This paper outlined the advantages of the k-visibility algorithm proposed in [
Citation: Sergio Iglesias-Perez, Alberto Partida, Regino Criado. The advantages of k-visibility: A comparative analysis of several time series clustering algorithms[J]. AIMS Mathematics, 2024, 9(12): 35551-35569. doi: 10.3934/math.20241687
This paper outlined the advantages of the k-visibility algorithm proposed in [
[1] | S. Iglesias-Perez, R. Criado, Temporal metagraph: A new mathematical approach to capture temporal dependencies and interactions between different entities over time, Chaos Soliton Fract., 175 (2023), 113940. http://dx.doi.org/10.1016/j.chaos.2023.113940 doi: 10.1016/j.chaos.2023.113940 |
[2] | S. Iglesias-Perez, R. Criado, Increasing the effectiveness of network intrusion detection systems (NIDSs) by using multiplex networks and visibility graphs, Mathematics, 11 (2023), 107. http://dx.doi.org/10.3390/math11010107 doi: 10.3390/math11010107 |
[3] | L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J. C. Nuno, From time series to complex networks: The visibility graph, Proc. Natl. Acad. Sci. USA, 105 (2008), 4972–4975. http://dx.doi.org/10.1073/pnas.0709247105 doi: 10.1073/pnas.0709247105 |
[4] | A. Partida, R. Criado, M. Romance, Visibility graph analysis of IOTA and IoTeX price series: An intentional risk-based strategy to use 5G for IoT, Electronics, 10 (2021), 2282. https://doi.org/10.3390/electronics10182282 doi: 10.3390/electronics10182282 |
[5] | J. Lopes, P. Pinto, A. Partida, A. Pinto, Use of visibility graphs for the early detection of DoS attacks, In: 2024 IEEE international conference on cyber security and resilience (CSR), 2024,101–106. https://doi.org/10.1109/CSR61664.2024.10679430 |
[6] | B. Luque, L. Lacasa, F. Ballesteros, J. Luque, Horizontal visibility graphs: Exact results for random time series, Phys. Rev. E, 80 (2009), 046103. http://dx.doi.org/10.1103/PhysRevE.80.046103 doi: 10.1103/PhysRevE.80.046103 |
[7] | G. Liu, L. Li, L. Zhang, Q. Li, S. S. Law, Sensor faults classification for SHM systems using deep learning-based method with Tsfresh features, Smart Mater. Struct., 29 (2020), 075005. https://doi.org/10.1088/1361-665X/ab85a6 doi: 10.1088/1361-665X/ab85a6 |
[8] | S. Aghabozorgi, A. S. Shirkhorshidi, T. Y. Wah, Time-series clustering–a decade review, Inform. Syst., 53 (2015), 16–38. http://dx.doi.org/10.1016/j.is.2015.04.007 doi: 10.1016/j.is.2015.04.007 |
[9] | T. W. Liao, Clustering of time series data—a survey, Pattern Recognit., 38 (2005), 1857–1874. http://dx.doi.org/10.1016/j.patcog.2005.01.025 doi: 10.1016/j.patcog.2005.01.025 |
[10] | S. Fröhwirth-Schnatter, S. Kaufmann, Model-based clustering of multiple time series, J. Bus. Econ. Stat., 26 (2004), 78–89. |
[11] | C. Bouveyron, J. Jacques, Model-based clustering of time series in group-specific functional subspaces, Adv. Data Anal. Classif., 5 (2011), 281–300. https://doi.org/10.1007/s11634-011-0095-6 doi: 10.1007/s11634-011-0095-6 |
[12] | C. Pamminger, S. Frühwirth-Schnatter, Model-based clustering of categorical time series, Bayesian Anal., 5 (2010), 345–368. https://doi.org/10.1214/10-BA606 doi: 10.1214/10-BA606 |
[13] | M. Christ, N. Braun, J. Neuffer, A. W. Kempa-Liehr, Time series feature extraction on basis of scalable hypothesis tests (tsfresh–a python package), Neurocomputing, 307 (2018), 72–77. http://dx.doi.org/10.1016/j.neucom.2018.03.067 doi: 10.1016/j.neucom.2018.03.067 |
[14] | D. J. Berndt, J. Clifford, Using dynamic time warping to find patterns in time series, In: Proceedings of the 3rd international conference on knowledge discovery and data mining, 1994,359–370. |
[15] | A. Partida, R. Criado, M. Romance, Identity and access management resilience against intentional risk for blockchain-based IOT platforms, Electronics, 10 (2021), 378. https://doi.org/10.3390/electronics10040378 doi: 10.3390/electronics10040378 |
[16] | R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz, et al., Tslearn, a machine learning toolkit for time series data, J. Mach. Learn. Res., 21 (2020), 1–6. |
[17] | I. S. Dhillon, Y. Guan, B. Kulis, Kernel k-means: Spectral clustering and normalized cuts, In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining, 2004,551–556. http://dx.doi.org/10.1145/1014052.1014118 |
[18] | J. Paparrizos, L. Gravano, k-shape: Efficient and accurate clustering of time series, In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, 2015, 1855–1870. http://dx.doi.org/10.1145/2723372.2737793 |
[19] | S. Iglesias-Pérez, S. Moral-Rubio, R. Criado, A new approach to combine multiplex networks and time series attributes: Building intrusion detection systems (IDS) in cybersecurity, Chaos Soliton Fract., 150 (2021), 111143. https://doi.org/10.1016/j.chaos.2021.111143 doi: 10.1016/j.chaos.2021.111143 |
[20] | S. Iglesias-Pérez, S. Moral-Rubio, R. Criado, Combining multiplex networks and time series: A new way to optimize real estate forecasting in New York using cab rides, Physica A, 609 (2023), 128306. https://doi.org/10.1016/j.physa.2022.128306 doi: 10.1016/j.physa.2022.128306 |
[21] | H. A. Dau, A. Bagnall, K. Kamgar, C. C. Michael Yeh, Y. Zhu, S. Gharghabi, et al., The UCR time series archive, IEEE/CAA J. Autom. Sin., 6 (2019), 1293–1305. http://dx.doi.org/10.1109/JAS.2019.1911747 doi: 10.1109/JAS.2019.1911747 |
[22] | M. J. Warrens, H. van der Hoef, Understanding the adjusted rand index and other partition comparison indices based on counting object pairs, J. Classif., 39 (2022), 487–509. https://doi.org/10.1007/s00357-022-09413-z doi: 10.1007/s00357-022-09413-z |
[23] | P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20 (1987), 53–65. https://doi.org/10.1016/0377-0427(87)90125-7 |