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Abstract: In this study, we analyze a Casson micropolar hybrid nanofluid flow and heat transfer 

characteristics over a stretching sheet/cylinder. The analysis takes Joule heating and thermal radiation 

into account, as well as the variable thermal conductivity and the prescribed thermal conditions. The 

nanoparticles of 𝐴𝑔  and 𝐶𝑢𝑂  with base fluid 𝐸𝐺  (Ethylene llycol) are discussed. Additionally, the 

study explores the impact of an inclined magnetic field on the flow behavior. The governing partial 

differential equations are described, including the conservation of momentum, mass, and energy, which 

are transformed into a nonlinear ordinary differential equation using appropriate similarity 

transformations. Then, these equations are numerically cracked using a reliable computational 

technique. The study reveals significant influences of hybrid nanofluid properties on the velocity, 

temperature, and microrotation profiles. The inclined magnetic field significantly affects the fluid 

dynamics, leading to flow resistance and thermal performance variations. The results highlight the 

importance of these factors in enhancing the thermal efficiency of systems using hybrid nanofluids. 

The thermal thickness of the prescribed conditions (PHF and PST) for the temperature enhanced due 

to an increment in the factor of radiation. As more radiative heat is absorbed, the fluid internal energy 

increases, thus leading to a rise in the temperature because the absorbed radiation boosts the kinetic 

energy of the fluid molecules, thereby increasing the fluid temperature. The heat transfer of the sheet 

achieved more as compared to the stretching cylinder. 
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1. Introduction  

Hybrid nanofluids are an advanced type of fluid generated by combining two or more different 

categories of nanoparticles with a base fluid. This combination enhances the thermal and mechanical 

characteristics of the base fluid, surpassing traditional single-component nanofluids. The thermal 

conductivity, viscosity, and heat transfer capabilities can be improved by including nanoparticles such 

as metals, oxides, carbides, or carbon-based materials such as graphene. The study of hybrid nanofluid 

flow has gained noteworthy consideration due to its potential uses in various engineering and industrial 

processes, including cooling systems, microelectronics, biomedical devices, and energy systems. 

Analyzing the flow of hybrid nanofluids is a challenging but crucial area of research due to the complex 

interactions between these factors. Suresh et al. [1] presented the experimental model of hybrid 

nanofluids. Moin [2] considered the mixed conviction for hybrid nanofluids and performed 

experimental results using the laminar flow. Madhesh and Kalaiselvam [3] performed the experimental 

results for cooling using hybrid nanofluids, and explored the force convection and thermal features. 

Xian et al. [4] reported the impact of hybrid nanofluids and prepared techniques introduced for 

engineering applications. Shoaib et al. [5] reported a comprehensive analysis of hybrid nanofluids 

using the radiation impact of a stretchable sheet. They considered the rotating flow having 

magnetohydrodynamic (MHD) impacts for the phase flow model. Yashkun et al. [6] considered the 

permeable surface for both stretching and shrinking to analyze the impression of hybrid nanofluids. 

They applied MHD on the flow to more convenient results for hybrid nanofluids under radiation. Akbar 

et al. [7] discussed the hybrid nanofluid flow under the with an open-cell metallic foam. Ramesh et al. 

[8] debated the influence of hybrid nanofluids, while Madhukesh et al. [9] inspected the impression of 

hybrid nanofluids. Waqas et al. [10] provided comparative results of hybrid nanofluids at a stretchable 

sheet. Nadeem et al. [11] highlighted the features of the phase flow model using two nanoparticles and 

a base fluid. They considered the Brinkman phase flow model and produced analytical results. Few 

authors have developed the feature of their analysis using the phase flow model for different flow 

assumptions; see Refs. [12,13]. 

In the study of heat transfer, particularly in boundary layer problems involving fluid flow over 

the surface, two essential boundary conditions are commonly used: the prescribed surface temperature 

and the prescribed heat flux. These conditions are crucial for accurately modeling the thermal behavior 

and solving practical engineering problems. The prescribed surface temperature specifies that the 

temperature of the surface remains constant regardless of the heat flux or other thermal conditions of 

the fluid. This condition is often used when the surface is maintained at a uniform temperature due to 

external heating or cooling sources. The prescribed heat flux conditions dictate that the rate of heat 

transfer per unit area across the surface is kept constant. Bataller [14] discussed the impact of the 

prescribed thermal effects at the stretchable surface. Aman and Ishak [15] debated on the numerically 

prescribed conditions on the vertical stretching sheet. Qasim et al. [16] deliberated the slip phenomena 

using the prescribed thermal conditions. They applied the ferrofluid model under the MHD impression 

to numerically deliberate the consequences. Nabwey et al. [17] highlighted the impression of the 

prescribed surface temperature on the nanofluid. Ramesh et al. [18] reported the work for the 

prescribed surface temperature on the nanofluid flow. Reddy et al. [19] explained the features of 



3563 

AIMS Mathematics  Volume 10, Issue 2, 3561–3580. 

activation energy for nanofluids. Waini et al. [20] worked on the stability for a shrinking cylinder using 

the prescribed thermal conditions. Nabwey et al. [21] discussed the impact of nanofluids within a 

rotating desk. Abdal et al. [22] reported the impact of the prescribed thermal conditions for the Maxwell 

fluid model. The bioconvection and heat transfer phenomena were comprehensively discussed. Sadighi 

et al. [23] debated the analysis of the nanofluid model with MHD having prescribed thermal conditions. 

Recently, authors have studied the prescribed thermal conditions for different fluid models; see Refs. 

[24,25]. 

The Casson fluid theory explains the behavior of non-Newtonian fluids with yield stress. Below 

this stress, they act like a solid; above it, they flow like a fluid. The model is used for fluids with 

microstructural compositions such as blood, chocolate, certain slurries, and cosmetic products. It 

captures the nonlinear flow characteristics of these fluids, which is important to understand their 

behavior under different flow conditions. The study of Casson fluid flow over a stretchable surface is 

significant in industrial and biomedical applications because the yield stress of Casson fluid means 

that the flow behavior is strongly affected by the applied shear stress, which changes across the 

stretching surface. Batra and Das [26] considered the rotating cylinder to analyze the Casson fluid. In 

their analysis, the inner cylinder was fixed and outer cylinder was rotating. Vajravelu et al. [27] 

emphasized the impression of a mixed convection for the Casson fluid at a stretchable vertical sheet. 

The variable thermal properties have been highlighted analytically. Mustafa et al. [28] considered the 

stagnation region for the Casson fluid flow at a stretchable sheet. Mukhopadhyay et al. [29] studied 

the impact of The Casson fluid flow having temperature dependent characteristics over a stretchable 

sheet. Khan et al. [30] discussed the impact of the Casson fluid and developed the results for closed 

solutions. The linear stretchable sheet was taken into account. Nawaz et al. [31] numerically 

implemented the technique of Predictor–corrector on the Casson fluid model. Authors have debated 

the impact of the Casson fluid model for different assumptions; see refs. [32,33]. 

The theory of micropolar fluids extends classical fluid dynamics in view of the fluid particles, 

microstructure, and local angular momentum. The micropolar fluid theory is particularly useful for 

studying fluids with internal microstructures, such as liquid crystals, polymeric suspensions, colloidal 

fluids, and biological fluids. Micropolar fluids contain microelements that can rotate and exhibit micro-

inertia effects, offering a more comprehensive description of the fluid behavior, especially when these 

microstructural effects are significant. One important area of study is the flow of micropolar fluids 

over a stretchable surface, which is of interest in both theoretical research and practical applications. 

Often modeled as a linearly or exponentially stretching sheet, a stretchable surface creates complex 

flow fields that significantly differ from flow over a non-stretchable surface. Such stretching sheets 

are commonly encountered in industrial processes such as the extrusion of polymer sheets, the cooling 

of metallic plates in a stretching motion, and manufacturing processes that involve fluids with 

microstructural components interacting with moving boundaries. Takhar et al. [34] initiated the work 

on the micropolar fluid with convection effects at a stretching sheet. The numerical scheme was used 

to develop the theoretical results. Abo-Eldahab and lhonaim [35] considered the micropolar fluid with 

electrically conducting with heat convection impression at a stretchable sheet. Mahmoud [36] initiated 

the work on the micropolar fluid with thermal impacts over a stretching sheet. They considered the 

variable features of the fluid to analyze the effect of MHD and thermal radiation. Hayat et al. [37] 

considered the nonlinear stretching sheet to develop the results for the micropolar fluid. The stagnation 

region with electrically conducting fluid impression has been studied. Ahmad et al. [38] worked on the 

time dependent flow of micropolar fluids due to a stretchable sheet. The implicit finite difference 
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scheme has been implemented on the fluid model. Hayat et al. [39] considered the chemical reaction 

with a micropolar fluid by taking the curved sheet into account. Bilal et al. [40] considered the porous 

surface to analyze the micropolar fluid features. Thermal radiation was studied in their analysis. 

Sharma et al. [41] initiated the results of micropolar MHD with slip phenomena over a stretching sheet. 

Authors have studied micropolar fluids with different flow assumptions; see Refs. [42,43]. 

Viewing the above literature, we considered the hybrid Casson micropolar nanofluid flow over a 

permeable stretching cylinder/sheet. The prescribed thermal conditions were implemented, and the 

flow features were studied. The inclined magnetic field was studied under viscous dissipation and 

thermal radiation, and the variable temperature features were discussed. The nanoparticles of Ag and 

CuO with an Ethylene llycol (El) base fluid El were discussed. Additionally, the study explored the 

impact of an inclined magnetic field on the flow behavior. The governing partial differential equations 

described the conservation of mass, momentum, and energy, which were transformed into a nonlinear 

ordinary differential equation using appropriate similarity transformations. Then, these equations were 

numerically cracked using a reliable computational technique, and the results were presented in detail. 

The current study addresses the following scientific questions: 

• How do various Casson fluids, micropolar, temperature properties, radiation, porosity, heat 

generation, suction, magnetic, and nanoparticle concentration factors impact the fluid 

temperature (PST and PHF) for both cases under flow conditions over a stretching 

cylinder/sheet? 

• How does the rate of heat transfer and skin friction in a Casson micropolar hybrid nanofluid 

under the flow assumptions differ for both cases of the prescribed conditions (PST and PHF) 

over a stretching cylinder/sheet? 

• The numerical outcomes compare the coefficient of Skin friction and the Nusselt number 

tabulated graphically. 

 

Figure 1. Flow pattern over stretching sheet/cylinder. 

2. Mathematical formulation 

The steady incompressible flow of a hybrid micropolar Casson nanofluid flow over a permeable 

stretching cylinder/sheet is deliberated, which is seen in Figure 1. The thermal radiation and 

temperature dependent properties were considered in the present analysis. The accurate angle of 

inclined magnetic field Π was applied in the y-direction. As 𝛱 =
𝜋

2
, the magnetic field behaves as a 
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transverse magnetic field. 𝑈1 and 𝑉1 are the velocity mechanisms along the axial and radial directions, 

respectively, in the case of a stretching cylinder (in case of stretching sheet in 𝑥 −, 𝑦 − directions). 

The flow is expected to be in the axial (𝑥) direction, with the radial direction being perpendicular to 𝑥. 

The entire analysis is conducted under the assumptions of the boundary layer theory. The expression 

is presented as follows (see Refs. [7,8,12,18,38]): 

𝜕𝑉1

𝜕𝑟̂
+

𝑉1

𝑟̂
+

𝜕𝑈1

𝜕𝑥
= 0, (1) 

𝜌ℎ𝑁𝐹 (𝑈1

𝜕𝑈1

𝜕𝑥
+ 𝑉1

𝜕𝑈1

𝜕𝑟̂
)  

=
1

𝑟̂

𝜕

𝜕𝑟̂
(𝑟̂ (𝜇ℎ𝑁𝐹 +

𝑃𝑟̂

√2𝜋𝑐

+ 𝑘∗)
𝜕𝑈1

𝜕𝑟̂
) − 𝜎ℎ𝑁𝐹𝛽0

2𝑈1 sin2(Π) + 𝑘∗
𝜕(𝑁𝑟̂)

𝜕𝑟̂

−
𝜈ℎ𝑁𝐹

𝑘0

𝜕𝑈1

𝜕𝑟̂
, 

(2) 

𝜌ℎ𝑁𝐹𝑗 (𝑈1

𝜕𝑁

𝜕𝑥
+ 𝑉1

𝜕𝑁

𝜕𝑟̂
)  = γℎ𝑁𝐹

1

𝑟̂

𝜕

𝜕𝑟̂
(𝑟̂

𝜕𝑁

𝜕𝑟̂
) − 𝑘∗ (2𝑁 +

𝜕𝑈1

𝜕𝑟̂
), (3) 

with the following suitable boundary conditions:  

𝑈1 = 𝑈𝑤,    𝑁1 = −𝑛
𝜕𝑈1

𝜕𝑟̂
,   𝑉1 = 𝑉𝑤,   𝑎𝑡   𝑟̂ → 𝑏, 

𝑈1 → 0,     𝑁1 → 0,   𝑎𝑠 𝑟̂ → ∞, 
(4) 

where 𝛾1 = 𝜇𝐵
√2𝜋𝑐

𝑃𝑟̂
 is the Casson fluid parameter. The thermal expansion coefficient is 𝛽0. γℎ𝑁𝐹 =

𝜇ℎ𝑁𝐹(𝑇) +
𝑘∗

2
 is the viscosity of the spin radiation of the hybrid nanofluid. 𝜇ℎ𝑁𝐹 is the viscosity of the 

hybrid nanofluid. The special transformation is introduced as follows: 

𝑈1 =  
𝑈0𝑥

𝑙
𝐹𝜁(𝜁),   𝑉1 =  −

𝑏

𝜐𝑓

√
𝜐𝑓𝑈0

𝑙
𝐹(𝜁),   𝜁 =

𝑟̂2 − 𝑏2

2𝑏
√

𝑈0

𝜐𝑓𝑙
,   𝑁 = √

𝑈0

𝑙

3 𝑥𝑟̂

𝑏√𝜐𝑓

𝑔(𝜁). (5) 

The non-dimensional equations become the following:   

𝜌𝐹

𝜌ℎ𝑁𝐹

𝜇ℎ𝑁𝐹

𝜇𝐹
(1 +

1

𝑅
+ 𝐾1) ((1 + 2𝜁Α)𝐹𝜁𝜁𝜁(𝜁) + 2𝐴𝐹𝜁𝜁(𝜁)) + 𝐹𝜁𝜁(𝜁)𝐹(𝜁) − (𝐹𝜁(𝜁))

2

− 𝜒
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(6) 
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2
) ((1 + 2𝜁Α)𝑔𝜁𝜁(𝜁) + 4𝐴𝑔𝜁(𝜁)) + 𝑔𝜁(𝜁)𝐹(𝜁) − 𝐴𝑔(𝜁)𝐹(𝜁)

− 2𝐹𝜁(𝜁)𝑔(𝜁) −
𝐾1

2

𝜌𝐹

𝜌ℎ𝑁𝐹
(𝑔(𝜁) + 𝐹𝜁𝜁(𝜁)) = 0, 

(7) 

with the following boundary condition:  
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𝐹(0) = 𝑄, 𝐹𝜁(0) = 1, 𝐹𝜁(∞) = 1, 𝑔(0) = −𝑛𝐹𝜁𝜁(0),   𝑔(∞) = 0. (8) 

2.1. Heat transfer phenomena  

The equation of the temperature with boundary layer approximations can be expressed as follows 

(see Refs. [7,8,25]):  

𝑈1

𝜕𝑇

𝜕𝑥
+   𝑉1

𝜕𝑇

𝜕𝑟̂

=
1

 (𝜌𝑐𝑝)ℎ𝑛𝑓

1

𝑟̂

𝜕

𝜕𝑟̂
(𝐾ℎ𝑁𝐹(𝑇)𝑟̂

𝜕𝑇

𝜕𝑟̂
) +

1

 (𝜌𝑐𝑝)ℎ𝑁𝐹
𝑅1(𝑇 −  𝑇∞)

−
1

 (𝜌𝑐𝑝)ℎ𝑁𝐹

1

𝑟̂

𝜕(𝑟̂𝑞𝑟̂)

𝜕𝑟̂
. 

(9) 

𝐾𝐻𝑁𝐹(𝑇) = 𝑘ℎ𝑁𝐹(1 + 𝐸Θ(𝜁)) is the variable thermal conductivity of the hybrid nanofluid. 𝜎ℎ𝑁𝐹 

is the electric conductivity of hybrid nanofluid. The thermal expansion coefficient is 𝛽0 . 𝑞𝑟̂  is the 

radiative heat flux. The Reynold approximation of the radiative heat flux is presented as 𝑞𝑟̂ = −
4𝜎∗

3𝑘1

𝜕𝑇4

𝜕𝑟̂
. 

The constant Steffen Boltzmann is 𝜎∗. 𝑘1 is the absorption coefficient. The differences of temperature 

within the flow are considered to be sufficiently small, so 𝑇4 presented as a temperature linear function. 

𝑇4  expands using the Taylor series about 𝑇∞  and diminishes the higher order terms, which is 

considered as 𝑇4 ≅ 4𝑇∞
3𝑇 − 3𝑇∞

4.  

2.1.1. Case-I (Prescribed surface temperature) 

The special transformation is introduced as follows (see Ref. [7,25]): 

𝑈1 =  
𝑈0𝑥

𝑙
𝐹𝜁(𝜁),   𝑉1 =  −

𝑏

𝜐𝑓

√
𝜐𝑓𝑈0

𝑙
𝐹(𝜁),   𝜁 =

𝑟̂2 − 𝑏2

2𝑏
√

𝑈0

𝜐𝑓𝑙
,   𝑇

=  𝑇∞ + (𝑇𝑤 −  𝑇∞)Θ(𝜁) (𝑃𝑆𝑇). 

(10) 

The relevant boundary conditions are as follows: 

𝑇 − 𝑇𝑤 = 0,   𝑎𝑡   𝑟̂ → 𝑏,   𝑇 →  𝑇∞,     𝑎𝑠 𝑟̂ → ∞. (11) 

The dimensionless system becomes the followings:   

1

𝑃𝑟

(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)ℎ𝑁𝐹

𝑘ℎ𝑁𝐹

𝑘𝐹
((1 + 2Α𝜁)(1 + 𝐸Θ(𝜁))Θ𝜁𝜁(𝜁) + 2𝐴(1 + 𝐸Θ(𝜁))Θ𝜁(𝜁)

+ 𝐸(1 + 2𝜁Α)Θ𝜁(𝜁)Θ𝜁(𝜁)) +
4

3
𝑅𝑑 ((1 + 2𝜁Α)Θ𝜁𝜁(𝜁) + 2𝐴Θ𝜁(𝜁))

+ Θ𝜁(𝜁)𝐹(𝜁) − 2𝐹𝜁(𝜁)Θ(𝜁) + 𝑆
(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)
ℎ𝑁𝐹

Θ(𝜁) = 0, 

(12) 

with the following boundary condition:  
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Θ(0) − 1 = 0,   Θ(∞) = 0. (13) 

2.1.2 Case-ii (Prescribed heat flux) 

The special transformation is introduced as follows: 

𝑈1 =  
𝑈0𝑥

𝑙
𝐹𝜁(𝜁),   𝑉1 =  −

𝑏

𝜐𝑓

√
𝜐𝑓𝑈0

𝑙
𝐹(𝜁),   𝜁 =

𝑟̂2 − 𝑏2

2𝑏
√

𝑈0

𝜐𝑓𝑙
,   𝑇

=  𝑇∞ + (𝑇𝑤 −  𝑇∞)Φ(𝜁) (𝑃𝐻𝐹). 

(14) 

The relevant boundary conditions are as follows: 

−𝑘
𝜕𝑇

𝜕𝑟̂
− 𝑞𝑤 = 0,   𝑎𝑡   𝑟̂ → 𝑏,   𝑇 →  𝑇∞,     𝑎𝑠 𝑟̂ → ∞. (15) 

The dimensionless system becomes the following:  

1

𝑃𝑟

(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)ℎ𝑁𝐹

𝑘ℎ𝑁𝐹

𝑘𝐹
((1 + 2𝜁Α)(1 + 𝐸Φ(𝜁))Φ𝜁𝜁(𝜁) + 2𝐴(1 + 𝐸Φ(𝜁))Φ𝜁(𝜁)

+ 𝐸(1 + 2𝜁Α)Φ𝜁(𝜁)Φ𝜁(𝜁)) +
4

3
𝑅𝑑 ((1 + 2𝜁Α)Φ𝜁𝜁(𝜁) + 2𝐴Φ𝜁(𝜁))

+ Φ𝜁(𝜁)𝐹(𝜁) − 2𝐹𝜁(𝜁)Φ(𝜁) + 𝑆
(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)
ℎ𝑁𝐹

Φ(𝜁) = 0, 

(16) 

with the following boundary condition:  

Φ𝜁(0) +
1

1 + 𝐸
= 0,   Φ(∞) = 0. (17) 

Table 1. Thermodynamic characteristics of particles and fluid (see Ref. [12]).  

 𝑐𝑝 𝜌 𝑘 𝑃𝑟 𝜎 

 Heat capacity Density Thermal conductivity Prandtl number Electric conductivity 

𝐸𝑡ℎ𝑦𝑙𝑒𝑛𝑒 𝑔𝑙𝑦𝑐𝑜𝑙 2382.1 1117.48 0.2492 210.3 1.07 × 10−8 

𝐴𝑔 233 10500 429  6.3 × 10−7 

𝐶𝑢𝑂 531.8 6320 76.5  5.8 × 10−7 

The thermodynamic characteristics are defined in Table 1. The expressions for the thermodynamic 

properties of the base fluid and nanoparticles are as follows: 

𝜌ℎ𝑁𝐹 = (1 − 𝜑𝐴𝑔)(1 − 𝜑𝐶𝑢𝑂)𝜌𝐸𝐺 + 𝜑𝐴𝑔𝜌𝐴𝑔 + 𝜑𝐶𝑢𝑂𝜌𝐶𝑢𝑂 , 

(𝑐𝑝𝜌)ℎ𝑁𝐹 = (1 − 𝜑𝐴𝑔)(1 − 𝜑𝐶𝑢𝑂)(𝑐𝑝𝜌)𝐸𝐺 + 𝜑𝐴𝑔(𝑐𝑝𝜌)𝐴𝑔 + 𝜑𝐶𝑢𝑂(𝑐𝑝𝜌)𝐶𝑢𝑂, 

𝑘ℎ𝑁𝐹 =
𝑘𝐴𝑔 + 2𝑘𝐵𝐹 − 2𝜑𝐴𝑔(𝑘𝐵𝐹 − 𝑘𝐴𝑔)

𝑘𝐴𝑔 + 2𝑘𝐵𝐹 + 𝜑𝐴𝑔(𝑘𝐵𝐹 − 𝑘𝐴𝑔)
𝑘𝐵𝐹 , 

𝑘𝐵𝐹 =
𝑘𝐶𝑢𝑂 + 2𝑘𝐸𝐺 − 2𝜑𝐶𝑢𝑂(𝑘𝐸𝐺 − 𝑘𝐶𝑢𝑂)

𝑘𝐶𝑢𝑂 + 2𝑘𝐸𝐺 + 𝜑𝐶𝑢𝑂(𝑘𝐸𝐺 − 𝑘𝐶𝑢𝑂)
𝑘𝐸𝐺 , 
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𝜎ℎ𝑁𝐹 =
𝜎𝐴𝑔 + 2𝜎𝐵𝐹 − 2𝜑𝐴𝑔(𝜎𝐵𝐹 − 𝜎𝐴𝑔)

𝜎𝐴𝑔 + 2𝜎𝐵𝐹 + 𝜑𝐴𝑔(𝜎𝐵𝐹 − 𝜎𝐴𝑔)
𝜎𝐵𝐹 , 

𝜎𝐵𝐹 =
𝜎𝐶𝑢𝑂 + 2𝜎𝐸𝐺 − 2𝜑𝐶𝑢𝑂(𝜎𝐸𝐺 − 𝜎𝐶𝑢𝑂)

𝜎𝐶𝑢𝑂 + 2𝜎𝐸𝐺 + 𝜑𝐶𝑢𝑂(𝜎𝐸𝐺 − 𝜎𝐶𝑢𝑂)
𝜎𝐸𝐺 . 

Nomenclature 

Density of hybrid nanofluid 𝜌ℎ𝑁𝐹 Heat capacity of 𝐶𝑢𝑂 (𝑐𝑝)𝐶𝑢𝑂 

Solid nanoparticle of 𝐴𝑔 𝜑𝐴𝑔 Heat Capacity of 𝐴𝑔 (𝑐𝑝)𝐴𝑔 

Solid nanoparticle of 𝐶𝑢𝑂 𝜑𝐶𝑢𝑂 Heat Capacity of Ethylene glycol (𝑐𝑝)𝐸𝐺 

Density of Ethylene glycol 𝜌𝐸𝐺  Thermal conductivity of 𝐴𝑔 𝑘𝐴𝑔 

Density of 𝐶𝑢𝑂 𝜌𝐶𝑢𝑂 Thermal conductivity of 𝐶𝑢𝑂 𝑘𝐶𝑢𝑂 

Electric conductivity of 𝐶𝑢𝑂 𝜎𝐶𝑢𝑂 Thermal conductivity of Ethylene glycol 𝑘𝐸𝐺  

Electric conductivity of 𝐴𝑔 𝜎𝐵𝐹  Electric conductivity of Ethylene glycol 𝜎𝐵𝐹  

Casson fluid parameter 𝛾1 Viscosity of spin hybrid nanofluid γℎ𝑁𝐹 

Thermal expansion coefficient 𝛽0 Constant of Steffen Boltzmann 𝜎∗ 

Wall temperature 𝑇𝑤 Absorption coefficient 𝑘1 

Velocity profile 𝐹 Temperature profile Θ 

Temperature 𝑇 Wall velocity 𝑈𝑤 

Velocity components 𝑈1, 𝑉1 Micropolar component 𝑁 

Fluid constant 𝑛 Vortex viscosity 𝑘∗ 

Porosity factor 𝜒 Variable thermal conductivity 𝐸 

Micropolar factor 𝐾1 Magnetic field Ω 

Radiation 𝑅𝑑 Casson fluid factor 𝑅 

Micro-rotation profile 𝑔 Prescribe surface temperature PST 

Prescribe heat flux PHF Heat generation 𝑆 

Skin friction and the Nusselt number are physical quantities, which are presented as follows: 

𝐶𝑓 =
2𝜏𝑤

𝜌𝑓𝑈𝑤
2 ,   𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘𝑓(𝑇𝑤 − 𝑇∞)
. (18) 

The Eq 18 becomes non dimensional and is defined as follows: 

𝐶𝑓𝑅𝑒
1
2 =

𝜌𝐹

𝜌ℎ𝑁𝐹
(

𝜇ℎ𝑁𝐹

𝜇𝐹
+

1

𝑅
+ 𝐾1 − 𝑛𝐾1) (𝐹𝜁𝜁(0)), 

𝑁𝑢𝑥𝑅𝑒−
1
2 =

1

𝑃𝑟

(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)
ℎ𝑁𝐹

(
𝑘ℎ𝑁𝐹

𝑘𝐹
(1 + 𝐸Θ(0)) +

4

3
𝑅𝑑) Θ𝜁(0), (𝑷𝑺𝑻), 

𝑁𝑢𝑥𝑅𝑒−1/2 =
1

𝑃𝑟

(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)ℎ𝑁𝐹

(
𝑘ℎ𝑁𝐹

𝑘𝐹
(1 + 𝐸Φ(0)) +

4
3 𝑅𝑑)

Φ(0)
⁄ , (𝑷𝑯𝑭). 

(19) 

The Reynold number is 𝑅𝑒. 

3. Numerical procedure  

The bvp4c numerical technique is used to elucidate non-linear higher order differential equations 

that have specific boundary conditions. The Bvp4c method involves breaking down the intricate 

higher-order differential system into a system of first order differential equations, which can then be 

numerically elucidated. The model convergence is performed by reducing the residual error and 

achieving the tolerance threshold. The steps involved in this numerical technique include the following: 
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𝑋(1) = 𝐹(𝜁);  𝑋(2) = 𝐹𝜁(𝜁); 𝐹𝜁𝜁(𝜁) = 𝑋(3); 𝐹𝜁𝜁𝜁(𝜁) = 𝑋𝑋1;  𝑋(4) = 𝑔(𝜁); 

 𝑋(5) = 𝑔𝜁(𝜁);  𝑔𝜁𝜁(𝜁) = 𝑋𝑋2;  Θ(𝜁) = 𝑋(6); 𝑋(7) = Θ𝜁(𝜁); Θ𝜁𝜁(𝜁) = 𝑋𝑋3;  Φ(𝜁)

= 𝑋(8); 𝑋(9) = Φ𝜁(𝜁); Φ𝜁𝜁(𝜁) = 𝑋𝑋3;  
(20) 

𝑋𝑋1 =
−1

𝜌𝐹

𝜌ℎ𝑁𝐹
(

𝜇ℎ𝑁𝐹

𝜇𝐹
+

1
𝑅 + 𝐾1) (1 + 2𝜁Α)

((2
𝜌𝐹

𝜌ℎ𝑁𝐹
(

𝜇ℎ𝑁𝐹

𝜇𝐹
+

1

𝑅
+ 𝐾1) 𝐴𝑋(3)) + 𝑋(1)𝑋(3)

− 𝑋(2)𝑋(2) − 𝜒
𝜌𝐹

𝜌ℎ𝑁𝐹

𝜇ℎ𝑁𝐹

𝜇𝐹
𝑋(2) − Ω

𝜌𝐹

𝜌ℎ𝑁𝐹
𝑋(2) sin2(Π)

+ 𝐾1

𝜌𝐹

𝜌ℎ𝑁𝐹
((1 + 2𝜁Α)𝑋(5) + 2𝐴𝑋(4))); 

(21) 

𝑋𝑋2 =
−1

𝜌𝐹

𝜌ℎ𝑁𝐹
(

𝜇ℎ𝑁𝐹

𝜇𝐹
+

𝐾1

2 ) (1 + 2𝜁Α)
(

𝜌𝐹

𝜌ℎ𝑁𝐹
(

𝜇ℎ𝑁𝐹

𝜇𝐹
+

𝐾1

2
) (4𝐴𝑋(5)) + 𝑋(5)𝑋(1)

− 𝐴𝑋(1)𝑋(4) − 2𝑋(2)𝑋(4) −
𝐾1

2

𝜌𝐹

𝜌ℎ𝑁𝐹
(𝑋(4) + 𝑋(3))) ; 

(22) 

𝑋𝑋3 =
−1

1
𝑃𝑟

(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)
ℎ𝑁𝐹

(
𝑘ℎ𝑁𝐹

𝑘𝐹
+

4
3 𝑅𝑑) (1 + 2𝜁Α)(1 + 𝐸𝑋(6))

(
1

𝑃𝑟

(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)
ℎ𝑁𝐹

𝑘ℎ𝑁𝐹

𝑘𝐹
(2𝐴(1

+ 𝐸𝑋(6))𝑋(7) + 𝐸(1 + 2𝜁Α)𝑋(7)𝑋(7)) +
4

3
𝑅𝑑(2𝐴𝑋(7)) + 𝑋(7)𝑋(1)

− 2𝑋(6)𝑋(2) + 𝑆
(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)
ℎ𝑁𝐹

𝑋(6)) ;  

(23) 

𝑋𝑋3 =
−1

1
𝑃𝑟

(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)
ℎ𝑁𝐹

(
𝑘ℎ𝑁𝐹

𝑘𝐹
+

4
3 𝑅𝑑) (1 + 2𝜁Α)(1 + 𝐸𝑋(8))

(
1

𝑃𝑟

(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)
ℎ𝑁𝐹

𝑘ℎ𝑁𝐹

𝑘𝐹
(2𝐴(1

+ 𝐸𝑋(8))𝑋(9) + 𝐸(1 + 2𝜁Α)𝑋(9)𝑋(9)) +
4

3
𝑅𝑑(2𝐴𝑋(9)) + 𝑋(9)𝑋(1)

− 2𝑋(8)𝑋(2) + 𝑆
(𝜌𝑐𝑝)𝐹

(𝜌𝑐𝑝)
ℎ𝑁𝐹

𝑋(8)) ; 

(24) 

The boundary condition at the surface is as follows:  

𝑋0(1) − 𝑄;   𝑋0(2) − 1;    𝑋∞(2);    𝑋0(4) = −𝑛𝑋0(3);  𝑋∞(4); 

 𝑋0(6) − 1;    𝑋∞(6);  𝑋0(9) = − 1
(1 + 𝐸)⁄ ;  𝑋∞(8); 

(25) 
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4. Results and discussions 

A system of differential equations  were developed under the flow assumptions and boundary 

layer approximations. The mathematical model was cracked through a numerical scheme and involved 

physical factor impact phenomena offered in the form of graphs and in tabular form. Figures 2–9 report 

the physical features of external forces on the temperature (PST and PHF). The difference of joule 

heating and the prescribed condition for temperature are presented in Figures 2 and 3. The thickness 

of the thermal layer was enriched due to an increment in the joule heating for both cases of the 

stretching cylinder and the sheet. As more thermal energy is created within the fluid, the temperature 

naturally rises because temperature measures the average kinetic energy of the fluid molecules. As 

more heat is generated, the molecules move more energetically, thus leading to a rise in temperature. 

Figures 4 and 5 report the difference of variable thermal conductivity and the prescribed condition on 

temperature. For the case of the prescribed surface temperature (PST) and the variable thermal 

conductivity, there was a direct relation, which is reported in Figure 4. The prescribed surface 

temperature (PST) increased as the thermal conductivity parameter values increased, as a higher 

thermal conductivity improves the heat conduction within the fluid and raises its temperature. 

Alternatively, the opposite relation found in the case of the prescribed temperature (PHF) and the 

variable thermal conductivity, which is reported in Figure 5. The prescribed heat flux (PHF) declined 

due to the increased variable thermal conductivity parameter values. As the thermal conductivity 

increases, heat spreads more effectively within the fluid, thus reducing the temperature gradient near 

the surface. Since heat flux is proportional to the temperature gradient, a lower gradient leads to a 

decrease in the PHF. The difference between the solid nanoconcentration and the prescribed conditions 

(PHF and PST) for temperature is reported in Figures 6 and 7. The thickness of the thermal layer is 

boosted up due to an increment in the nanoconcentration factor for both cases for the prescribed 

conditions (PHF and PST). Due to the physical properties, the thermal conductivity of the fluid 

gradually enlarg4es due to an enrichment in the nanoconcentration factor. Therefore, the fluid 

temperature is boosted up. The difference between the solid radiation and the prescribed conditions 

(PHF and PST) for temperature is reported in Figures 8-9. The thermal thickness of the prescribed 

conditions (PHF and PST) for temperature is enhanced due to an increment in the factor of radiation. 

As more radiative heat is absorbed, the fluid internal energy increases, thus leading to a rise in 

temperature because the absorbed radiation boosts the kinetic energy of the fluid molecules, thereby 

increasing the fluid temperature.  

Table 2 displays the physical features of the external forces on the Nusselt number for both cases 

of temperature (PST and PHF). Moreover, the differences between the variable thermal conductivity 

and the Nusselt number (PST and PHF) are presented in Table 2. The heat transfer becomes low due 

to an enrichment in the variable thermal conductivity in both cases of the stretching cylinder and the 

sheet. As the Nusselt number reflects the efficiency of convection, a decrease in the temperature 

gradient results in a lower Nusselt number, which indicates a reduced convective heat transfer 

compared to a conductive heat transfer. Table 2 compares the micropolar factor and Nusselt number 

(PST and PHF). The higher the micropolar factor, the richer the heat transfer fluid. The enhanced 

Nusselt number signifies the efficiency, thereby showing that the hybrid nanofluid with more 

pronounced micropolar characteristics excels in heat transfer through convection compared to one with 

weaker micropolar effects. The variation of the porosity factor and the Nusselt number is reported in 

Table 2. The Nusselt number found declines in its behavior by enlarging the values of the porosity 
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factor. The decline in the Nusselt number with an increasing porosity factor indicates that the porous 

medium structure allows the hybrid nanofluid to flow with less resistance, thus reducing the 

effectiveness of a convective heat transfer. The nanoconcentration of the particles affects the Nusselt 

number, which is revealed in Table 2. The temperature gradient shows a decline due to higher values 

of the solid nanoconcentration. The Nusselt number decreased as the concentration of the solid 

nanoparticles increased because the hybrid nanofluid improves the internal heat conduction, though it 

decreases its ability to transfer heat through convection. The Nusselt number becomes enriched due to 

an increment in the section factor. The Nusselt number increased as the section parameter values rose, 

thus enhancing the heat transfer efficiency. As the section parameter and the thermal boundary layer 

increased, the convective heat transport away from the surface improved. The Nusselt number reduced 

due to an increment in the Casson fluid factor A reduced fluid flow decreased the heat transfer by 

convection due to a thicker boundary layer, lower shear rates, and the temperature gradient, leading to 

a decrease in the Nusselt number. The temperature gradient deteriorated due to an addition in the 

thermal radiation. Increased thermal radiation results in a thicker thermal boundary layer, thereby 

extending the region where temperature changes occur and reducing the temperature gradient near the 

surface. The temperature gradient deteriorated due to an addition in the joule heating and the magnetic 

field. The rate of convective heat transfer decreased as the fluid velocity decreased. Convection 

depends on the fluid movement to transfer heat from the surface to the bulk of the fluid. Table 3 

displays the physical features of external forces on Skin friction for both cases of temperature (PST 

and PHF). The variation in skin friction remains constant due to different thermal conductivity values. 

The variation of skin friction diminishes while improving the values of the micropolar polar fluid factor. 

The rotation dominated the fluid velocity, thus improving the velocity and reducing the friction 

between the surface and the fluid. The skin friction enriches due to improving the values of the porosity 

and suction factors. Increasing the porosity improved the fluid permeability at the surface, thus 

enabling more fluid to flow through. This change disrupted the velocity gradient and increased the 

resistance to fluid motion. As a result, the shear stress at the wall intensified, thus leading to a higher 

skin friction. The variation of skin friction is enriched while improving the values of the 

nanoconcentration. A higher concentration led to an increased effective viscosity, thus enhancing the 

flow resistance near the surface and raising the skin friction. The variation of skin friction is enriched 

while improving the values of the Casson factor. A higher yield stress resulted in a greater velocity 

gradient near the surface, which increased the skin friction. The variation in skin friction remains 

constant due to different radiation values and joule heating values. The variation of skin friction is 

enriched while improving the values of the magnetic field. By increasing the values of the magnetic 

field, the rate of fluid near the surface declined, as well as the friction between the fluid and the surface. 

Table 4 reports the comparison of present analysis with decay results from Hayat et al. [44] and Fang 

et al. [45] for different values of Ω , while the other values are as follos: 𝐸 → 0, 𝐾1 → 0.0, 𝜒 →

0.0, 𝜑2 → 0.0, 𝜑1 → 0.0, 𝑄 → 0.0, 𝑅 → ∞, 𝑅𝑑 → 0.0, 𝑆 → 0.0, Π → 90°.  It is noted that our results 

have been found to be in a good agreement with the decay results.  
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Figure 2. Influence of 𝑆 on temperature (PST). 

 

Figure 3. Influence of 𝑆 on temperature (PHF). 

 

Figure 4. Influence of 𝐸 on temperature (PST). 

 

Figure 5. Influence of 𝐸 on temperature (PHF). 
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Figure 6. Influence of 𝜑2 on temperature (PST). 

 

Figure 7. Influence of 𝜑2 on temperature (PHF). 

 

Figure 8. Influence of 𝑅𝑑 on temperature (PST). 

 

Figure 9. Influence of 𝑅𝑑  on 

temperature (PHF). 
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Table 2. Numerical outcome of Nusselt number of (PST and PHF) for different values of 

physical factors.  

Physical factors 
Stretching Cylinder 

𝑁𝑢𝑥𝑅𝑒−1/2 

Stretching Sheet 

𝑁𝑢𝑥𝑅𝑒−1/2 

𝐸 𝐾1 𝜒 𝜑2 𝑄 𝑅 𝑅𝑑 𝑆 Ω 𝑃𝑆𝑇 𝑃𝐻𝐹 𝑃𝑆𝑇 𝑃𝐻𝐹 

0.0 2.0 0.5 0.08 0.5 0.3 0.5 0.5 0.2 2.68025501 0.66791955 2.75027385 0.68536824 

1.0 - - - - - - - - 2.19687127 0.61985288 2.26529593 0.63840134 

2.0 - - - - - - - - 1.87844944 0.60413293 1.94645449 0.62307621 

3.0 - - - - - - - - 1.65033275 0.59633232 1.71847256 0.61547857 

1.0 0.0 - - - - - - - 2.14724623 0.60586857 2.21015657 0.62292999 

- 1.0 - - - - - - - 2.17573737 0.61385596 2.24076293 0.63148723 

- 2.0 - - - - - - - 2.19687127 0.61985288 2.26529593 0.63840134 

- 3.0 - - - - - - - 2.21456402 0.62490228 2.28645751 0.64438330 

- 2.0 0.0 - - - - - - 2.23215651 0.62978281 2.29935287 0.64796504 

- - 0.5 - - - - - - 2.19687127 0.61985288 2.26529593 0.63840134 

- - 1.0 - - - - - - 2.16314322 0.61037710 2.23302114 0.62935374 

- - 1.5 - - - - - - 2.13036519 0.60118742 2.20197968 0.62067002 

- - 0.5 0.02 - - - - - 2.31604383 0.58217328 2.37831025 0.59710573 

- - - 0.04 - - - - - 2.27502157 0.59517763 2.33940656 0.61128592 

- - - 0.06 - - - - - 2.23531224 0.60773056 2.30174768 0.62504419 

- - - 0.08 - - - - - 2.19687127 0.61985288 2.26529593 0.63840134 

- - - 0.08 0.1 - - - - 1.85819531 0.51271421 1.93119943 0.53247072 

- - - - 0.3 - - - - 2.02226662 0.56442700 2.09300532 0.58359647 

- - - - 0.5 - - - - 2.19687127 0.61985288 2.26529593 0.63840134 

- - - - 0.7 - - - - 2.38150236 0.67877131 2.44741020 0.69663055 

- - - - 0.5 0.1 - - - 2.33553661 0.65893713 2.38928658 0.67329885 

- - - - - 0.3 - - - 2.19687127 0.61985288 2.26529593 0.63840134 

- - - - - 0.6 - - - 2.09723173 0.59197112 2.18069797 0.61471242 

- - - - - 0.9 - - - 2.03796014 0.57557411 2.13434868 0.60182397 

- - - - - 0.3 0.0 - - 3.72334633 1.43034096 3.79774748 1.45485560 

- - - - -  0.5 - - 2.19687127 0.61985288 2.26529593 0.63840134 

- - - - - - 1.0 - - 1.57651844 0.41702148 1.67007796 0.44188092 

- - - - - - 1.5 - - 1.17450140 0.30127370 1.32715883 0.34165682 

- - - - - - 0.5 0.1 - 2.45972454 0.69635485 2.51611669 0.71139654 

- - - - - - - 0.3 - 2.33486033 0.65996826 2.39602324 0.67641245 

- - - - - - - 0.5 - 2.19687127 0.61985288 2.26529593 0.63840134 

- - - - - - - 0.7 - 2.03752371 0.57376481 2.11934529 0.59610085 

- - - - - - - 0.5 0.0 2.20867198 0.62317212 2.27665787 0.64159023 

- - - - - - - - 0.2 2.19687127 0.61985288 2.26529593 0.63840134 

- - - - - - - - 0.4 2.18524965 0.61658587 2.25413981 0.63527205 

- - - - - - - - 0.6 2.17378184 0.61336406 2.24316693 0.63219606 
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Table 3. Numerical outcome of Skin friction of (PST and PHF) for different values of 

physical factors.  

Physical factors Stretching cylinder Stretching sheet 

𝐸 𝐾1 𝜒 𝜑2 𝑄 𝑅 𝑅𝑑 𝑆 Ω PST PHF 

0.0 2.0 0.5 0.08 0.5 0.3 0.5 0.5 0.2 -4.5881258 -4.24174000 

1.0 - - - - - - - - -4.5881258 -4.24174000 

2.0 - - - - - - - - -4.5881258 -4.24174000 

3.0 - - - - - - - - -4.5881258 -4.24174000 

1.0 0.0 - - - - - - - -5.5545630 -5.25811346 

- 1.0 - - - - - - - -5.2792193 -4.93725113 

- 2.0 - - - - - - - -4.9745724 -4.59901144 

- 3.0 - - - - - - - -4.6797115 -4.27967156 

- 2.0 0.0 - - - - - - -4.2167846 -3.85816177 

- - 0.5 - - - - - - -4.5881258 -4.24174000 

- - 1.0 - - - - - - -4.9271602 -4.59046328 

- - 1.5 - - - - - - -5.2407751 -4.91166600 

- - 0.5 0.02 - - - - - -4.1603144 -3.83784846 

- - - 0.04 - - - - - -4.3123313 -3.98120500 

- - - 0.06 - - - - - -4.4548589 -4.11578759 

- - - 0.08 - - - - - -4.5881258 -4.24174000 

- - - 0.08 0.1 - - - - -4.1226179 -3.84484464 

- - - - 0.3 - - - - -4.3496748 -4.03824318 

- - - - 0.5 - - - - -4.5881258 -4.24174000 

- - - - 0.7 - - - - -4.8375862 -4.45535298 

- - - - 0.5 0.1 - - - -1.9035648 -1.71431336 

- - - - - 0.3 - - - -2.8705850 -2.65386694 

- - - - - 0.6 - - - -3.4436681 -3.21613514 

- - - - - 0.9 - - - -3.7195600 -3.48713889 

- - - - - 0.3 0.0 - - -4.58812578 -4.24174000 

- - - - - - 0.5 - - -4.5881257 -4.24174000 

- - - - - - 1.0 - - -4.5881257 -4.24174000 

- - - - - - 1.5 - - -4.5881257 -4.24174000 

- - - - - - 0.5 0.1 - -4.58812578 -4.24174000 

- - - - - - - 0.3 - -4.58812578 -4.24174000 

- - - - - - - 0.5 - -4.58812578 -4.24174000 

- - - - - - - 0.7 - -4.58812578 -4.24174000 

- - - - - - - 0.5 0.0 -4.46578865 -4.11553722 

- - - - - - - - 0.2 -4.58812578 -4.24174000 

- - - - - - - - 0.4 -4.70674735 -4.36392773 

- - - - - - - - 0.6 -4.82195524 -4.48241858 
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Table 4. Comparison of present analysis with decay results Hayat et al. [44] and Fang et 

al. [45] for different values of Ω  and while the other values 𝐸 → 0, 𝐾1 → 0.0, 𝜒 →

0.0, 𝜑2 → 0.0, 𝜑1 → 0.0, 𝑄 → 0.0, 𝑅 → ∞, 𝑅𝑑 → 0.0, 𝑆 → 0.0, Π → 90°. 

Ω Present analysis 
Hayat et al.[44] 

Skin friction 

Fang et al. [45] 

Skin friction 

0.2 1.0197685 1.01980 - 

0.5 1.1180253 1.11803 1.1180 

0.8 1.2606271 1.26063 - 

1.0 1.4142057 1.41421 - 

5. Final remarks 

We conducted an analysis of the flow and heat transfer characteristics of a Casson micropolar 

hybrid nanofluid over a stretching sheet or cylinder. Our study includes factors such as Joule heating, 

thermal radiation, and variable thermal conductivity. We assessed the prescribed thermal conditions in 

detail. The governing equations were developed and solved using numerical methods with the Maple 

software. Below, we highlight the main key findings from our analysis: 

• The thickness of the thermal layer is enriched due to an increment in the joule heating for both 

cases of a stretching cylinder and a sheet. As more heat is generated, the molecules move more 

energetically, thus leading to an increase in temperature. 

• The thickness of the thermal layer is boosted up due to an increment in the nanoconcentration factor 

for both cases of the prescribed condition (PHF and PST) for temperature. Due to the physical 

characteristics, the thermal conductivity of fluid gradually enlarged due to an enrichment in the 

nanoconcentration factor. As a results, the fluid temperature boosted up. 

• The enhanced Nusselt number signifies efficiency, showing that the hybrid nanofluid with more 

pronounced micropolar characteristics excels in heat transfer through convection compared to one 

with weaker micropolar effects. 

• The Nusselt number was reduced due to an increment in the Casson fluid factor. A reduced fluid 

flow decreases the heat transfer by convection due to a thicker boundary layer, lower shear rates, 

and temperature gradient, leading to a decrease in the Nusselt number. 

• The PST achieved more heat transfer and friction factor compared to the PHF. The stretching sheet 

achieved more temperature as compared to the stretching cylinder.  

6. Limitations of present work 

The limitations associated with the current computational model are as follows: 

• Models often assume that the nanoparticle dispersion is uniform, overlooking the effects of 

agglomeration or clustering, which can significantly alter the thermal conductivity and viscosity in 

real-world applications. 

• Models may not adequately consider complex heat transfer mechanisms, including particle-particle 

thermal interactions, thermal resistance, and nanolayer effects. 

• Computational results are often insufficiently validated against experimental data, which leads to 

uncertainties regarding the accuracy and reliability of the models. 

In the future, this study can be expanded through various approaches to enhance the understanding 
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and appreciation of the topic. This can be achieved by incorporating diverse geometries with a non-

Newtonian fluid model and considering physical impacts that could alter the model performance, such 

as non-Fourier thermal flux, activation energy, and the Hall and current effects. Additionally, exploring 

a more complex combination of nanoparticles within the hybrid nanofluid could further extend the 

scope of this research. 
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