We investigate the Yamabe constant's behaviour in a conformal Ricci flow. For conformal Ricci flow metric $ g(t) $, $ t \in [0, T) $, the time evolution formula for the Yamabe constant $ Y(g(t)) $ is derived. It is demonstrated that if the beginning metric $ g(0) = g_0 $ is Yamabe metric, then the Yamabe constant is monotonically growing along the conformal Ricci flow under some simple assumptions unless $ g_0 $ is Einstein. As a result, this study adds to the body of knowledge about the Yamabe problem.
Citation: Yanlin Li, Abimbola Abolarinwa, Shahroud Azami, Akram Ali. Yamabe constant evolution and monotonicity along the conformal Ricci flow[J]. AIMS Mathematics, 2022, 7(7): 12077-12090. doi: 10.3934/math.2022671
We investigate the Yamabe constant's behaviour in a conformal Ricci flow. For conformal Ricci flow metric $ g(t) $, $ t \in [0, T) $, the time evolution formula for the Yamabe constant $ Y(g(t)) $ is derived. It is demonstrated that if the beginning metric $ g(0) = g_0 $ is Yamabe metric, then the Yamabe constant is monotonically growing along the conformal Ricci flow under some simple assumptions unless $ g_0 $ is Einstein. As a result, this study adds to the body of knowledge about the Yamabe problem.
[1] | M. T. Anderson, On the uniqueness and differentiability in the space of Yamabe metrics, Comm. Contemp. Math., 7 (2005), 299–310. https://doi.org/10.1142/S0219199705001751 doi: 10.1142/S0219199705001751 |
[2] | T. Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer, 1998. |
[3] | S. Azami, A. Abolarinwa, Evolution of Yamabe constant along Ricci-Burguignon flow, unpulished work. |
[4] | A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin, 1987. |
[5] | B. Botvinnik, P. Lu, Evolution of relative Yamabe constant under Ricci flow, Osaka J. Math., 57 (2020), 679–687. |
[6] | X. Cao, L. Saloff-Coste, Backward Ricci flow on locally homogeneous three manifolds, Comm. Anal. Geom., 17 (2009), 305–325. |
[7] | D. Chakraborty, Y. C. Mandal, S. K. Hui, Evolution of some geometric quantities along the Cotton flow, Filomat, 33 (2019), 5087–5095. |
[8] | S. C. Chang, P. Lu, Evolution of Yamabe constant under Ricci flow, Ann. Glob. Anal. Geom., 31 (2007), 147–153. https://doi.org/10.1007/s10455-006-9041-9 doi: 10.1007/s10455-006-9041-9 |
[9] | F. Danesvar Pip, A. Razavi, Evolution of the Yamabe constant under Bernhard List's flow, Sib. Math. J., 58 (2017), 1004–1011. https://doi.org/10.1134/S003744661706009X doi: 10.1134/S003744661706009X |
[10] | A. E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav., 21 (2004), 171–218. |
[11] | P. T. Ho, On the Ricci-Bourguignon flow, Int. J. Math., 31 (2020), 2050044. https://doi.org/10.1142/S0129167X20500445 doi: 10.1142/S0129167X20500445 |
[12] | J. Isenberg, M. Jackson, Ricci flow of locally homogeneous geometries of closed manifolds, J. Diff. Geom., 35 (1992), 723–741. |
[13] | J. Isenberg, M. Jackson, P. Lu, Ricci flow on locally homogeneous closed $4$-manifolds, Commun. Anal. Geom., 14 (2006), 345–386. |
[14] | N. Koiso, A decomposition of the space $\mathcal{M}$ of Riemannian metrics on a manifold, Osaka J. Math., 16 (1979), 423–429. |
[15] | J. M. Lee, T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc., 17 (1987), 37–91. |
[16] | P. Lu, J. Qing, Y. Zheng, A note on conformal Ricci flow, Pacific J. Math., 268 (2014), 413–434. https://doi.org/10.2140/pjm.2014.268.413 doi: 10.2140/pjm.2014.268.413 |
[17] | Y. L. Li, A. Ali, F. Mofarreh, A. Abolarinwa, R. Ali, Some eigenvalues estimate for the $\phi$-Laplace operator on slant submanifolds of Sasakian space forms, J. Funct. Spaces, 2021 (2021), 6195939. https://doi.org/10.1155/2021/6195939 doi: 10.1155/2021/6195939 |
[18] | Y. L. Li, A. Ali, F. Mofarreh, N. Alluhaibi, Homology groups in warped product submanifolds in hyperbolic spaces, J. Math., 2021 (2021), 8554738. https://doi.org/10.1155/2021/8554738 doi: 10.1155/2021/8554738 |
[19] | Y. L. Li, A. Ali, R. Ali, A general inequality for CR-warped products in generalized Sasakian space form and its applications, Adv. Math. Phys., 2021 (2021), 5777554. https://doi.org/10.1155/2021/5777554 doi: 10.1155/2021/5777554 |
[20] | Y. L. Li, A. H. Alkhaldi, A. Ali, L. I. Pişcoran, On the topology of warped product pointwise semi-slant submanifolds with positive curvature, Mathematics, 9 (2021), 24. https://doi.org/10.3390/math9243156 doi: 10.3390/math9243156 |
[21] | Y. L. Li, Y. S. Zhu, Q. Y. Sun, Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space, Int. J. Geom. Methods Mod. Phys., 18 (2021), 1–31. https://doi.org/10.1142/S0219887821500080 doi: 10.1142/S0219887821500080 |
[22] | Y. L. Li, M. A. Lone, U. A. Wani, Biharmonic submanifolds of Kaehler product manifolds, AIMS Math., 6 (2021), 9309–9321. https://doi.org/10.3934/math.2021541 doi: 10.3934/math.2021541 |
[23] | Y. L. Li, D. Ganguly, S. Dey, A. Bhattacharyya, Conformal $\eta$-Ricci solitons within the framework of indefinite Kenmotsu manifolds, AIMS Math., 7 (2022), 5408–5430. https://doi.org/10.3934/math.2022300 doi: 10.3934/math.2022300 |
[24] | R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., 20 (1984), 479–495. |
[25] | N. Trudinger, Remarks cocerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci., 22 (1968), 265–274. |
[26] | E. M. Wang, Y. Zheng Regaularity of the first eigenvalue of the $p$-Laplacian and Yamabe invariant along geometric flows, Pacific J. Math., 254 (2011), 239–255. https://doi.org/10.2140/pjm.2011.254.239 doi: 10.2140/pjm.2011.254.239 |
[27] | H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21–37. |
[28] | Z. C. Yang, Y. L. Li, M. Erdoǧdub, Y. S. Zhu, Evolving evolutoids and pedaloids from viewpoints of envelope and singularity theory in Minkowski plane, J. Geom. Phys., 176 (2022), 1–23. https://doi.org/10.1016/j.geomphys.2022.104513 doi: 10.1016/j.geomphys.2022.104513 |