Azami, S. Hui, Li-Yau type estimation of a semilinear parabolic system along geometric flow, J. Inequal. Appl., 131 (2024). https://doi.org/10.1186/s13660-024-03209-y doi: 10.1186/s13660-024-03209-y
    [19] Y. Li, A. K. Mallick, A. Bhattacharyya, M. S. Stankovic, A conformal η-Ricci soliton on a four-dimensional Lorentzian para-Sasakian manifold, Axioms, 13 (2024), 753. https://doi.org/10.3390/axioms13110753 doi: 10.3390/axioms13110753
    [20] Y. Li, M. S. Siddesha, H. A. Kumara, M. M. Praveena, Characterization of Bach and Cotton tensors on a class of Lorentzian manifolds, Mathematics, 12 (2024), 3130. https://doi.org/10.3390/math12193130 doi: 10.3390/math12193130
    [21] Y. Li, N. Alshehri, A. Ali, Riemannian invariants for warped product submanifolds in Qmϵ×R and their applications, Open Math., 22 (2024), 20240063. https://doi.org/10.1515/math-2024-0063 doi: 10.1515/math-2024-0063
    [22] P. Nurowski, M. Randall, Generalized Ricci solitons, J. Geom. Anal., 26 (2016), 1280–1345. https://doi.org/10.1007/s12220-015-9592-8 doi: 10.1007/s12220-015-9592-8
    [23] D. S. Patra, F. Mofarreh, A. Ali, Geometry of almost contact metrics as almost -Ricci solitons, Int. J. Geom. Methodes M., 21 (2024), 2450095. https://doi.org/10.1142/S0219887824500956 doi: 10.1142/S0219887824500956
    [24] R. C. Pavithra, H. G. Nagaraja, Almost -η-Ricci soliton on three-dimensional trans-Sasakian manifolds, Int. J. Geom. Methodes M., 20 (2023), 2350173. https://doi.org/10.1142/S0219887823501736 doi: 10.1142/S0219887823501736
    [25] V. Pirhadi, G. F. Ramandi, S. Azami, Generalized Ricci solitons on three-dimensional Lorentzian walker manifolds, J. Nonlinear Math. Phys., 30 (2023), 1409–1423. https://doi.org/10.1007/s44198-023-00134-4 doi: 10.1007/s44198-023-00134-4
    [26] S. Roy, S. Dey, A. Bhattacharyya, A Kenmotsu metric as a conformal η-Einstein soliton, Carpathian Math. Publ., 13 (2021), 110–118. https://doi.org/10.15330/cmp.13.1.110-118 doi: 10.15330/cmp.13.1.110-118
    [27] J. A. Schouten, Ricci calculus, Berlin: Springer-Verlag, 1954.
    [28] R. Sharma, Certain results on K-contact and (κ,μ)-contact manifolds, J. Geom., 89 (2008), 138–147. https://doi.org/10.1007/s00022-008-2004-5 doi: 10.1007/s00022-008-2004-5
    [29] M. D. Siddiqi, Generalized η-Ricci solitons in trans Sasakian manifolds, Eurasian B. math., 1 (2018), 107–116.
    [30] S. Tachibana, On almost-analytic vectors in almost Kählerian manifolds, Tohoku Math. J., 11 (1959), 247–265.
    [31] V. Venkatesha, D. M. Naik, H. A. Kumara, -Ricci solitons and gradient almost -Ricci solitons on Kenmotsu manifolds, Math. Slovaca, 69 (2019), 1447–1458. https://doi.org/10.1515/ms-2017-0321 doi: 10.1515/ms-2017-0321
    [32] Y. Wang, Contact 3-manifolds and -Ricci soliton, Kodai Math. J., 43 (2020), 256–267. https://doi.org/10.2996/kmj/1594313553 doi: 10.2996/kmj/1594313553
    [33] K. Yano, Concircular geometry Ⅰ. Concircular tranformations, Proc. Imp. Acad., 16 (1940), 195–200. http:/doi.org/10.3792/pia/1195579139 doi: 10.3792/pia/1195579139
    [34] K. Yano, On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad., 20 (1944), 340–345. https://doi.org/10.3792/pia/1195572958 doi: 10.3792/pia/1195572958
    [35] K. Yano, B. Y. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. Semin. Rep., 23 (1971), 343–350. https://doi.org/10.2996/kmj/1138846372 doi: 10.2996/kmj/1138846372
    [36] I. H. Yoldas, On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons, Int. J. Geom. Methodes M., 18 (2021), 2150189. https://doi.org/10.1142/S0219887821501899 doi: 10.1142/S0219887821501899
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(100) PDF downloads(33) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog