Research article Special Issues

Innovation of prescribe conditions for radiative Casson micropolar hybrid nanofluid flow with inclined MHD over a stretching sheet/cylinder

  • Received: 19 November 2024 Revised: 07 February 2025 Accepted: 11 February 2025 Published: 24 February 2025
  • In this study, we analyze a Casson micropolar hybrid nanofluid flow and heat transfer characteristics over a stretching sheet/cylinder. The analysis takes Joule heating and thermal radiation into account, as well as the variable thermal conductivity and the prescribed thermal conditions. The nanoparticles of $ Ag $ and $ CuO $ with base fluid $ EG $ (Ethylene Glycol) are discussed. Additionally, the study explores the impact of an inclined magnetic field on the flow behavior. The governing partial differential equations are described, including the conservation of momentum, mass, and energy, which are transformed into a nonlinear ordinary differential equation using appropriate similarity transformations. Then, these equations are numerically cracked using a reliable computational technique. The study reveals significant influences of hybrid nanofluid properties on the velocity, temperature, and microrotation profiles. The inclined magnetic field significantly affects the fluid dynamics, leading to flow resistance and thermal performance variations. The results highlight the importance of these factors in enhancing the thermal efficiency of systems using hybrid nanofluids. The thermal thickness of the prescribed conditions (PHF and PST) for the temperature enhanced due to an increment in the factor of radiation. As more radiative heat is absorbed, the fluid internal energy increases, thus leading to a rise in the temperature because the absorbed radiation boosts the kinetic energy of the fluid molecules, thereby increasing the fluid temperature. The heat transfer of the sheet achieved more as compared to the stretching cylinder.

    Citation: Nadeem Abbas, Wasfi Shatanawi, Taqi A. M. Shatnawi. Innovation of prescribe conditions for radiative Casson micropolar hybrid nanofluid flow with inclined MHD over a stretching sheet/cylinder[J]. AIMS Mathematics, 2025, 10(2): 3561-3580. doi: 10.3934/math.2025164

    Related Papers:

  • In this study, we analyze a Casson micropolar hybrid nanofluid flow and heat transfer characteristics over a stretching sheet/cylinder. The analysis takes Joule heating and thermal radiation into account, as well as the variable thermal conductivity and the prescribed thermal conditions. The nanoparticles of $ Ag $ and $ CuO $ with base fluid $ EG $ (Ethylene Glycol) are discussed. Additionally, the study explores the impact of an inclined magnetic field on the flow behavior. The governing partial differential equations are described, including the conservation of momentum, mass, and energy, which are transformed into a nonlinear ordinary differential equation using appropriate similarity transformations. Then, these equations are numerically cracked using a reliable computational technique. The study reveals significant influences of hybrid nanofluid properties on the velocity, temperature, and microrotation profiles. The inclined magnetic field significantly affects the fluid dynamics, leading to flow resistance and thermal performance variations. The results highlight the importance of these factors in enhancing the thermal efficiency of systems using hybrid nanofluids. The thermal thickness of the prescribed conditions (PHF and PST) for the temperature enhanced due to an increment in the factor of radiation. As more radiative heat is absorbed, the fluid internal energy increases, thus leading to a rise in the temperature because the absorbed radiation boosts the kinetic energy of the fluid molecules, thereby increasing the fluid temperature. The heat transfer of the sheet achieved more as compared to the stretching cylinder.



    加载中


    [1] S. Suresh, K. P. Venkitaraj, Ponnusamy Selvakumar, and Murugesan Chandrasekar, Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer, Exp. Therm. Fluid Sci., 38 (2012), 54–60. https://doi.org/10.1016/j.expthermflusci.2011.11.007
    [2] G. G. Momin, Experimental investigation of mixed convection with water-Al2O3 & hybrid nanofluid in inclined tube for laminar flow, Int. J. Sci. Technol. Res., 2 (2013), 195–202.
    [3] D. Madhesh, S. Kalaiselvam, Experimental analysis of hybrid nanofluid as a coolant, Proc. Eng., 97 (2014), 1667–1675. https://doi.org/10.1016/j.proeng.2014.12.317 doi: 10.1016/j.proeng.2014.12.317
    [4] H. W. Xian, N. A. C. Sidik, S. R. Aid, T. L. Ken, Y. Asako, Review on Preparation Techniques, Properties and Performance of Hybrid Nanofluid in Recent Engineering Application, J. Adv. Res. Fluid Mech. Therm. Sci., 45 (2018), 1–13.
    [5] M. Shoaib, M. A. Z. Raja, T. Sabir, M. S. Islam, Z. Shah, P. Kumam, et al., Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet, Sci. Rep., 10 1 (2020), 18533.
    [6] U. Yashkun, K. Zaimi, N. A. Abu Bakar, A. Ishak, I. Pop, MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect, Int. J. Numer. Methods Heat Fluid Flow, 31 (2021), 1014–1031. https://doi.org/10.1108/HFF-02-2020-0083 doi: 10.1108/HFF-02-2020-0083
    [7] G. K. Ramesh, S. Manjunatha, G. S. Roopa, A. J. Chamkha, Hybrid (ND-Co 3 O 4/EG) nanoliquid through a permeable cylinder under homogeneous-heterogeneous reactions and slip effects, J. Therm. Anal. Calorim., 146 (2021), 1347–1357. https://doi.org/10.1007/s10973-020-10106-1 doi: 10.1007/s10973-020-10106-1
    [8] A. A. Akbar, A. U. Awan, N. Abbas, Significance of SWCNTs and MWCNTs on the dynamics of hybrid nanofluid flow over a stretching surface, Wave. Random Complex Media, 2022, 1–20. https://doi.org/10.1080/17455030.2022.2119299 doi: 10.1080/17455030.2022.2119299
    [9] J. K. Madhukesh, G. K. Ramesh, G. S. Roopa, B. C. Prasannakumara, N. A. Shah, S. J. Yook, 3D flow of hybrid nanomaterial through a circular cylinder: Saddle and Nodal Point Aspects, Mathematics, 10 (2022), 1185. https://doi.org/10.3390/math10071185 doi: 10.3390/math10071185
    [10] H. Waqas, U. Farooq, D. Liu, M. Abid, M. Imran, T. Muhammad, Heat transfer analysis of hybrid nanofluid flow with thermal radiation through a stretching sheet: A comparative study, Int. Commun. Heat Mass Transfer, 138 (2022), 106303. https://doi.org/10.1016/j.icheatmasstransfer.2022.106303 doi: 10.1016/j.icheatmasstransfer.2022.106303
    [11] S. Nadeem, B. Ishtiaq, J. Alzabut, S. M. Eldin, Three parametric Prabhakar fractional derivative-based thermal analysis of Brinkman hybrid nanofluid flow over exponentially heated plate, Case Stud. Therm. Eng., 47 (2023), 103077. https://doi.org/10.1016/j.csite.2023.103077 doi: 10.1016/j.csite.2023.103077
    [12] S. Nadeem, B. Ishtiaq, S. Saleem, and J. Alzabut, A comparative study of prescribed thermal analysis of a non-Newtonian fluid between exponential and linear porous surfaces, Case Stud. Therm. Eng., 60 (2024), 104622. https://doi.org/10.1016/j.csite.2024.104622 doi: 10.1016/j.csite.2024.104622
    [13] T. Islam, M. Fayz-Al-Asad, M. A. Khatun, N. Parveen, H. Ahmad, S. Askar, Natural convection heat transport performance of nanofluids under the influence of inclined magnetic field, Results Phys., 58 (2024), 107365. https://doi.org/10.1016/j.rinp.2024.107365 doi: 10.1016/j.rinp.2024.107365
    [14] R. C. Bataller, Effects of heat source/sink, radiation and work done by deformation on flow and heat transfer of a viscoelastic fluid over a stretching sheet, Comput. Math. Appl., 53 (2007), 305–316. https://doi.org/10.1016/j.camwa.2006.02.041
    [15] F. Aman, A. Ishak, Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet with prescribed surface heat flux, Heat Mass Transfer, 46 (2010), 615–620. https://doi.org/10.1007/s00231-010-0606-6 doi: 10.1007/s00231-010-0606-6
    [16] M. Qasim, Z. H. Khan, W. A. Khan, I. A. Shah, MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux, PloS one, 9 (2014), e83930. https://doi.org/10.1371/journal.pone.0083930
    [17] H. A. Nabwey, U. Sultana, M. Mushtaq, M. Ashraf, A. M. Rashad, S. I. Alshber, et al., Entropy analysis of magnetized carbon nanofluid over axially rotating stretching disk, Materials, 23 (2022), 8550. https://doi.org/10.3390/ma15238550
    [18] G. K. Ramesh, S. A. Shehzad, A. Rauf, A. J. Chamkha, Heat transport analysis of aluminum alloy and magnetite graphene oxide through permeable cylinder with heat source/sink, Phys. Scr., 95 (2020), 095203. https://doi.org/10.1088/1402-4896/aba5af doi: 10.1088/1402-4896/aba5af
    [19] S. R. R. Reddy, P. B. A. Reddy, A. M. Rashad, Activation energy impact on chemically reacting Eyring–Powell nanofluid flow over a stretching cylinder, Arab. J. Sci. Eng., 45 (2020), 5227–5242. https://doi.org/10.1007/s13369-020-04379-9 doi: 10.1007/s13369-020-04379-9
    [20] I. Waini, A. Ishak, I Pop, Hybrid nanofluid flow on a shrinking cylinder with prescribed surface heat flux, Int. J. Numer. Methods Heat Fluid Flow, 31 (2021), 1987–2004. https://doi.org/10.1108/HFF-07-2020-0470
    [21] H. A. Nabwey, W. A. Khan, A. M. Rashad, Lie group analysis of unsteady flow of kerosene/cobalt ferrofluid past a radiated stretching surface with Navier slip and convective heating, Mathematics, 8 (2020), 826. https://doi.org/10.3390/math8050826 doi: 10.3390/math8050826
    [22] S. Abdal, I. Siddique, S. Afzal, Y. M. Chu, A. Ahmadian, S. Salahshour, On development of heat transportation through bioconvection of Maxwell nanofluid flow due to an extendable sheet with radiative heat flux and prescribed surface temperature and prescribed heat flux conditions, Math. Methods Appl. Sci., 46 (2023), 11355–11372. https://doi.org/10.1002/mma.7722 doi: 10.1002/mma.7722
    [23] S. Sadighi, H. Afshar, M. Jabbari, H. A. D. Ashtiani, Heat and mass transfer for MHD nanofluid flow on a porous stretching sheet with prescribed boundary conditions, Case Stud. Therm. Eng., 49 (2023), 103345. https://doi.org/10.1016/j.csite.2023.103345 doi: 10.1016/j.csite.2023.103345
    [24] M. Adel, M. M. Khader, H. Ahmad, MHD nanofluid flow and heat transfer caused by a stretching sheet that is heated convectively: An approximate solution using ADM, Case Stud. Therm. Eng., 60 (2024), 104683. https://doi.org/10.1016/j.csite.2024.104683 doi: 10.1016/j.csite.2024.104683
    [25] S. Nadeem, B. Ishtiaq, S. Saleem, J. Alzabut, A comparative study of prescribed thermal analysis of a non-Newtonian fluid between exponential and linear porous surfaces, Case Stud. Therm. Eng., 60 (2024), 104622. https://doi.org/10.1016/j.csite.2024.104622 doi: 10.1016/j.csite.2024.104622
    [26] R. L. Batra, B. Das, Flow of a Casson fluid between two rotating cylinders, Fluid Dyn. Res., 9 (1992), 133. https://doi.org/10.1016/0169-5983(92)90063-3 doi: 10.1016/0169-5983(92)90063-3
    [27] K. Vajravelu, K. V. Prasad, H. Vaidya, N. Z. Basha, C. O. Ng, Mixed convective flow of a Casson fluid over a vertical, Math. Comp, 184 (2007), 864–873.
    [28] M. Mustafa, T. Hayat, P. Ioan, A. Hendi, Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet, Zeitschrift für Naturforschung A, 67 (2012), 70–76. https://doi.org/10.5560/zna.2011-0057 doi: 10.5560/zna.2011-0057
    [29] S. Mukhopadhyay, P. R. De, K. Bhattacharyya, G. C. Layek, Casson fluid flow over an unsteady stretching surface, Ain Shams Eng. J., 4, no. 4 (2013), 933–938. https://doi.org/10.1016/j.asej.2013.04.004
    [30] A. U. Khan, A. Al-Zubaidi, S. Munir, S. Saleem, F. Z. Duraihem, Closed form solutions of cross flows of Casson fluid over a stretching surface, Chaos, Solitons Fractals, 149 (2021), 111067. https://doi.org/10.1016/j.chaos.2021.111067 doi: 10.1016/j.chaos.2021.111067
    [31] Y. Nawaz, M. S. Arif, K. Abodayeh, Predictor–corrector scheme for electrical magnetohydrodynamic (MHD) Casson nanofluid flow: a computational study, Appl. Sci., 13 (2023), 1209. https://doi.org/10.3390/app13021209 doi: 10.3390/app13021209
