This work is the continuation of [
Citation: Ram Shiromani, Carmelo Clavero. An efficient numerical method for 2D elliptic singularly perturbed systems with different magnitude parameters in the diffusion and the convection terms, part Ⅱ[J]. AIMS Mathematics, 2024, 9(12): 35570-35598. doi: 10.3934/math.20241688
This work is the continuation of [
[1] | K. Aarthika, V. Shanthi, H. Ramos, A computational approach for a two-parameter singularly perturbed system of partial differential equations with discontinuous coefficients, Appl. Math. Comput., 434 (2022), 127409. https://doi.org/10.1016/j.amc.2022.127409 doi: 10.1016/j.amc.2022.127409 |
[2] | G. I. Barenblatt, I. P. Zheltov, L. N. Kochin, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286–1303. https://doi.org/10.1016/0021-8928(60)90107-6 doi: 10.1016/0021-8928(60)90107-6 |
[3] | P. Bhathawala, A. Verma, A two-parameter singularly perturbation solution of one dimension flow unstaurated prorous media, Appl. Math., 43 (1975), 380–384. https://doi.org/10.1119/1.9844 doi: 10.1119/1.9844 |
[4] | Z. Cen, Parameter-uniform finite difference scheme for a system of coupled singularly perturbed convection-diffusion equations, J. Syst. Sci. Complex., 18 (2005), 498–510. |
[5] | J. Chen, J. R. O'Malley, On the asymptotic solution of a two-parameter boundary value problem of chemical reactor theory, SIAM J. Appl. Math., 26 (1974), 91–112. https://doi.org/10.1016/S0168-9274(98)00014-2 doi: 10.1016/S0168-9274(98)00014-2 |
[6] | C. Clavero, J. C. Jorge, F. Lisbona, G. I. Shishkin, A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems, Appl. Num. Math., 27 (1998), 211–231. https://doi.org/10.1016/S0168-9274(98)00014-2 doi: 10.1016/S0168-9274(98)00014-2 |
[7] | C. Clavero, J. C. Jorge, An efficient numerical method for singularly perturbed time dependent parabolic 2D convection-diffusion systems, J. Comput. Appl. Math., 354 (2019), 431–444. https://doi.org/10.1016/j.cam.2018.10.033 doi: 10.1016/j.cam.2018.10.033 |
[8] | C. Clavero, J. C. Jorge, A splitting uniformly convergent method for one-dimensional parabolic singularly perturbed convection-diffusion systems, Appl. Num. Math., 183 (2023), 317–332. https://doi.org/10.1016/j.apnum.2022.09.012 doi: 10.1016/j.apnum.2022.09.012 |
[9] | C. Clavero, R. Shiromani, V. Shanthi, A numerical approach for a two-parameter singularly perturbed weakly-coupled system of 2D elliptic convection-reaction-diffusion PDEs, J. Comput. Appl. Math., 434 (2024), 115422. https://doi.org/10.1016/j.cam.2023.115422 doi: 10.1016/j.cam.2023.115422 |
[10] | C. Clavero, R. Shiromani, V. Shanthi, A computational approach for 2D elliptic singularly perturbed weakly-coupled systems of convection-diffusion type with multiple scales and parameters in the diffusion and the convection terms, Math. Meth. Appl. Sci., (2024), 1–32. https://doi.org/10.1002/mma.10204 |
[11] | C. Clavero, R. Shiromani, An efficient numerical method for 2D elliptic singularly perturbed systems with different magnitude parameters in the diffusion and the convection terms, unpblished work. |
[12] | P. L. Farrell, A. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Robust computational techniques for boundary layers, CRC Press (2000). |
[13] | L. Govindarao, J. Mohapatra, S. R. Sahu, Uniformly convergent numerical method for singularly perturbed two parameter time delay parabolic problem, Int. J. Appl. Comput. Math. 5 (2019). https://doi.org/10.1007/s40819-019-0672-5 |
[14] | L. Govindarao, S.R. Sahu, J. Mohapatra, Uniformly convergent numerical method for singularly perturbed two parameter time delay parabolic problem with two small parameter, Iran. J. Sci. Technol. T. A, 43 (2019), 2373–2383. https://doi.org/10.1007/s40995-019-00697-2 doi: 10.1007/s40995-019-00697-2 |
[15] | H. Hang, R. B. Kellogg, Differentiability properties of solutions of the equation $-\varepsilon^2 \Delta u+ r u = f(x, y)$ in a square, SIAM J. Math. Anal., 21 (1990), 394–408. https://doi.org/10.1137/0521022 doi: 10.1137/0521022 |
[16] | Y. Kan-On, M. Mimura, Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics, SIAM J. Math. Anal., 29 (1998), 1519–1536. https://doi.org/10.1137/S0036141097318328 doi: 10.1137/S0036141097318328 |
[17] | O. Ladyzhenskaya, N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968). |
[18] | T. Linss, M. Stynes, Asymptotic analysis and Shishkin-type decomposition for an elliptic convection–diffusion problem, J. Math. Anal. Appl., 261 (2001), 604–632. https://doi.org/10.1006/jmaa.2001.7550 doi: 10.1006/jmaa.2001.7550 |
[19] | T. Linss, The necessity of Shishkin decompositions, Appl. Math. Lett., 14 (2001), 891–896. https://doi.org/10.1016/S0893-9659(01)00061-1 doi: 10.1016/S0893-9659(01)00061-1 |
[20] | T. Linss, M. Stynes, Numerical solution of systems of singularly perturbed differential equations, Comput. Meth. Appl. Math., 9 (2009), 165–191. https://doi.org/10.2478/cmam-2009-0010 doi: 10.2478/cmam-2009-0010 |
[21] | L. B. Liu, G. Long, Y. Zhang, Parameter uniform numerical method for a system of two coupled singularly perturbed parabolic convection-diffusion equations, Adv. Diff. Equat., 450 (2018). https://doi.org/10.1186/s13662–018–1907–13 |
[22] | S. Nagarajan, A parameter robust fitted mesh finite difference method for a system of two reaction-convection-diffusion equations, Appl. Num. Math., 179 (2022), 87–104. https://doi.org/10.1016/j.apnum.2022.04.017 doi: 10.1016/j.apnum.2022.04.017 |
[23] | E. O'Riordan, M. Pickett, G. I. Shishkin, Numerical methods for singularly perturbed elliptic problems containing two perturbation parameters, Math. Model. Anal., 11 (2006), 199–212. https://doi.org/10.3846/13926292.2006.9637313 doi: 10.3846/13926292.2006.9637313 |
[24] | E. O'Riordan, M. Pickett, A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem, Adv. Comput. Math., 35 (2011), 57–82. https://doi.org/10.1007/s10444-010-9164-1 doi: 10.1007/s10444-010-9164-1 |
[25] | S. Priyadarshana, J. Mohapatra, S. R. Pattaniak, Parameter uniform optimmal order numerical approximations for time-delayed parabolic convection diffusion problems involving two small parameters, Comput. Appl. Math., 41 (2022). https://doi.org/10.1007/s40314-022-01928-w |
[26] | R. M. Priyadharshini, N. Ramanujam, A. Tamilsevan, Hybrid difference schemes for a system of singularly perturbed convection-diffusion equations, J. Appl. Math. Inform., 27 (2009), 1001–1015. |
[27] | H. Schlichting, K. Gersten, Boundary layer theory, Springer (2016). https://doi.org/10.1007/978-3-662-52919-5 |
[28] | M. K. Singh, S. Natesan, Numerical analysis of singularly perturbed system of parabolic convection-diffusion problem with regular boundary layers, Diff. Equat. Dyn. Syst., (2019). https://doi.org/10.1007/s12591-019-00462-2 |
[29] | M. K. Singh, S. Natesan, A parameter-uniform hybrid finite difference schme for singularly perturbed system of parabolic convection-diffusion problems, Int. J. Comput. Math., 97 (2020), 875–903. https://doi.org/10.1080/00207160.2019.1597972 doi: 10.1080/00207160.2019.1597972 |
[30] | G. P. Thomas, Towards an improved turbulence model for wave-current interactions, 2nd Annual Report to EU MAST-III Project The Kinematics and Dynamics of Wave-Current Interactions (1998). |