This work introduces a novel control framework using the Caputo fractional derivative (CFD) with respect to another function—a derivative that has not been thoroughly treated in control theory. By extending the widely recognized Caputo-Hadamard (CH) fractional-order derivative, we address its utility in nonlinear systems. The core of our contribution is the practical stability for systems governed by this derivative, which ensures convergence toward a bounded region around the origin. Additionally, we extend the Lipschitz condition (LC) to the one-sided Lipschitz (OSL) condition for observer design and observer based-control design in fractional-order systems, ensuring its practical stability. Finally, three numerical examples validate the effectiveness of our proposed framework, providing practical insights for control theory advancements.
Citation: Kareem Alanazi, Omar Naifar, Raouf Fakhfakh, Abdellatif Ben Makhlouf. Innovative observer design for nonlinear systems using Caputo fractional derivative with respect to another function[J]. AIMS Mathematics, 2024, 9(12): 35533-35550. doi: 10.3934/math.20241686
This work introduces a novel control framework using the Caputo fractional derivative (CFD) with respect to another function—a derivative that has not been thoroughly treated in control theory. By extending the widely recognized Caputo-Hadamard (CH) fractional-order derivative, we address its utility in nonlinear systems. The core of our contribution is the practical stability for systems governed by this derivative, which ensures convergence toward a bounded region around the origin. Additionally, we extend the Lipschitz condition (LC) to the one-sided Lipschitz (OSL) condition for observer design and observer based-control design in fractional-order systems, ensuring its practical stability. Finally, three numerical examples validate the effectiveness of our proposed framework, providing practical insights for control theory advancements.
[1] | O. Naifar, A. B. Makhlouf, Fractional order systems--control theory and applications, Berlin Germany: Springer International Publishing, 2022. https://doi.org/10.1007/978-3-030-71446-8 |
[2] | O. Naifar, A. Jmal, A. B. Makhlouf, Non-fragile H∞ observer for Lipschitz conformable fractional-order systems, Asian J. Control, 24 (2022), 2202–2212. https://doi.org/10.1002/asjc.2626 doi: 10.1002/asjc.2626 |
[3] | A. Jmal, O. Naifar, A. B. Makhlouf, N. Derbel, M. A. Hammami, Adaptive estimation of component faults and actuator faults for nonlinear one-sided Lipschitz systems, Int. J. Robust Nonlin., 30 (2020), 1021–1034. https://doi.org/0.1002/rnc.4808 |
[4] | R. Kandula, R. S. Jain, S. Kandula, S. Reddy, Pharmacokinetic consideration to formulate sustained release drugs: Understanding the controlled drug diffusion through the body compartment of the systemic circulation and tissue medium-A Caputo model, Baghdad Sci. J., 20 (2023), 0249–0249. https://doi.org/10.21123/bsj.2023.8395 doi: 10.21123/bsj.2023.8395 |
[5] | E. A. Mohamed, M. Aly, M. Watanabe, New tilt fractional-order integral derivative with fractional filter (TFOIDFF) controller with artificial hummingbird optimizer for LFC in renewable energy power grids, Mathematics, 10 (2022), 3006. https://doi.org/10.3390/math10163006 doi: 10.3390/math10163006 |
[6] | O. Naifar, A. B. Makhlouf, Synchronization of mutual coupled fractional order one-sided Lipschitz systems, Integration, 80 (2021), 41–45. https://doi.org/10.1016/j.vlsi.2021.04.008. doi: 10.1016/j.vlsi.2021.04.008 |
[7] | T. Abdeljawad, F. Madjidi, F. Jarad, N. Sene, On dynamic systems in the frame of singular function dependent kernel fractional derivatives, Mathematics, 7 (2019), 946. https://doi.org/10.3390/math7100946 doi: 10.3390/math7100946 |
[8] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/0.1016/j.cnsns.2016.09.006 |
[9] | N. Echi, F. Mabrouk, Observer based control for practical stabilization of one-sided Lipschitz nonlinear systems, Rocky Mt. J. Math., 54 (2024), 109–120. https://doi.org/10.1216/rmj.2024.54.109 doi: 10.1216/rmj.2024.54.109 |
[10] | H. Damak, M. A. Hammami, R. Heni, Input-to-state practical stability criteria of non-autonomous infinite-dimensional systems, J. Control Decision, 11 (2024), 190–200. https://doi.org/10.1080/23307706.2023.2169779 doi: 10.1080/23307706.2023.2169779 |
[11] | M. Rhaima, L. Mchiri, A. B. Makhlouf, J. Sallay, Practical stability of stochastic functional differential equations with infinite delay, Asian J. Control, 26 (2024), 1057–1067. https://doi.org/10.1002/asjc.3243 doi: 10.1002/asjc.3243 |
[12] | W. Ma, B. Yang, Y. Zheng, Practical exponential stability of impulsive stochastic functional differential systems with distributed-delay dependent impulses, Nonlinear Anal.-Hybri., 51 (2024), 101424. https://doi.org/10.1016/j.nahs.2023.101424 doi: 10.1016/j.nahs.2023.101424 |
[13] | Z. Liu, P. Gao, C. Wei, Practical exponential stability of uncertain nonlinear delayed urban traffic systems, Eng. Let., 32 (2024). |
[14] | R. Issaoui, O. Naifar, M. Tlija, L. Mchiri, A. B. Makhlouf, Practical stability of observer-based control for nonlinear Caputo-Hadamard fractional-order systems, Fractal Fract., 8 (2024), 531. https://doi.org/10.3390/fractalfract8090531 doi: 10.3390/fractalfract8090531 |
[15] | A. O. M. Alsharif, A. Jmal, O. Naifar, A. B. Makhlouf, M. Rhaima, L. Mchiri, Unknown input observer scheme for a class of nonlinear generalized proportional fractional order systems, Symmetry, 15 (2023), 1233. https://doi.org/10.3390/sym15061233 doi: 10.3390/sym15061233 |
[16] | A. O. M. Alsharif, A. Jmal, O. Naifar, A. B. Makhlouf, M. Rhaima, L. Mchiri, State feedback controller design for a class of generalized proportional fractional order nonlinear systems, Symmetry, 15 (2023), 1168. https://doi.org/10.3390/sym15061168 doi: 10.3390/sym15061168 |
[17] | P. L. Lions, B. Seeger, Transport equations and flows with one-sided Lipschitz velocity fields, Arch. Ration. Mech. An., 248 (2024), 86. |
[18] | H. Gassara, I. I. Ammar, A. B. Makhlouf, L. Mchiri, M. Rhaima, Design of polynomial observer-based control of fractional-order power systems, Mathematics, 11 (2023), 4450. https://doi.org/10.3390/math11214450 doi: 10.3390/math11214450 |
[19] | S. Vlase, M. Marin, M. L. Scutaru, R. Munteanu, Coupled transverse and torsional vibrations in a mechanical system with two identical beams, AIP Adv., 7 (2017). https://doi.org/10.1063/1.4985271 doi: 10.1063/1.4985271 |
[20] | M. Marin, A. Öchsner, M. M. Bhatti, Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies, ZAMM-J. Appl. Math. Mech., 100 (2020), e202000090. https://doi.org/10.1002/zamm.202000090 doi: 10.1002/zamm.202000090 |
[21] | S. Vlase, C. Năstac, M. Marin, M. Mihălcică, A method for the study of the vibration of mechanical bars systems with symmetries, Acta Tech. Napoc. Ser., 60 (2017). |
[22] | J. Zhang, D. Yang, H. Zhang, Y. Wang, B. Zhou, Dynamic event-based tracking control of boiler turbine systems with guaranteed performance, IEEE T. Autom. Sci. Eng., 21 (2024), 4272–4282. https://doi.org/10.1109/TASE.2023.3294187 doi: 10.1109/TASE.2023.3294187 |