In this article, we define the generalized exponential function on arbitrary time scales in the conformable setting and develop its fundamental characteristics. We address the fundamental theory of a conformable fractional dynamic equation on time scales, subject to the local and non-local initial conditions. We generalized the Grönwall type inequalities in a conformable environment. The generalized exponential function and the Grönwall's inequalities are indispensable for the study of the qualitative aspects of the local initial value problem. We developed some criteria related to global existence, extension and boundedness, as well as stability of solutions.
Citation: Awais Younus, Khizra Bukhsh, Manar A. Alqudah, Thabet Abdeljawad. Generalized exponential function and initial value problem for conformable dynamic equations[J]. AIMS Mathematics, 2022, 7(7): 12050-12076. doi: 10.3934/math.2022670
In this article, we define the generalized exponential function on arbitrary time scales in the conformable setting and develop its fundamental characteristics. We address the fundamental theory of a conformable fractional dynamic equation on time scales, subject to the local and non-local initial conditions. We generalized the Grönwall type inequalities in a conformable environment. The generalized exponential function and the Grönwall's inequalities are indispensable for the study of the qualitative aspects of the local initial value problem. We developed some criteria related to global existence, extension and boundedness, as well as stability of solutions.
[1] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016 |
[2] | H. Ahmed, Sobolev-type nonlocal conformable stochastic differential equations, Bull. Iran. Math. Soc., 2021, 1–15. https://doi.org/10.1007/s41980-021-00615-6 doi: 10.1007/s41980-021-00615-6 |
[3] | H. M. Ahmed, Conformable fractional stochastic differential equations with control function, Syst. Control Lett., 158 (2021), 105062. https://doi.org/10.1016/j.sysconle.2021.105062 doi: 10.1016/j.sysconle.2021.105062 |
[4] | H. M. Ahmed, Noninstantaneous impulsive conformable fractional stochastic delay integro-differential system with Rosenblatt process and control function, Qual. Theory Dyn. Syst., 21 (2022), 1–22. https://doi.org/10.1007/s12346-021-00544-z doi: 10.1007/s12346-021-00544-z |
[5] | D. R. Anderson, E. Camrud, D. J. Ulness, On the nature of the conformable derivative and its applications to physics, J. Fract. Calc. Appl., 10 (2019), 92–135. |
[6] | N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ. Sci., 28 (2016), 93–98. https://doi.org/10.1016/j.jksus.2015.05.003 doi: 10.1016/j.jksus.2015.05.003 |
[7] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkhäuser, 2001. |
[8] | Q. H. Cao, C. Q. Dai, Symmetric and anti-symmetric solitons of the fractional second-and third-order nonlinear Schrödinger equation, Chinese Phys. Lett., 38 (2021), 090501. |
[9] | A. R. Carvalho, C. M. Pinto, D. Baleanu, HIV/HCV coinfection model: A fractional-order perspective for the effect of the HIV viral load, Adv. Differ. Equ., 2018 (2018), 1–22. https://doi.org/10.1186/s13662-017-1456-z doi: 10.1186/s13662-017-1456-z |
[10] | S. Hilger, Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, Ph. D. thesis, Universität Würzburg, 1988. |
[11] | S. Hilger, Analysis on measure chains-a unifed approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153 |
[12] | R. Khalil, M. A. Horani, A. Yousaf, M. Sababhen, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[13] | P. F. Li, R. J. Li, C. Q. Dai, Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction, Opt. Express, 29 (2021), 3193–3209. https://doi.org/10.1364/OE.415028 doi: 10.1364/OE.415028 |
[14] | P. H. Lu, Y. Y. Wang, C. Q. Dai, Discrete soliton solutions of the fractional discrete coupled nonlinear Schrödinger equations: Three analytical approaches, Math. Methods Appl. Sci., 44 (2021), 11089–11101. https://doi.org/10.1002/mma.7473 doi: 10.1002/mma.7473 |
[15] | R. K. Miller, Nonlinear Volterra integral equations, Menlo Park: W. A. Benjamin, 1967. |
[16] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Willy, 1993. |
[17] | V. Mohammadnezhad, M. Eslami, H. Rezazadeh, Stability analysis of linear conformable fractional differential equations system with time delays, Bol. Soc. Parana. Mat., 38 (2020), 159–171. https://doi.org/10.5269/bspm.v38i6.37010 doi: 10.5269/bspm.v38i6.37010 |
[18] | N. R. de Oliveira Bastos, Fractional calculus on time scales, Ph. D. thesis, Universidade de Aveiro, 2012. |
[19] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[20] | M. R. S. Rahmat, A new definition of conformable fractional derivative on arbitrary time scales, Adv. Differ. Equ., 2019 (2019), 1–16. https://doi.org/10.1186/s13662-019-2294-y doi: 10.1186/s13662-019-2294-y |
[21] | S. G. Svetlin, Integral equations on time scales, Paris: Atlantis Press, 2016. https://doi.org/10.2991/978-94-6239-228-1 |
[22] | N. H. Sweilam, S. M. Al-Mekhlafi, Comparative study for multi-strain tuberculosis (TB) model of fractional order, J. Appl. Math. Inform. Sci., 10 (2016), 1403–1413. |
[23] | Y. N. Wang, J. W. Zhou, Y. K. Li, Fractional Sobolev's spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales, Adv. Math. Phys., 2016 (2016), 1–21. https://doi.org/10.1155/2016/9636491 doi: 10.1155/2016/9636491 |
[24] | W. Y. Zhong, L. F. Wang, Basic theory of initial value problems of conformable fractional differential equations, Adv. Differ. Equ., 2018 (2018), 1–14. https://doi.org/10.1186/s13662-018-1778-5 doi: 10.1186/s13662-018-1778-5 |