    [32] Y. Nawaz, M. S. Arif, A. Nazeer, J. N. Abbasi, K. Abodayeh, A two‐stage reliable computational scheme for stochastic unsteady mixed convection flow of Casson nanofluid, Int. J. Numer. Methods Fluids, 96 (2024), 719–737. https://doi.org/10.1002/fld.5264 doi: 10.1002/fld.5264
    [33] D. Thenmozhi, M. E. Rao, C. Nagalakshmi, R. R. Devi, P. D. Selvi, Lie similarity analysis of MHD Casson fluid flow with heat source and variable viscosity over a porous stretching sheet, Int. J. Thermofluids, 23 (2024), 100804. https://doi.org/10.1016/j.ijft.2024.100804 doi: 10.1016/j.ijft.2024.100804
    [34] H. S. Takhar, R. S. Agarwal, R. Bhargava, S. Jain, Mixed convection flow of a micropolar fluid over a stretching sheet, Heat Mass Transfer, 34 (1998), 213–219. https://doi.org/10.1007/s002310050252 doi: 10.1007/s002310050252
    [35] E. M. Abo-Eldahab, A. F. Ghonaim, Convective heat transfer in an electrically conducting micropolar fluid at a stretching surface with uniform free stream, Appl. Math. Comput., 137 (2003), 323–336. https://doi.org/10.1016/S0096-3003(02)00128-5 doi: 10.1016/S0096-3003(02)00128-5
    [36] M. A. Mahmoud, Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity, Phys. A: Stat. Mech. Appl., 375 (2007), 401–410. https://doi.org/10.1016/j.physa.2006.09.010 doi: 10.1016/j.physa.2006.09.010
    [37] T. Hayat, T. Javed, Z. Abbas, MHD flow of a micropolar fluid near a stagnation-point towards a non-linear stretching surface, Nonlinear Anal.: Real World Appl., 10 (2009), 1514–1526. https://doi.org/10.1016/j.nonrwa.2008.01.019 doi: 10.1016/j.nonrwa.2008.01.019
    [38] K. Ahmad, R. Nazar, A. Ishak, I. Pop, Unsteady three‐dimensional boundary layer flow due to a stretching surface in a micropolar fluid, Int. j. Numer. Methods Fluids, 68 (2012), 1561–1573. https://doi.org/10.1002/fld.2543 doi: 10.1002/fld.2543
    [39] T. Hayat, R. Sajjad, R. Ellahi, A. Alsaedi, T. Muhammad, Homogeneous-heterogeneous reactions in MHD flow of micropolar fluid by a curved stretching surface, J. Molecular Liquids, 240 (2017), 209–220. https://doi.org/10.1016/j.molliq.2017.05.054 doi: 10.1016/j.molliq.2017.05.054
    [40] M. Bilal, A. Saeed, T. Gul, W. Kumam, S. Mukhtar, P. Kumam, Parametric simulation of micropolar fluid with thermal radiation across a porous stretching surface, Sci. rep., 12 (2022), 2542. https://doi.org/10.1038/s41598-022-06458-3 doi: 10.1038/s41598-022-06458-3
    [41] S. Sharma, A. Dadheech, A. Parmar, J. Arora, Q. A. Mdallal, S. Saranya, MHD micro polar fluid flow over a stretching surface with melting and slip effect, Sci. Rep., 13 (2023), 10715. https://doi.org/10.1038/s41598-023-36988-3 doi: 10.1038/s41598-023-36988-3
    [42] N. Abbas, W. Shatanawi, T. A. M. Shatnawi, Thermodynamic analysis of micropolar-casson fluid flow with PST and PHF heating condition over a curved stretching surface, Ain Shams Eng. J., 15 (2024), 102778. https://doi.org/10.1016/j.asej.2024.102778 doi: 10.1016/j.asej.2024.102778
    [43] N. Abbas, W. Shatanawi, T. A. Shatnawi, Thermodynamic properties of Casson-Sutterby-micropolar fluid flow over exponential stretching curved sheet with impact of MHD and heat generation, Case Stud. Therm. Eng., 55 (2024), 104123. https://doi.org/10.1016/j.csite.2024.104123 doi: 10.1016/j.csite.2024.104123
    [44] T. Hayat, M. Waqas, M. I. Khan, A. Alsaedi, M. Tamoor, MHD flow of Casson fluid over a stretching cylinder, Results. Phys., 7 (2017), 98–502. https://10.1016/j.rinp.2017.01.005 doi: 10.1016/j.rinp.2017.01.005
    [45] T. Fang, J. Zhang, S. Yao, Slip MHD viscous flow over a stretching sheet–an exact solution, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3731–3737. https://doi.org/10.1016/j.cnsns.2009.02.012 doi: 10.1016/j.cnsns.2009.02.012
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(117) PDF downloads(23) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog