Processing math: 100%
Research article

Computational methods for singularly perturbed differential equations with advanced argument of convection-diffusion type

  • Received: 04 June 2024 Revised: 28 June 2024 Accepted: 16 July 2024 Published: 22 July 2024
  • MSC : 65L10, 65M15, 65N15

  • This study investigates singularly perturbed differential equations through advanced convection-diffusion techniques. We employ a finite difference approach utilizing a piecewise uniform Shishkin-type mesh to tackle this problem. Our analysis demonstrates that the approach achieves virtually first-order convergence. Error estimates are computed using discrete norms, and numerical experiments are conducted to validate these theoretical results.

    Citation: Nien-Tsu Hu, Sekar Elango, Chin-Sheng Chen, Murugesan Manigandan. Computational methods for singularly perturbed differential equations with advanced argument of convection-diffusion type[J]. AIMS Mathematics, 2024, 9(8): 22547-22564. doi: 10.3934/math.20241097

    Related Papers:

    [1] V. Raja, E. Sekar, S. Shanmuga Priya, B. Unyong . Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition. AIMS Mathematics, 2023, 8(7): 16691-16707. doi: 10.3934/math.2023853
    [2] Ram Shiromani, Carmelo Clavero . An efficient numerical method for 2D elliptic singularly perturbed systems with different magnitude parameters in the diffusion and the convection terms, part Ⅱ. AIMS Mathematics, 2024, 9(12): 35570-35598. doi: 10.3934/math.20241688
    [3] M. Chandru, T. Prabha, V. Shanthi, H. Ramos . An almost second order uniformly convergent method for a two-parameter singularly perturbed problem with a discontinuous convection coefficient and source term. AIMS Mathematics, 2024, 9(9): 24998-25027. doi: 10.3934/math.20241219
    [4] Şuayip Toprakseven, Seza Dinibutun . Error estimations of a weak Galerkin finite element method for a linear system of $ \ell\geq 2 $ coupled singularly perturbed reaction-diffusion equations in the energy and balanced norms. AIMS Mathematics, 2023, 8(7): 15427-15465. doi: 10.3934/math.2023788
    [5] Yellamma, N. Manjunatha, Umair Khan, Samia Elattar, Sayed M. Eldin, Jasgurpreet Singh Chohan, R. Sumithra, K. Sarada . Onset of triple-diffusive convective stability in the presence of a heat source and temperature gradients: An exact method. AIMS Mathematics, 2023, 8(6): 13432-13453. doi: 10.3934/math.2023681
    [6] Gwanghyun Jo, Do Y. Kwak . Immersed finite element methods for convection diffusion equations. AIMS Mathematics, 2023, 8(4): 8034-8059. doi: 10.3934/math.2023407
    [7] Yasir Nawaz, Muhammad Shoaib Arif, Kamaleldin Abodayeh, Mairaj Bibi . Finite difference schemes for time-dependent convection q-diffusion problem. AIMS Mathematics, 2022, 7(9): 16407-16421. doi: 10.3934/math.2022897
    [8] Essam R. El-Zahar, Ghaliah F. Al-Boqami, Haifa S. Al-Juaydi . Piecewise approximate analytical solutions of high-order reaction-diffusion singular perturbation problems with boundary and interior layers. AIMS Mathematics, 2024, 9(6): 15671-15698. doi: 10.3934/math.2024756
    [9] Cagnur Corekli . The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions. AIMS Mathematics, 2022, 7(4): 6711-6742. doi: 10.3934/math.2022375
    [10] Asifa Tassaddiq, Muhammad Yaseen, Aatika Yousaf, Rekha Srivastava . Computational study of the convection-diffusion equation using new cubic B-spline approximations. AIMS Mathematics, 2021, 6(5): 4370-4393. doi: 10.3934/math.2021259
  • This study investigates singularly perturbed differential equations through advanced convection-diffusion techniques. We employ a finite difference approach utilizing a piecewise uniform Shishkin-type mesh to tackle this problem. Our analysis demonstrates that the approach achieves virtually first-order convergence. Error estimates are computed using discrete norms, and numerical experiments are conducted to validate these theoretical results.



    Differential equations (DEs) with advanced arguments play an important role in physics, biological science, and economics. This type of problem depends on the future of the system of consideration, for example [6,8,9]. In [29], they investigated the oscillation and nonoscillation of the solution of impulsive DEs with advanced arguments, and these are quite uncommon in the literature. Schulman looked into the second-order nonimpulsive DEs [15] while researching an electrodynamic system,

    x(t)+wx(t)=12αx(tτ)+12βx(t+σ)+ψ(t),

    where α, β, τ>0, σ>0 are constants. When α=0, the above equation becomes

    x(t)+wx(t)=12βx(t+σ)+ψ(t),

    which is a DE with an advanced argument. DEs with advanced arguments and mixed arguments were discussed in [1,2,5,10,11,25].

    A differential equation with a small positive parameter multiplied the highest derivative term is called a singularly perturbed differential equation (SPDE) with advanced argument. Such a type of equation arises frequently in many mathematical models of various practical phenomena. For example, in [29], they discussed the oscillation of first-order impulsive DE with an advanced argument; in [17], oscillations caused by several retarded and advanced arguments, and in [18,31], singularly perturbed boundary value problems for differential-difference equations were examined.

    SPDEs for solving standard numerical methods are sometimes ill-posed problems and fail to give analytical results when the perturbation parameter ϵ is small. Hence, uniformly convergent numerical methods are used to solve such types of DEs. SPDEs with at least one delay term and unknown functions can arise with different parameters. Differential equations are important in science and engineering, as well as in various mathematical models such as the signal transition [4], first-exit problems in neurobiology [28], HIV infection models [3], variational problems in control theory [7] and human pupil-light reflex [19]. In [12,14,16,20,22,24,30], both finite difference and finite element approaches are presented to solve delayed SPDEs with minor and large shifts.

    In the past, only a few authors worked in the area of DEs with advanced arguments and also SPDEs with positive shifts. In [11], Tadeusz Jankowski proposed first-order impulsive ordinary DEs with advanced arguments; in [1], they discussed the non-oscillation of mixed advanced-delay DEs with positive and negative coefficients, and also in [2,5,10,25], various concepts of advanced arguments are investigated. Kadalbajoo and Sharma [17] proposed a finite difference scheme to solve singularly perturbed problems with mixed type; Patidar and Sharma [23] proposed a fitted operator method to solve singularly perturbed problems with mixed type.

    Lange and Miura [18] developed a mathematical model to predict the time it takes for nerve cells to generate action potentials based on random synaptic inputs in dendrites. Based on Stein's model [28], they used a Poisson distribution with exponential decay to represent inputs in their model. Additionally, they included inputs represented as a Wiener process with a variance parameter σ and a drift parameter μ.

    Given an initial membrane potential t(t1,t2), the challenge of estimating the projected first-exit time y is expressed as a general boundary value problem for a linear second-order differential-difference equation:

    σ22y(t)+(μt)y(t)+λEy(t+aE)+λIy(taI)(λE+λI)y(t)=1.

    Here, t=t1 and t=t2 represent the inhibitory reversal potential and the membrane potential threshold for action potential production, respectively. The parameters σ and μ indicate the variance and drift, respectively. The predicted first-exit time is represented by the function y, and the exponential decay between synaptic inputs is shown by the equation ty(t). The terms involving λE and λI represent excitatory and Poisson processes with mean rates λE and λI, respectively, are used to describe inhibitory synaptic inputs. These processes result in jumps in the membrane potential of tiny values that may be voltage-dependent, aE and aI, respectively.

    The boundary condition is given by

    y(t)=0,t(t1,t2).

    In their study, Lange and Miura initiated the investigation of boundary value problems (BVPs) for singularly perturbed differential-difference equations. They presented an asymptotic approach to analyze the effects of small shifts in certain simpler classes of singularly perturbed ordinary DEs.

    In [13,15,17,23,26,27], the finite difference and fitted operator methods to solve this kind of equation with a small delay and advanced. In this article, we discuss finite difference methods for SPDEs with advanced arguments.

    This work studies a fitted finite difference technique on a piecewise uniform mesh to solve a convection-diffusion problem with advanced arguments. The paper is structured as follows:

    Problem Statement: In Section 2, we present the problem statement, considering smooth data.

    Theoretical Analysis: Section 3 discusses the maximum principle, stability results, and the solution's derivative bounds.

    Numerical Method: Section 4 describes the numerical method utilized for solving the problem.

    Error Analysis: Section 5 provides the error analysis for the approximate solution obtained through the numerical method.

    Numerical Results: Section 6 presents the numerical results obtained from applying the numerical method.

    This structured approach aims to offer a thorough investigation into the numerical solution technique for the convection-diffusion problem, encompassing theoretical foundations, numerical implementation, and practical results.

    Throughout our analysis, C denotes a positive constant independent of the parameter ϵ and the number of mesh points M, and we define the open intervals Ω=(0,2), Ω=(0,1), and Ω+=(1,2). Additionally, we define Ω=ΩΩ+.

    In our analysis, we employ the supremum norm to assess the convergence between the numerical and precise solutions of a singular perturbation problem, defined as

    zΩ=suptΩ|z(t)|.

    In this paper, we investigate the following SPDEs with an advanced argument:

    {Lz(t)=ϵz(t)+p(t)z(t)+q(t)z(t)+r(t)z(t+1)=g(t),t(0,2),%z(0)=l,z(t)=ψ(t),t[2,3], (2.1)

    where ψ is a continuous function on [2,3]. For all t[0,2], it is assumed that p(t), q(t), and r(t) satisfy p(t)α1α>0, q(t)β>0, r(t)γ<0, α+γ+β>0, and β+γ>0.

    Additionally, the functions p(t), q(t), r(t), and g(t) are sufficiently smooth on [0,2].

    The assumptions mentioned above guarantee that zX=C0(ˉΩ)C1(Ω)C2(Ω).

    The problem (2.1) is equivalent to

    Lz(t)=g(t),

    where

    Lz(t)={L1z(t)=ϵz(t)+p(t)z(t)+q(t)z(t)+r(t)z(t+1),t(0,1),L2z(t)=ϵz(t)+p(t)z(t)+q(t)z(t),t(1,2), (2.2)
    g(t)={s(t),t(0,1),s(t)r(t)ψ(t+1),t(1,2), (2.3)

    with boundary condition

    {z(0)=l,z(1)=z(1+),z(1)=z(1+),z(t)=ψ(t),t[2,3].

    Lemma 3.1 (Maximum Principle). Let ζ(t) be any function in X satisfying the following conditions:

    ζ(0)0, ζ(2)0,

    L1ζ(t)0, for all tΩ,

    L2ζ(t)0, for all tΩ+,

    [ζ](1)=0, [ζ](1)0.

    Then ζ(t)0, for all tˉΩ.

    Proof. Let t be such that ζ(t)=mint[0,2]ζ(t). We assert ζ(t)0.

    Suppose ζ(t)<0.

    Case (ⅰ). If t=0, then ζ(0)<0, contradicting the assumption.

    Case (ⅱ). If t=2, then ζ(2)<0, contradicting the assumption.

    Case (ⅲ). If tΩ, then ζ(t)0. Since ζ(t) is minimum, we have

    0(L1ζ)(t)=ϵζ(t)+p(t)ζ(t)+q(t)ζ(t)+r(t)ζ(t+1)<0,

    which is a contradiction.

    Case (ⅳ). If tΩ+, then

    0(L2ζ)(t)=ϵζ(t)+p(t)ζ(t)+q(t)ζ(t)<0,

    which is also a contradiction.

    Case (ⅴ). If t=1.

    Sub-case (ⅰ). If ζ(1) does not exist, then 0 and since ζ(1)0 and ζ(1+)>0, we have ζ(1)>0, contradicting the assumption.

    Sub-case (ⅱ). If ζ(1) is differentiable, we can show that ζ(t) does not have a minimum at t=1, contradicting the premise that t=1.

    An immediate implication of Lemma 3.1 is the uniqueness of the solution to the boundary value problem (2.1), provided it exists.

    Lemma 3.2 (Stability). The solution z(t) of the problem (2.1), then satisfies the bound

    |z(t)|Cmax{|z(0)|,|z(2)|,suptΩΩ+|Lz(t)|}.

    Proof. Let G=max{|z(0)|,|z(2)|,suptΩΩ+|Lz(t)|}.

    Define Ψ±(t)=CG±z(t).

    Clearly, Ψ±(0)0, Ψ±(2)0, and also L1Ψ±(t)0 on Ω and L2Ψ±(t)0 on Ω+. Moreover [Ψ±](1)=±[z](1)=0, then Ψ±(t)0 on ˉΩ.

    Lemma 3.3. Let z(t) be the solution to (2.1). Then we have the following bounds:

    z(k)(t)Cϵk, for k=1,2,3.

    Proof. The bound on z(t) is an immediate consequence of Lemma 3.2 and the boundary value problem (2.1). To bound z(t) on the interval (0,1),

    L1z(t)=ϵz(t)+p(t)z(t)+q(t)z(t)+r(t)z(t+1)=g(t),

    the above equation integrates on both sides

    ϵ(z(t)z(0))=[p(t)z(t)a(0)z(0)]+t0a(η)z(η)dηt0[b(η)z(η)+c(η)z(η+1)]dη+t0g(η)dη.

    Therefore,

    ϵz(0)=ϵz(t)[p(t)z(t)a(0)z(0)]+t0a(η)z(η)dηt0[b(η)z(η)+c(η)z(η+1)]dt+t0g(η)dη.

    Then by the mean value theorem, η(0,ϵ) such that |ϵz(z)|C(z(t),g(t)) and |ϵz(0)|C(z(t)+g(t)). Hence, |ϵz(t)|Cmax(z(t),g(t)).

    Similarly, tΩ+. Form (2.2) and (2.3) we have z(k)(t)Cϵk,k=2,3.

    The solution's Shishkin decomposition z(t) of (2.1) is z(t)=v(t)+w(t), where the regular and singular components are denoted by v(t) and w(t), respectively, and also v(t)=v0(t)+ϵv1(t)+ϵ2v2(t) and v0(t)C0(¯Ω)C1({0}Ω), v1(t)C0(¯Ω)C1({0}Ω), v2(t)X are in turn defined, respectively, to be the solution of the following problems:

    {p(t)v0(t)+q(t)v0(t)+r(t)v0(t+1)=g(t),t{0}Ω,v0(t)=ψ(t),t[2,3]. (3.1)
    {(p(t)v1(t)+q(t)v1(t)+r(t)v1(t+1)=v0(t),t{0}Ω,%v1(t)=0,t[2,3]. (3.2)
    {ϵv2(t)+p(t)v2(t)+q(t)v2(t)+r(t)v2(t+1)=v1(t),t{0}Ω,%v2(0)=0,v2(t)=0,t[2,3]. (3.3)

    The smooth component vC0(¯Ω)C2(Ω) satisfies:

    Lv(t)=ϵv(t)+p(t)v(t)+q(t)v(t)+r(t)v(t+1)=g(t),tΩ, (3.4)
    v(0)=v0(0)+ϵv1(0), (3.5)
    v(1)=v0(1)+ϵv1(1)+ϵ2v2(1),v(t)=ψ(t),t[2,3]. (3.6)

    Further w satisfies:

    Lw(t)=ϵw(t)+p(t)w(t)+q(t)w(t)+r(t)w(t+1)=0,tΩ, (3.7)
    w(0)=lv(0),[w](1)=[v](1),w(t)=0,t[2,3]. (3.8)

    We further decompose w=wB+wI.

    Find wBX such that

    LwB(t)=ϵwB(t)+p(t)wB(t)+q(t)wB(t)+r(t)wB(t+1)=0, (3.9)
    wB(0)=lv(0),wB(t)=0,t[2,3]. (3.10)

    Find wIC0(¯Ω)C2(Ω) such that

    LwI(t)=ϵwI(t)+p(t)wI(t)+q(t)wI(t)+r(t)wI(t+1)=0, (3.11)
    wI(0)=0,[wI](1)=[v](1),wI(t)=0,t[2,3], (3.12)

    where the functions wB and wI are the boundary layer component and interior layer component, respectively.

    Theorem 3.1. Let z be the continuous solution of the problem (2.1), and v0(t) be the solution of the reduced problem solution defined by Eq (3.1). Then,

    |z(t)v0(t)|C1(ϵ+exp(α(2t)ϵ)),t[0,2].

    Proof. Consider the barrier function

    Φ±(t)=C1(ϵ+exp(α(2t)ϵ))±(z(t)v0(t)),t[0,2],

    clearly Φ±C0(¯Ω)C2(Ω). It is not too hard to verify, Φ±(0)0, Φ±(2)0 for a suitable choice of C1>0. Let t(0,1),

    L1Φ±(t)=C1([αϵ(p(t)α)+q(t)+r(t)exp(αϵ)]exp(α(2t)ϵ)+ϵ(q(t)+r(t)))±ϵv0(t),C1(αϵ(α1α)+β+γexp(αϵ))exp(α(2t)ϵ)+ϵ(β+γ))±Cϵ.

    Similarly, t(1,2), L2Φ±(t)0, by the Lemma 3.1, Φ±(t)0,t[0,2].

    Lemma 3.4. Let v and w represent the regular and singular components of the solution z. Then,

    vk(t)ΩC(1+ϵ2k), fork=0,1,2,3, (3.13)
    |wkB(t)|Cϵkexp(α(2t)ϵ),tΩ,k=0,1,2,3, (3.14)
    |wkI(t)|C{ϵ1kexp(α(1t)ϵ),t(0,1),ϵ1k,t(1,2),k=0,1,2,3. (3.15)

    Proof. With the integration of (3.1), (3.3), and the stability result, one can prove the inequality (3.13). To prove the inequalities (3.14), consider the function

    Φ±(t)=C1(exp(α(2t)ϵ))±wB(t),t[0,2].

    It is easy to see that Φ±(0)0 and Φ±(2)0. Further, if LΦ±(t)=C1([αϵ(p(t)α)+q(t)+r(t)exp(αϵ)]exp(α(2t)ϵ)±LwB0, then, by Lemma 3.1, we have the desired result. Integration of (3.9) yields the estimates of |wB(t)|. From the DEs (3.9), one can derive the rest of the derivatives estimates (3.14). Using the above Theorem 3.1, the barrier function t[0,1],

    Φ±(t)=C1ϵ(exp(α(1t)ϵ))±wI(t),

    one can prove the desired result. Similarly, using the following barrier function t[1,2]:

    Φ±(t)=C1tϵ±wI(t),

    and using the two theorem one can prove the remaining result.

    Note. From the above theorem,

    |z(t)v(t)|C{ϵexp(α(1t)ϵ)+exp(α(2t)ϵ),t(0,1),ϵ+exp(α(2t)ϵ),t(1,2). (3.16)

    The boundary value problem (2.1) demonstrates significant boundary layers at t=2, prominent interior layers at t=1.

    A piecewise uniform Shishkin mesh is in the interval [0,1]=[0,1σ][1σ,1], where σ is the transition point.

    Similarly, [1,2]=[1,2σ][2σ,2].

    The transition parameter σ for this mesh is defined by

    σ=min{12,2ϵαlnM}.

    The mesh ˉΩM={t0,t1,,tM} is defined by

    t0=0,tj=t0+jH,j=1 to M4,tj+M4=tM4+jh,j=1 to M4,tj+M2=tM2+jH,j=1 to M4,tj+3M4=t3M4+jh,j=1 to M4,

    where h=4σM and H=4(1σ)M.

    The discrete scheme corresponding to the original problem (2.1) is as follows: for j = 1, 2, ..., M21,

    LM1Zj=ϵδ2Z(tj)+p(tj)DZ(tj)+q(tj)Z(tj)+r(tj)z(tj+tM2)=gj. (4.1)

    For j = M2+1, ..., M1,

    LM2Zj=ϵδ2Z(tj)+p(tj)DZ(tj)+q(tj)Z(tj)=gjr(tj)ψ(tj+tM2), (4.2)

    subject to the boundary condition:

    Z(t0)=l,DZM2=D+ZM2,Z(tM)=ψ(2). (4.3)

    Lemma 4.1 (Discrete Maximum Principle). The mesh function Ψj satisfies Ψ00, and ΨM0. Then LM1Ψj0, j = 1, 2, ..., M21, LM2Ψj0, j = M2+1, ..., M1 and D+(ΨM2)D(ΨM2)0 imply that Ψj0, j=0,1,2...,M.

    Proof. Let j{0,1,,M} be such that

    Ψ(tj)=minjΨ(tj)

    and suppose that Ψ(tj)<0. This implies that j{0,M}, as it is given that Ψ(t0)0 and Ψ(tM)0. Also, we have the following conditions:

    LM1Ψ(tj)<0,j{1,2,,M21},
    LM2Ψ(tj)<0,j{M2+1,,M1},
    D+Ψ(tM2)DΨ(tM2)>0.

    We assume Ψ(tj)<0 and show this leads to a contradiction. Since j is the index where Ψ(tj) attains its minimum and Ψ(tj)<0, the following case must be true:

    Case 1. j{1,2,,M21}.

    In this case,

    LM1Ψ(tj)<0.

    Case 2. j{M2+1,,M1}.

    In this case,

    LM2Ψ(tj)<0.

    However, there is an intermediate point, tM2 for which

    D+Ψ(tM2)DΨ(tM2)>0.

    If j=M2, this leads to a contradiction because, at tM2, the given condition on the derivatives implies Ψ(tM2) is increasing. Hence, Ψ(tM2) cannot be the minimum if it were less than zero.

    Combining these conditions, we find a contradiction to the assumption that Ψ(tj)<0. Therefore, our initial assumption must be wrong. This implies that Ψ(tj)0.

    Hence,

    Ψ(tj)0,j=1,2,,M.

    Thus, the function Ψ is non-negative at all mesh points.

    Lemma 4.2. Let Ψ(tj) be any mesh function, then for 0jM, it satisfies

    |Ψ(tj)|Cmax{|Ψ(t0)|,|Ψ(tM)|,maxjˉΩM{0,M2,M}|LMΨ(tj)|,0jM.

    Proof. Consider the barrier functions

    θ±(tj)=GC±Ψ(tj),0jM,

    where

    G=max{|Ψ(t0)|,|Ψ(tM)|,maxjˉΩM{0,M2,M}|LMΨ(tj)|}.

    It is clear that θ±(t0)0 and θ±(tM)0,

    LM1θ±(tj)0,j{1,2,...,M21},LM2θ±(tj)0,j{M2+1,...,M1},D+θ±(tM2)Dθ±(tM2)=0.

    Using Lemma 4.1, θ±(tj)0, 0jM.

    To determine the estimated error for the numerical solution, we disassemble the discrete solution Z into two components: ˜V and ˜W. These components are characterized as the solutions to the subsequent discrete equations. The separation of Z(tj) is detailed below:

    Z(tj)=˜V(tj)+˜W(tj),

    wherein ˜V(tj) and ˜W(tj) are in compliance with the discrete differential equations as follows:

    LM˜V(tj)=ϵδ2˜V(tj)+p(tj)D˜V(tj)+q(tj)˜V(tj)+r(tj)˜V(tj+tM2)=gj,jˉΩM{0,M2,M}, (5.1)
    ˜V(t0)=v(0),[D]˜V(tM2)=[v](1),˜V(tM)=v(2). (5.2)
    LM˜W(tj)=ϵδ2˜W(tj)+p(tj)D˜W(tj)+q(tj)˜W(tj)+r(tj)˜W(tj+tM2)=gj,jˉΩM{0,M2,M}, (5.3)
    ˜W(t0)=w(0),[D]˜W(tM2)=[D]˜V(tM2),˜W(tM)=w(2). (5.4)

    Theorem 5.1. Let Z(tj) be a numerical solution (2.1) defined by (4.1)–(4.3) and ˜V(tj) be a numerical solution of (3.4)–(3.6) defined by (5.1) and (5.2). Then

    |Z(tj)˜V(tj)|C{M1,j=0,1,...,3M4,M1+|l˜V(tM)|,j=3M4+1,...,M.

    Proof. Consider the barrier function

    θ±(tj)=C1M1+C1tjΨ(tj)±(Z(tj)˜V(tj)),j=1,2,...,M,Ψ(tj)={0,j=0,1,...,3M4,|l˜V(tM)|,j=3M4+1,...,M,

    it is clear that θ±(t0)0 and θ±(tM)0.

    Now, j{1,2,...,M21}

    LM1θ±(tj)=C1[q(t)+r(t)]+C1Ψ(tj)[p(tj)+q(tj)tj+r(tj)tj+M2],C1[β+γ]0.

    Similarly, LM2θ±(tj)0,j{M2+1,...,M1}, and [D]+θ±(tM2)=±[v](1)=0 by Lemma 4.1, Hence the theorem.

    Theorem 5.2. Let ˜V(tj) be a numerical solution of (3.4)–(3.6) defined by (5.1) and (5.2). Then

    |v(tj)˜V(tj)|CM1,jˉΩM.

    Proof. If j=1,2,...,M21 and j=M2+1,...,M1 by [21],

    |LM(v(tj)˜V(tj))|CM1,jˉΩM{0,M2,M}.

    Then, by Lemma 4.2, we have

    |v(tj)˜V(tj)|CM1,jˉΩM.

    Theorem 5.3. Let ˜W(tj) be a numerical solution of (3.7) and (3.8) defined by (5.3) and (5.4). Then

    |w(tj)˜W(tj)|CM1log2M,jˉΩM.

    Proof. Note that

    |w(tj)˜W(tj)||z(tj)Z(tj)|+|v(tj)˜V(tj)|.

    Then, by (3.16), Theorems 3.1 and 5.2, we have

    |z(tj)Z(tj)||z(tj)˜V(tj)|+|v(tj)˜V(tj)|+|Z(tj)v(tj)|.

    Therefore

    |w(tj)˜W(tj)||z(tj)Z(tj)|+|v(tj)˜V(tj)|,C1exp(α(2t)ϵ)+C1M1,C1exp(ασϵ)+C1M1CM1,j=0to3M4. (5.5)

    Now consider a mesh function ψ±(tj), tj[2σ,2]ˉΩM

    ψ±(tj)=C1M1+C1M1σϵ2(tj(2σ))±(w(tj)˜W(tj)).

    From (5.5), it is clear that ψ±(t3M4)0 and ψ±(tM)0 for a suitable choice of C1>0.

    LMψ±(tj)=C1M1[q(tj)+r(tj)]+C1M1σϵ2[p(tj)+q(tj)(tj+σ2)+c(tj)(tj+M2+σ2)]±(LML)w(tj),C1M1[β+γ]+C1M1σϵ2[α+β(tj+σ2)+γ(tj+M2+σ2)],±CM1ϵ2,0.

    Then, by Lemma 5.1, we have ψ±(tj)0,tjˉΩM. Therefore

    |w(tj)˜W(tj)|CM1log2M,jˉΩM.

    Theorem 5.4. Let Z(tj) be the numerical solution of (2.1) defined by (4.1)–(4.3). Then

    |z(tj)Z(tj)|CM1log2M,jˉΩM.

    Proof. The described estimate is derived from the fact that z(tj)=v(tj)+w(tj), Z(tj)=˜V(tj)+˜W(tj), and from the above Theorems 5.2 and 5.3.

    In this section, we present a practical illustration to elucidate the computational technique previously discussed. Due to the absence of a known exact solution for the trial problem, we adopt the strategy of double meshing to gauge the error and deduce the experimental convergence rate as it approaches the solution we have calculated. To accomplish this, we define the term

    DMϵ=ZMεZ2Mε.

    Here, ZMε and Z2Mε denote the numerical solutions' ith elements on meshes sized M and 2M, respectively. Subsequently, we determine the uniform error and the convergence rate using the expressions

    DM=maxϵDMϵandpM=log2(DMD2M).

    The computed findings for the ensuing example are reported for various values of the perturbation parameter ϵ, which range from 25 to 220.

    Example 6.1.

    ϵz(t)+3z(t)+z(t)z(t+1)=1,fortΩ,z(0)=1,z(2)=1fort[2,3].

    Example 6.2.

    ϵz(t)+(t+1)z(t)+(t+10)z(t)z(t+1)=1,forΩ,z(0)=1,z(2)=1fort[2,3].

    Example 6.3.

    ϵz(t)+5z(t)+z(t)z(t+1)=sin(t),forΩ,z(0)=1,z(2)=1fort[2,3].

    Further, Table 1 shows the maximum pointwise error and the rate of convergence of Example 6.1. Similarly, Tables 2 and 3 also show the convergence rate and maximum pointwise error of Examples 6.2 and 6.3, respectively.

    Table 1.  The peak pointwise discrepancies DMϵ, calculated ϵ-uniform inaccuracies DM, as well as the ϵ-uniform convergence indices pM for Example 6.1 are displayed.
    The mesh consists of M discrete points
    ϵ 64 128 256 512 1024 2048 4096
    25 7.7487e-04 3.9296e-04 1.9787e-04 9.9286e-05 4.9730e-05 2.4887e-05 1.2449e-05
    26 1.7662e-03 3.9758e-04 2.0019e-04 1.0045e-04 5.0314e-05 2.5179e-05 1.2595e-05
    27 3.6065e-03 1.5800e-03 6.9656e-04 1.3838e-04 5.0609e-05 2.5326e-05 1.2669e-05
    28 4.4255e-03 2.0647e-03 9.6861e-04 4.6510e-04 2.3481e-04 1.2905e-04 7.4156e-05
    29 5.0047e-03 2.4079e-03 1.1613e-03 5.6770e-04 2.8558e-04 1.5105e-04 8.6211e-05
    210 5.4142e-03 2.6507e-03 1.2978e-03 6.4037e-04 3.2156e-04 1.6666e-04 9.0893e-05
    211 5.7037e-03 2.8224e-03 1.3944e-03 6.9182e-04 3.4704e-04 1.7771e-04 9.4215e-05
    212 5.9084e-03 2.9439e-03 1.4627e-03 7.2823e-04 3.6508e-04 1.8554e-04 9.6571e-05
    213 6.0531e-03 3.0299e-03 1.5110e-03 7.5399e-04 3.7784e-04 1.9109e-04 9.8240e-05
    214 6.1555e-03 3.0906e-03 1.5452e-03 7.7221e-04 3.8687e-04 1.9501e-04 9.9422e-05
    215 6.2278e-03 3.1336e-03 1.5694e-03 7.8509e-04 3.9326e-04 1.9778e-04 1.0025e-04
    216 6.2790e-03 3.1640e-03 1.5865e-03 7.9421e-04 3.9777e-04 1.9974e-04 1.0085e-04
    217 6.3151e-03 3.1855e-03 1.5986e-03 8.0065e-04 4.0097e-04 2.0113e-04 1.0126e-04
    218 6.3407e-03 3.2007e-03 1.6071e-03 8.0521e-04 4.0323e-04 2.0211e-04 1.0156e-04
    219 6.3588e-03 3.2114e-03 1.6132e-03 8.0844e-04 4.0483e-04 2.0281e-04 1.0177e-04
    220 6.3716e-03 3.2190e-03 1.6175e-03 8.1072e-04 4.0596e-04 2.0330e-04 1.0192e-04
    DM 6.3716e-03 3.2190e-03 1.6175e-03 8.1072e-04 4.0596e-04 2.0330e-04 1.0192e-04
    PM 9.8503e-01 9.9284e-01 9.9650e-01 9.9786e-01 9.9770e-01 9.9615e-01

     | Show Table
    DownLoad: CSV
    Table 2.  The peak pointwise discrepancies DMϵ, calculated ϵ-uniform inaccuracies DM, as well as the ϵ-uniform convergence indices pM for Example 6.2 are displayed.
    The mesh consists of M discrete points
    ϵ 64 128 256 512 1024 2048 4096
    25 2.9341e-03 1.4748e-03 7.3956e-04 3.7034e-04 1.8532e-04 9.2710e-05 4.6392e-05
    26 2.7635e-03 1.5099e-03 7.5762e-04 3.7951e-04 1.8993e-04 9.5012e-05 4.7517e-05
    27 3.4882e-03 1.6428e-03 7.6249e-04 3.7116e-04 1.9236e-04 9.6233e-05 4.8129e-05
    28 3.8626e-03 1.8753e-03 8.9832e-04 4.2750e-04 2.0239e-04 9.5354e-05 4.4441e-05
    29 4.1205e-03 2.0375e-03 9.9516e-04 4.8293e-04 2.3354e-04 1.1263e-04 5.4179e-05
    210 4.3150e-03 2.1509e-03 1.0622e-03 5.2192e-04 2.5568e-04 1.2496e-04 6.0966e-05
    211 4.4306e-03 2.2351e-03 1.1109e-03 5.4983e-04 2.7136e-04 1.3372e-04 6.5799e-05
    212 4.5214e-03 2.2892e-03 1.1445e-03 5.6995e-04 2.8255e-04 1.3991e-04 6.9228e-05
    213 4.5932e-03 2.3276e-03 1.1708e-03 5.8393e-04 2.9048e-04 1.4432e-04 7.1659e-05
    214 4.6449e-03 2.3569e-03 1.1860e-03 5.9332e-04 2.9602e-04 1.4743e-04 7.3378e-05
    215 4.6819e-03 2.3787e-03 1.1977e-03 6.0071e-04 3.0002e-04 1.4965e-04 7.4597e-05
    216 4.7082e-03 2.3947e-03 1.2065e-03 6.0525e-04 3.0274e-04 1.5120e-04 7.5460e-05
    217 4.7270e-03 2.4061e-03 1.2129e-03 6.0868e-04 3.0480e-04 1.5232e-04 7.6071e-05
    218 4.7403e-03 2.4142e-03 1.2176e-03 6.1122e-04 3.0611e-04 1.5309e-04 7.6501e-05
    219 4.7497e-03 2.4200e-03 1.2210e-03 6.1307e-04 3.0709e-04 1.5366e-04 7.6810e-05
    220 4.7565e-03 2.4241e-03 1.2234e-03 6.1440e-04 3.0781e-04 1.5403e-04 7.7025e-05
    DM 4.7565e-03 2.4241e-03 1.2234e-03 6.1440e-04 3.0781e-04 1.5403e-04 7.7025e-05
    PM 9.7241e-01 9.8656e-01 9.9365e-01 9.9714e-01 9.9881e-01 9.9982e-01

     | Show Table
    DownLoad: CSV
    Table 3.  The peak pointwise discrepancies DMϵ, calculated ϵ-uniform inaccuracies DM, as well as the ϵ-uniform convergence indices pM for Example 6.3 are displayed.
    The mesh consists of M discrete points
    ϵ 64 128 256 512 1024 2048 4096
    25 1.5484e-03 7.7246e-04 3.8576e-04 1.9276e-04 9.6351e-05 4.8167e-05 2.4082e-05
    26 1.3089e-03 7.7983e-04 3.8946e-04 1.9461e-04 9.7276e-05 4.8630e-05 2.4313e-05
    27 1.2494e-03 6.0207e-04 3.0507e-04 1.8652e-04 9.7745e-05 4.8865e-05 2.4430e-05
    28 1.4689e-03 6.8861e-04 3.1979e-04 1.5342e-04 7.5776e-05 3.7442e-05 1.8578e-05
    29 1.6116e-03 7.7631e-04 3.7170e-04 1.7714e-04 8.3992e-05 3.9567e-05 1.8835e-05
    210 1.7061e-03 8.3477e-04 4.0652e-04 1.9734e-04 9.5507e-05 4.6052e-05 2.2087e-05
    211 1.7696e-03 8.7421e-04 4.3009e-04 2.1106e-04 1.0336e-04 5.0498e-05 2.4589e-05
    212 1.8129e-03 9.0113e-04 4.4620e-04 2.2045e-04 1.0874e-04 5.3554e-05 2.6316e-05
    213 1.8426e-03 9.1967e-04 4.5729e-04 2.2692e-04 1.1245e-04 5.5664e-05 2.7510e-05
    214 1.8632e-03 9.3252e-04 4.6499e-04 2.3141e-04 1.1503e-04 5.7130e-05 2.8341e-05
    215 1.8776e-03 9.4148e-04 4.7035e-04 2.3454e-04 1.1683e-04 5.8151e-05 2.8920e-05
    216 1.8877e-03 9.4775e-04 4.7411e-04 2.3673e-04 1.1809e-04 5.8866e-05 2.9325e-05
    217 1.8947e-03 9.5215e-04 4.7674e-04 2.3827e-04 1.1897e-04 5.9368e-05 2.9610e-05
    218 1.8997e-03 9.5525e-04 4.7860e-04 2.3935e-04 1.1959e-04 5.9721e-05 2.9810e-05
    219 1.9032e-03 9.5743e-04 4.7990e-04 2.4011e-04 1.2003e-04 5.9970e-05 2.9951e-05
    220 1.9056e-03 9.5897e-04 4.8083e-04 2.4065e-04 1.2033e-04 6.0145e-05 3.0050e-05
    DM 1.9056e-03 9.5894e-04 4.8083e-04 2.4065e-04 1.2033e-04 6.0145e-05 3.0050e-05
    PM 9.9074e-01 9.9596e-01 9.9855e-01 9.9986e-01 1.0005e+00 1.0010e+00

     | Show Table
    DownLoad: CSV

    This study has delved into the analysis of SPDEs utilizing advanced convection-diffusion techniques. By employing a finite difference method with a piecewise Shishkin-type mesh, we have demonstrated the effectiveness of our approach, achieving nearly first-order convergence. Furthermore, error estimates have been obtained using discrete norms, and numerical experiments have been conducted to corroborate the theoretical findings. Overall, our investigation highlights the efficacy of the proposed methodology for accurately solving SPDEs.

    Nien-Tsu Hu: Funding acquisition, Formal analysis and Validation; Sekar Elango: Writing original draft, Methodology and Proof of conclusion; Chin-Sheng Chen: Writing review and Editing; Murugesan Manigandan: Validation and Writing review. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was jointly supported by Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors from the Ministry of Education in Taiwan (L7131101-19).

    The authors declare no conflicts of interest in this paper.



    [1] L. Berezansky, E. Braverman, S. Pinelas, On nonoscillation of mixed advanced-delay 58 (2009), 766–775. http://dx.doi.org/10.1016/j.camwa.2009.04.010
    [2] J. Caballero, B. Lopez, K. Sadarangani, Existence of nondecreasing and continuous solutions of an integral equation with linear modification of the argument, Acta Math. Sinica, 23 (2007), 1719–1728. http://dx.doi.org/10.1007/s10114-007-0956-2 doi: 10.1007/s10114-007-0956-2
    [3] R. Culshaw, S. Ruan, A delay differential equation model of HIV infection of CD4+ T-cells, Math. Biosci., 165 (2000), 27–39. http://dx.doi.org/10.1016/S0025-5564(00)00006-7 doi: 10.1016/S0025-5564(00)00006-7
    [4] E. Els'gol'ts, Qualitative methods in mathematical analysis, In: Translations of mathematical monographs, Providence: American Mathematical Society, 1964.
    [5] L. Erbe, Q. Kong, B. Zhang, Oscillation theory for functional differential equations, New York: Routledge, 1995. http://dx.doi.org/10.1201/9780203744727
    [6] S. Elango, L. Govindarao, J. Mohapatra, R. Vadivel, N. Hu, Numerical analysis for second order differential equation of reaction-diffusion problems in viscoelasticity, Alex. Eng. J., 92 (2024), 92–101. http://dx.doi.org/10.1016/j.aej.2024.02.046 doi: 10.1016/j.aej.2024.02.046
    [7] V. Glizer, Asymptotic analysis and solution of a finite-horizon H control problem for sigularly perturbed linear systems with small state delay, J. Optimiz. Theory Appl., 117 (2003), 295–325. http://dx.doi.org/10.1023/A:1023631706975 doi: 10.1023/A:1023631706975
    [8] L. Govindarao, H. Ramos, S. Elango, Numerical scheme for singularly perturbed Fredholm integro-differential equations with non-local boundary conditions, Comp. Appl. Math., 43 (2024), 126. http://dx.doi.org/10.1007/s40314-024-02636-3 doi: 10.1007/s40314-024-02636-3
    [9] L. Govindarao, E. Sekar, B-spline method for second order RLC closed series circuit with small inductance value, J. Phys.: Conf. Ser., 2646 (2023), 012039. http://dx.doi.org/10.1088/1742-6596/2646/1/012039 doi: 10.1088/1742-6596/2646/1/012039
    [10] I. Gyori, G. Ladas, Oscillation theory of delay differential equation with applications, Oxford: Oxford Academic, 1991. http://dx.doi.org/10.1093/oso/9780198535829.001.0001
    [11] T. Jankowski, First-order impulsive ordinary differential equations with advanced arguments, J. Math. Anal. Appl., 331 (2007), 1–12. http://dx.doi.org/10.1016/j.jmaa.2006.07.108 doi: 10.1016/j.jmaa.2006.07.108
    [12] M. Kadalbajoo, D. Kumar, Fitted mesh B-spline collocation method for singularly perturbed differential equations with small delay, Appl. Math. Comput., 204 (2008), 90–98. http://dx.doi.org/10.1016/j.amc.2008.05.140 doi: 10.1016/j.amc.2008.05.140
    [13] M. Kadalbajoo, K. Sharma, Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type, J. Optimiz. Theory Appl., 115 (2002), 145–163. http://dx.doi.org/10.1023/A:1019681130824 doi: 10.1023/A:1019681130824
    [14] M. Kadalbajoo, K. Sharma, Numerical treatment of boundary value problems for second order singularly perturbed delay differential equations, Comput. Appl. Math., 24 (2005), 151–172. http://dx.doi.org/10.1590/S0101-82052005000200001 doi: 10.1590/S0101-82052005000200001
    [15] M. Kadalbajoo, K. Sharma, Numerical treatment of a mathematical model arising from a model of neuronal variability, J. Math. Anal. Appl., 307 (2005), 606–627. http://dx.doi.org/10.1016/j.jmaa.2005.02.014 doi: 10.1016/j.jmaa.2005.02.014
    [16] M. Kadalbajoo, K. Sharma, Parameter-Uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior, Electron. Trans. Numer. Anal., 23 (2006), 180–201.
    [17] M. Kadalbajoo, K. Sharma, ϵ-Uniform fitted mesh method for singularly perturbed differential-difference equations mixed type of shifts with layer behavior, Int. J. Comput. Math., 81 (2004), 49–62. http://dx.doi.org/10.1080/00207160310001606052 doi: 10.1080/00207160310001606052
    [18] C. Lange, R. Miura, Singularly perturbation analysis of boundary-value problems for differential-difference equations, SIAM J. Appl. Math., 42 (1982), 502–531. http://dx.doi.org/10.1137/0142036 doi: 10.1137/0142036
    [19] A. Longtin, J. Milton, Complex oscillations in the human pupil light reflex with mixed and delayed feedback, Math. Biosci., 90 (1988), 183–199. http://dx.doi.org/10.1016/0025-5564(88)90064-8 doi: 10.1016/0025-5564(88)90064-8
    [20] R. Mahendran, V. Subburayan, Fitted finite difference method for third order singularly perturbed delay differential equations of convection diffusion type, Int. J. Comp. Meth., 16 (2019), 1840007. http://dx.doi.org/10.1142/S0219876218400078 doi: 10.1142/S0219876218400078
    [21] J. Miller, E. O'Riordan, G. Shishkin, Fitted numerical methods for singular perturbation problems, Singapore: World Scientific Publishing Co., 1996.
    [22] S. Nicaise, C. Xenophontos, Robust approximation of singularly perturbed delay differential equations by the hp finite element method, Comput. Meth. Appl. Math., 13 (2013), 21–37. http://dx.doi.org/10.1515/cmam-2012-0001 doi: 10.1515/cmam-2012-0001
    [23] K. Patidar, K. Sharma, Uniformly convergent non-standard finite difference methods for singularly perturbed differential-difference equations with delay and advance, Int. J. Numer. Meth. Eng., 66 (2006), 272–296. http://dx.doi.org/10.1002/nme.1555 doi: 10.1002/nme.1555
    [24] P. Selvi, N. Ramanujam, An iterative numerical method for singularly perturbed reaction-diffusion equations with negative shift, J. Comput. Appl. Math., 296 (2016), 10–23. http://dx.doi.org/10.1016/j.cam.2015.09.003 doi: 10.1016/j.cam.2015.09.003
    [25] S. Shah, J. Wiener, Advanced differential equation with piecewise constant argument derivations, Internat. J. Math. Sci., 6 (1983), 671–703.
    [26] E. Sekar, A. Tamilselvan, Singularly perturbed delay differential equations of convection-diffusion type with integral boundary condition, J. Appl. Math. Comput., 59 (2019), 701–722. http://dx.doi.org/10.1007/s12190-018-1198-4 doi: 10.1007/s12190-018-1198-4
    [27] E. Sekar, Second order singularly perturbed delay differential equations with non-local boundary condition, J. Comput. Appl. Math., 417 (2023), 114498. http://dx.doi.org/10.1016/j.cam.2022.114498 doi: 10.1016/j.cam.2022.114498
    [28] R. Stein, Some models of neuronal variability, Biophys. J., 7 (1967), 37–68. http://dx.doi.org/10.1016/S0006-3495(67)86574-3 doi: 10.1016/S0006-3495(67)86574-3
    [29] J. Yan, Oscillation of first-order impulsive differential equations with advanced argument, Comput. Math. Appl., 42 (2001), 1353–1363. http://dx.doi.org/10.1016/S0898-1221(01)00245-0 doi: 10.1016/S0898-1221(01)00245-0
    [30] H. Zarin, On discontinuous Galerkin finite element method for singularly perturbed delay differential equations, Appl. Math. Lett., 38 (2014), 27–32. http://dx.doi.org/10.1016/j.aml.2014.06.013 doi: 10.1016/j.aml.2014.06.013
    [31] Z. Zheng, Theory of functional differential equations (Chinese), Hefei: Anhui Education Press, 1994.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(892) PDF downloads(63) Cited by(0)

Figures and Tables

Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog