This study investigates singularly perturbed differential equations through advanced convection-diffusion techniques. We employ a finite difference approach utilizing a piecewise uniform Shishkin-type mesh to tackle this problem. Our analysis demonstrates that the approach achieves virtually first-order convergence. Error estimates are computed using discrete norms, and numerical experiments are conducted to validate these theoretical results.
Citation: Nien-Tsu Hu, Sekar Elango, Chin-Sheng Chen, Murugesan Manigandan. Computational methods for singularly perturbed differential equations with advanced argument of convection-diffusion type[J]. AIMS Mathematics, 2024, 9(8): 22547-22564. doi: 10.3934/math.20241097
This study investigates singularly perturbed differential equations through advanced convection-diffusion techniques. We employ a finite difference approach utilizing a piecewise uniform Shishkin-type mesh to tackle this problem. Our analysis demonstrates that the approach achieves virtually first-order convergence. Error estimates are computed using discrete norms, and numerical experiments are conducted to validate these theoretical results.
[1] | L. Berezansky, E. Braverman, S. Pinelas, On nonoscillation of mixed advanced-delay 58 (2009), 766–775. http://dx.doi.org/10.1016/j.camwa.2009.04.010 |
[2] | J. Caballero, B. Lopez, K. Sadarangani, Existence of nondecreasing and continuous solutions of an integral equation with linear modification of the argument, Acta Math. Sinica, 23 (2007), 1719–1728. http://dx.doi.org/10.1007/s10114-007-0956-2 doi: 10.1007/s10114-007-0956-2 |
[3] | R. Culshaw, S. Ruan, A delay differential equation model of HIV infection of $CD4^+$ T-cells, Math. Biosci., 165 (2000), 27–39. http://dx.doi.org/10.1016/S0025-5564(00)00006-7 doi: 10.1016/S0025-5564(00)00006-7 |
[4] | E. Els'gol'ts, Qualitative methods in mathematical analysis, In: Translations of mathematical monographs, Providence: American Mathematical Society, 1964. |
[5] | L. Erbe, Q. Kong, B. Zhang, Oscillation theory for functional differential equations, New York: Routledge, 1995. http://dx.doi.org/10.1201/9780203744727 |
[6] | S. Elango, L. Govindarao, J. Mohapatra, R. Vadivel, N. Hu, Numerical analysis for second order differential equation of reaction-diffusion problems in viscoelasticity, Alex. Eng. J., 92 (2024), 92–101. http://dx.doi.org/10.1016/j.aej.2024.02.046 doi: 10.1016/j.aej.2024.02.046 |
[7] | V. Glizer, Asymptotic analysis and solution of a finite-horizon $H_{\propto}$ control problem for sigularly perturbed linear systems with small state delay, J. Optimiz. Theory Appl., 117 (2003), 295–325. http://dx.doi.org/10.1023/A:1023631706975 doi: 10.1023/A:1023631706975 |
[8] | L. Govindarao, H. Ramos, S. Elango, Numerical scheme for singularly perturbed Fredholm integro-differential equations with non-local boundary conditions, Comp. Appl. Math., 43 (2024), 126. http://dx.doi.org/10.1007/s40314-024-02636-3 doi: 10.1007/s40314-024-02636-3 |
[9] | L. Govindarao, E. Sekar, B-spline method for second order RLC closed series circuit with small inductance value, J. Phys.: Conf. Ser., 2646 (2023), 012039. http://dx.doi.org/10.1088/1742-6596/2646/1/012039 doi: 10.1088/1742-6596/2646/1/012039 |
[10] | I. Gyori, G. Ladas, Oscillation theory of delay differential equation with applications, Oxford: Oxford Academic, 1991. http://dx.doi.org/10.1093/oso/9780198535829.001.0001 |
[11] | T. Jankowski, First-order impulsive ordinary differential equations with advanced arguments, J. Math. Anal. Appl., 331 (2007), 1–12. http://dx.doi.org/10.1016/j.jmaa.2006.07.108 doi: 10.1016/j.jmaa.2006.07.108 |
[12] | M. Kadalbajoo, D. Kumar, Fitted mesh B-spline collocation method for singularly perturbed differential equations with small delay, Appl. Math. Comput., 204 (2008), 90–98. http://dx.doi.org/10.1016/j.amc.2008.05.140 doi: 10.1016/j.amc.2008.05.140 |
[13] | M. Kadalbajoo, K. Sharma, Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type, J. Optimiz. Theory Appl., 115 (2002), 145–163. http://dx.doi.org/10.1023/A:1019681130824 doi: 10.1023/A:1019681130824 |
