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1. Introduction

In [16], Kenmotsu introduced Kenmotsu manifolds (or KMs for short), which are a family of
almost contact manifolds and intricately linked to warped product manifolds. Recently, the Einstein
metrics have been generalized, and the Ricci soliton (or RS) is one of them, which was introduced by
Hamilton [12].

In 2017, Cattino et al. [4] defined the Einstein-type manifold, also known as the generalized Ricci
soliton (GRS), as an extension of Einstein manifolds. Due to the interesting and important subject
of studying the GRSs in geometry and physics, many researchers have researched this topic. These
solitons pertain to geometric flows and illustrate characteristics of particular manifolds. For more
details, see [8, 14,17,22]. In [3], Calvaruso investigated the GRS equation both in Riemannian and
Lorentzian settings on some Lie groups. In [1], the second author classified GRSs on Lie groups of
three dimensions related to some connections. Azami examined the Kobayashi-Nomizu connections
and canonical connections within Lie groups of three dimensions, successfully identifying all the GRSs
associated with these structures. Recently, many authors have studied generalized -RSs, almost RSs,
Ricci-Yamabe solitons, *-Ricci-Yamabe solitons, and their properties on KMs [18-20]. Sharma [28]
studied the RS on contact manifolds. Then Dey [9] investigated *-n-Ricci-Yamabe solitons on contact
geometry. Yoldas [36] examined n-Ricci-Yamabe solitons on KMs. Chen [5] recently demonstrated
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the existence of a real hypersurface within a non-flat complex space form that fulfills the criteria of a -
RS. Moreover, Wang [32] proved that if a three-dimensional KM M satisfies a *-RS, then the manifold
M becomes locally isometric to the hyperbolic space H*(—1). Additional studies on *-Ricci solitons
and generalized Ricci solitons are available in [10, 13,23-25].

The *-Ricci tensor, as referenced in [11, 30], is defined by the equation

1 1
SYZ\,2,) = 2 (trace {R(Zy, ¢Z) o ¢}) = Etrace {Zs = R(Z,, 20)¢ 25},

for all vector fields Z,,Z,, and Z; on the manifold M where R is the Riemannian curvature and ¢
represents a (1, 1)-tensor field. A manifold (M, g) is classified as *-n-Einstein if functions a and b exist
that satisfy the equation

S*=ag+bnen.

Additionally, the manifold M is designated as a *-Einstein manifold when b = 0.
In the following discussion, we present the idea of the generalized *-Ricci soliton (or %-GRS),
highlighting its similarities to the well-known concept of GRSs.

Definition 1.1. A pseudo-Riemannian manifold (M", g) characterized by a *-Ricci tensor S* and a
x-scalar curvature defined as r* = Tr(S™) is referred to as a x-GRS whenever there are a vector field V,
a smooth function A, and constants a, 8, i, p such that the following equation holds:

as*+§1;vg+ﬂvb®vb = (or* + g, (1.1)

where Ly denotes the Lie derivative indirection V, and V'(U) = g(V, U). The constants (@, 3, ;t) cannot
all be zero simultaneously. A *-GRS is called expanding, steady, or shrinking if A, is negative, zero,
or positive, respectively.

The generalized #-Ricci soliton is a generalization of

(1) the *-V’-Einstein equation (if & # 0 and 8 = 0),
(2) the =-RS [15,31] (ifa =B =1and p = u =0),
(3) the *-Ricci-Yamabe soliton [9] (if 8 # 0 and u = 0).

Motivated by [1,3,21,29] and the works presented above, we study *-GRSs on KMs. We present an
example of *-GRS on a five-dimensional KM.

The structure of the article is organized in a specific manner. Section 2 introduces key concepts and
formulas related to KMs, which are referenced in subsequent sections of the paper. In the final section,
we outline the primary results, accompanied by their proofs, and provide an illustrative example.

2. Preliminaries
Consider a Riemannian manifold (M, g) of (2n + 1) dimensions. This manifold is referred to as an

almost contact metric manifold characterized by the structure (¢, &, 1, g) if it possesses a vector field &
on M, a (1, 1)-tensor field ¢, and a 1-form 7 that satisfy the following conditions:

no¢=0, $U)=-U+nU)¥, né=1, ¢& =0, 2.1)
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n(Uy) = g(Uy,8), g@U,¢U;) =gU, Uy —nU)n(Uy), YU, U, € X(M). (2.2)
In addition, it is called a KM [16] whenever

V2,92, = =8(Z1, $21)¢ = 1(21)pZ,, (2.3)
V2§ =Zi = (2. 2.4)

The symbol V represents the Levi-Civita connection of g. For a KM with a Riemannian curvature
tensor R the following equations are true [2,26]:

R(Z,,U)é =nZ)U, —n(U\)Z,, (2.5)
R(Z, U, = —n(U)Z, + g(Z,, U, )é, (2.6)
N(R(Z,,UU) = g(Z,, Un(U,) - g(U,, Un(Zy), (2.7)

for all vector fields Z;, U;, U. We also have

§(Zy,é) = —2nn(Z,), (2.8)
S(@Z,,¢2y) = S(Zy,2>) + 2nn(Z)n(Z,), (2.9)
(Vamzy = g(Z1,Z,) — n(Z)n(Z,), (2.10)

for all vector fields Z;,Z, where S is the Ricci tensor of g. By the definition of a Lie derivative, it
follows that

(Leo)Z1,22) = (V2 &. 20) + 8(Z1,V 1,8). (2.11)
Applying (2.4) to (2.11), we infer
(Leg) =2[g-nen]. (2.12)

In the following, we recall the formula that expresses the #-Ricci tensor in terms of the Ricci tensor,
and we need it to prove our results. In [31], Venkatesha et al. proved the following proposition by the
Bianchi identity.

Proposition 2.1. On a KM of 2n + 1 dimensions the -Ricci tensor is determined as follows:
§(Z1,Uy) = S(Z, Uy) + 2n — 1)g(Zy, Uy) + n(Zi)n(U)). (2.13)

Let {el-}l.zjfl be a local orthonormal frame. By considering Z; = ¢; and U; = ¢; in (2.13) and summing
over i from 1 to 2n + 1, we deduce

r=r+4n. (2.14)

Notice that the generalized *-Ricci soliton is a generalized form of the = — n-Ricci soliton when V = &,
p=0,a=1andB=1.
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3. Main results and their proofs

In this section, we present our main results, along with their proofs.

Theorem 3.1. Let a KM of 2n + 1 dimensions be a %-GRS (g, &, a, B, u, p, ), where & represents the
Reeb vector field. The +-GRS becomes shrinking, steady, or expanding if u—p(r +4n?) is positive, zero,
or negative, respectively.

Proof. Suppose M is a KM of 2n+ 1 dimensions. We plug V = £ into the identity (1.1) on M to achieve
@S*(Z1, Up) + §L§g<zl, Un) + €' (Z)E WU = (pr' + Dg(Z1, Uy), 3.1)

for all vector fields Z,, U,. If we use the equations & (Z)&(U,) = n(Z)n(U,), (2.12), and (2.13),
Eq (3.1) becomes

aS(Z,U) +[2n—Da +p—pr' = A gZ, Uy) + [@ = B+ u]n(Z)n(U)) = 0. (3.2)
Now, we consider U; = ¢ in Eq (3.2) and use (2.1) and (2.8), thus arriving at
[u—pr = Anzy) = 0. (3.3)
Since Z, is arbitrary, we conclude that 4 = u — pr*. Using (2.14), we obtain
A= pu—p(r+4n?). (3.4)

This completes the proof of the theorem.
Now, from Theorem 3.1, we get the following corollary.

Corollary 3.1. If a KM of 2n+ 1 dimensions is a -GRS (g, &, a, 8, i, p, A) with @ # 0 and a Reeb vector
field &, then KM is =-n-Einstein.

Proof. If @ # 0, then from (3.1), we obtain
§721. U = —(pr" + 1= B)g(Z1, Uy) + —(B = pn(Z)n(U))-
This proves that KM is *-n-Einstein.

Theorem 3.2. If a KM of 2n+ 1 dimensions possesses a x-GRS (g, V f, a, B, u, p, 1) such that  # 0 then

Af + %lVﬂz - —%(r +4n?) + é(p(r +4n%) + D2n + 1). (3.5)

Proof. If we take the trace from the sides of Eq (1.1), it follows that
ar® + BdivV + ulV)* = (or* + D2n + 1). (3.6)

If V = Vf, then we deduce that divV = Af. From (3.6), we can derive (3.5).
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Since A(es') = %(Af + %lVﬂz)e%f, we can rewrite (3.5) as follows:

Aeb”) = % {—%(r +4n?) + é(p(r +4n?) + D(2n + 1)} eh . 3.7)

Now consider a closed KM of 2n + 1 dimensions that admits a *-GRS (g, Vf, @, 8, i, p, 1) such that
B # 0 and u # 0. In this case, by integrating (3.7) and using fM A(e%f)dv = 0, we deduce that

f {@n+ DA+ (p@n+1) - a)r +4n*2n + 1)p — 4n’a} es’ dv = 0. (3.8)
M

Let G = 2n + DA+ (p(2n + 1) — @)r + 4n®(2n + 1)p — 4n*a. Since e#’ > 0, we can deduce the
following corollary.

Corollary 3.2. If a closed KM of 2n+ 1 dimensions admits a «-GRS (g, Vf, a, 8, u, p, A) such that 8 # 0
and pu # 0, then G = 0 or G < 0 for some points G # e#’.

Definition 3.1. A conformal Killing vector field (or CKVF) W is defined as a vector field that satisfies
the equation

Lwg = 2hg, (3.9)

where h is a smooth function. The CKVF W is called: Proper if h is non-constant, homothetic if h is
constant, and Killing if h = 0.

Theorem 3.3. If a KM of 2n + 1 dimensions possesses a *-GRS (g, W, a, 8, u, p, 1), in which W is a
CKVF such that Lyg = 2hg, then the following equation holds:

Bhé + un(WYW — p(r + 4n*)é — A€ = 0. (3.10)
Proof. We have W’(¢) = g(W, &) = n(W) and W*(Z,) = g(W, Z,). Therefore, we deduce that
HWP(Z)W'(€) = g(un(W)W, Zy).
Suppose that the vector field W is a CKVF and satisfies (3.9). By (3.9), (2.13), and (1.1), we have

(S (Z1,Uy) + 2n = 1)g(Zy, Uy) + n(Z)n(U)) + Bhg(Zi, Uy) + pW*(ZDOW'(Uy) = (pr + D)g(Zy, U)).
(3.11)
By inserting U; = ¢ in (3.11) and using (2.8), we obtain

8(Bhé + (W)W — p(r + 4n*)é — A€, Zy) = 0. (3.12)
Since Z, is arbitraray, Eq (3.12) yields Eq (3.10).

Corollary 3.3. If a KM of 2n + 1 dimensions possesses a *-GRS (g, W, «a,B,u,p, 1), where W is
perpendicular to & and is a CKVF such that Ly g = 2hg, then the following equation holds:

A = Bh — p(r + 4n?).

Proof. If W is perpendicular to &, then n(W) = 0, and Eq (3.10) leads to (Bh — p(r + 4n*) — 1)é = 0.
Since & # 0, we obtain Sh — p(r + 4n*) — 1 = 0.

AIMS Mathematics Volume 10, Issue 3, 7144-7153.



7149

Corollary 3.4. If a KM of 2n+ 1 dimensions possesses a x-GRS (g, W, a, 8, u, p, 1), where W is a CKVF
and a # 0, then the KM is x-W’-Einstein.

Proof. From (3.11), if @ # 0, then we get the following equation:

1
§(Z. U = —{(pr + 2= B)g(Z1. Un) = iW @)W (U)}.
which shows that the KM is -W’-Einstein.

Definition 3.2. A torse-forming vector field W (TFVF) [34] is defined as a vector field that satisfies
the equation

VW =hZ, + 9(Z)W, (3.13)

where h is a smooth function and ¢ is a 1-form. The TFVF becomes concircular [7,33], concurrent [27,
35], parallel, and torqued [6] ¥ vanishes identically, h = 1, h = ¢ = 0 3(W) = 0, respectively.

Theorem 3.4. If a KM of 2n+ 1 dimensions satisfies a *-GRS (g, W, a, B, i, p, A) such that W is a TFVF
and admits (3.13), then

A= [a(r + 1)+ BIW) + ﬂ|W|2] +a(2n - 1) + Bh — p(r + 4n°). (3.14)
2n+1

Proof. Suppose a KM of 2n + 1 dimensions satisfies a *-GRS (g, W, @, 8, i, p, A) such that W is a TFVF
and admits (3.13). Then from (1.1) and (2.13), we get

oS (4, UD) + G = Vg1, U + Zn(U) + 5 (Lug)21, U)
W (Z)W(U)) = (or" + D)g(Zy, U). (3.15)
On the other hand, by using (3.13), we arrive at
(Lwg)(Zi, Uy) = g(Vz, W, Uy) + g(W,Vz, Uy) = 2hg(Zy, Uy) + HZ)g(W, Uy) + HUNgW, Zy), (3.16)
for all vector fields Z;, U;. Substituting (3.16) into (3.15), we infer that
aS (2, Uy) + [a@n = 1) + Bh - p(r + 4n®) = A| g(Z1, Uy) + an(Zm(Uy) (3.17)
= —'g [H(Z1)g(W, Uy) + KU)W, Z1)] — ug(W, Z)g(W, Uy).
Taking the trace of Eq (3.17), one gets
ar + [a/(2n - 1)+ Bh—p(r+ 4n*) — /1] 2n+ 1D +a=-BHW) - ,u|W|2. (3.18)
Solving Eq (3.18) with respect to A yields Eq (3.14).
In the following, we present an example of a *-GRS that describes some of the our theorems.
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Example 3.1. We denote the standard coordinates of R> as (y1, Y2, y3, Vs, ys) and assume that M = R>.
We consider the vector fields

0 .0 0 0 0

a0 U = e_}’S_’ Uz = e_y5_9 Ug = e_yﬁ_, Us = —,

Iy > 93 Oy4 ’ dys

which are linearly independent. The metric tensor g on the manifold M is characterized by the

following expression: g(u;,u;) = 1 ifi € {1,...,5}; otherwise, g(u;,u;) = 0. The configuration (¢, &, 1)
on the manifold M is defined as follows:

u = e

0O 0 -1 0 O
00 0 -10
o= 10 0 0 0], &=us, n)=gZ,us), VZ, € X(M).
01 0 0 O
00 0 O O
Notice that, n(€) = 1, $*(Z)) = ~Z + N(Z))é, and g(¢pZ,,¢Y2) = g(Z1,Y2) — n(Z)n(Y,). We also
find [u;,us] = u; fori = 1,2,3,4, and the other brackets are equal to zero. Then V,u; = —us and

Vius = uy fori=1,2,3,4, and the other connections are equal to zero.
Identities (2.3) and (2.4) hold, and thus (M, ¢, &, 1, g) denotes a KM. Hence, we obtain

-4 0 0 0 O

0 -4 0 0 0
S=| 0 0 -4 0 0 |=-4g
0 0 0 -4 0
0 0 0 0 -4

and r = =20. We also get

-1 0 0 0 0
0 -1 0 0 O

S*=l 0 0 -14 0 0|=-g+n®n,
0 0 0 -10
0 0 0 0 O

andr* = —4. We get L:g = 2g—2n®mn. Therefore, (g,&,a,B,u = f—a, A = B—a+4p) is a *-GRS on the
KM M. It is also shrinking, steady, or expanding if B+ 4p > a, B+4p = a, or B+4p < a, respectively.

4. Conclusions

In this paper, we consider *-GRSs on KMs. We prove if a KM of 2n + 1 dimensions admits
the *-GRS (g,¢, a,8, u, p, 1), where & represents the Reeb vector field, then it is shrinking, steady,
or expanding when y — p(r + 4n?) is positive, zero, or negative, respectively. Moreover, in this case,
it is a *-n-Einstein manifold. We then establish if a KM of 2n + 1 dimensions which admits a *-
GRS (g, Vf, a,B,u,p, 1), then we obtain the Laplacian of f in terms of a soliton structure. We also
study KMs that admit *-GRSs such that their potential vector fields are CKVFs or TFVFs. To illustrate
our results, we give an example of a five-dimensional Kenmotsu manifold that admits the generalized -
Ricci soliton.
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