[14] | M. Kadalbajoo, K. Sharma, Numerical treatment of boundary value problems for second order singularly perturbed delay differential equations, Comput. Appl. Math., 24 (2005), 151–172. http://dx.doi.org/10.1590/S0101-82052005000200001 doi: 10.1590/S0101-82052005000200001 |
[15] | M. Kadalbajoo, K. Sharma, Numerical treatment of a mathematical model arising from a model of neuronal variability, J. Math. Anal. Appl., 307 (2005), 606–627. http://dx.doi.org/10.1016/j.jmaa.2005.02.014 doi: 10.1016/j.jmaa.2005.02.014 |
[16] | M. Kadalbajoo, K. Sharma, Parameter-Uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior, Electron. Trans. Numer. Anal., 23 (2006), 180–201. |
[17] | M. Kadalbajoo, K. Sharma, $\epsilon$-Uniform fitted mesh method for singularly perturbed differential-difference equations mixed type of shifts with layer behavior, Int. J. Comput. Math., 81 (2004), 49–62. http://dx.doi.org/10.1080/00207160310001606052 doi: 10.1080/00207160310001606052 |
[18] | C. Lange, R. Miura, Singularly perturbation analysis of boundary-value problems for differential-difference equations, SIAM J. Appl. Math., 42 (1982), 502–531. http://dx.doi.org/10.1137/0142036 doi: 10.1137/0142036 |
[19] | A. Longtin, J. Milton, Complex oscillations in the human pupil light reflex with mixed and delayed feedback, Math. Biosci., 90 (1988), 183–199. http://dx.doi.org/10.1016/0025-5564(88)90064-8 doi: 10.1016/0025-5564(88)90064-8 |
[20] | R. Mahendran, V. Subburayan, Fitted finite difference method for third order singularly perturbed delay differential equations of convection diffusion type, Int. J. Comp. Meth., 16 (2019), 1840007. http://dx.doi.org/10.1142/S0219876218400078 doi: 10.1142/S0219876218400078 |
[21] | J. Miller, E. O'Riordan, G. Shishkin, Fitted numerical methods for singular perturbation problems, Singapore: World Scientific Publishing Co., 1996. |
[22] | S. Nicaise, C. Xenophontos, Robust approximation of singularly perturbed delay differential equations by the hp finite element method, Comput. Meth. Appl. Math., 13 (2013), 21–37. http://dx.doi.org/10.1515/cmam-2012-0001 doi: 10.1515/cmam-2012-0001 |
[23] | K. Patidar, K. Sharma, Uniformly convergent non-standard finite difference methods for singularly perturbed differential-difference equations with delay and advance, Int. J. Numer. Meth. Eng., 66 (2006), 272–296. http://dx.doi.org/10.1002/nme.1555 doi: 10.1002/nme.1555 |
[24] | P. Selvi, N. Ramanujam, An iterative numerical method for singularly perturbed reaction-diffusion equations with negative shift, J. Comput. Appl. Math., 296 (2016), 10–23. http://dx.doi.org/10.1016/j.cam.2015.09.003 doi: 10.1016/j.cam.2015.09.003 |
[25] | S. Shah, J. Wiener, Advanced differential equation with piecewise constant argument derivations, Internat. J. Math. Sci., 6 (1983), 671–703. |
[26] | E. Sekar, A. Tamilselvan, Singularly perturbed delay differential equations of convection-diffusion type with integral boundary condition, J. Appl. Math. Comput., 59 (2019), 701–722. http://dx.doi.org/10.1007/s12190-018-1198-4 doi: 10.1007/s12190-018-1198-4 |
[27] | E. Sekar, Second order singularly perturbed delay differential equations with non-local boundary condition, J. Comput. Appl. Math., 417 (2023), 114498. http://dx.doi.org/10.1016/j.cam.2022.114498 doi: 10.1016/j.cam.2022.114498 |
[28] | R. Stein, Some models of neuronal variability, Biophys. J., 7 (1967), 37–68. http://dx.doi.org/10.1016/S0006-3495(67)86574-3 doi: 10.1016/S0006-3495(67)86574-3 |
[29] | J. Yan, Oscillation of first-order impulsive differential equations with advanced argument, Comput. Math. Appl., 42 (2001), 1353–1363. http://dx.doi.org/10.1016/S0898-1221(01)00245-0 doi: 10.1016/S0898-1221(01)00245-0 |
[30] | H. Zarin, On discontinuous Galerkin finite element method for singularly perturbed delay differential equations, Appl. Math. Lett., 38 (2014), 27–32. http://dx.doi.org/10.1016/j.aml.2014.06.013 doi: 10.1016/j.aml.2014.06.013 |
[31] | Z. Zheng, Theory of functional differential equations (Chinese), Hefei: Anhui Education Press, 1994. |