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Abstract: This work introduces a novel control framework using the Caputo fractional derivative (CFD) 

with respect to another function—a derivative that has not been thoroughly treated in control theory. 

By extending the widely recognized Caputo-Hadamard (CH) fractional-order derivative, we address 

its utility in nonlinear systems. The core of our contribution is the practical stability for systems 

governed by this derivative, which ensures convergence toward a bounded region around the origin. 

Additionally, we extend the Lipschitz condition (LC) to the one-sided Lipschitz (OSL) condition for 

observer design and observer based-control design in fractional-order systems, ensuring its practical 

stability. Finally, three numerical examples validate the effectiveness of our proposed framework, 

providing practical insights for control theory advancements. 
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1. Introduction 

In recent years, fractional calculus has gained considerable attention due to its enhanced 

capability to model and control complex dynamic systems more accurately than traditional 

integer-order derivatives. The Caputo fractional derivative has been extensively applied in fields that 

require modeling complex dynamic behaviors. For instance, in viscoelasticity, fractional derivatives 

capture the stress-strain relationship by incorporating time-dependent memory effects [1–3]. In 

biomedical applications, fractional calculus models physiological processes where past states 

influence current dynamics, as seen in cardiac tissue modeling and drug delivery systems [4]. The 

Caputo fractional derivative with respect to another function builds upon this utility by allowing 

systems to be defined in terms of an auxiliary function, which can be tailored to specific application 

requirements. This adaptability is crucial for applications where growth rates or system dynamics vary 

nonlinearly over time, such as in renewable energy management, where this approach enables 

enhanced stability in power grids under fluctuating loads [5]. These fields benefit from fractional 

derivatives due to their ability to incorporate historical data into system dynamics, enhancing accuracy 

in scenarios where memory effects are significant. Within control theory, the use of fractional 

derivatives has been proven advantageous in observer-based control designs. Previous studies have 

used Caputo derivatives to improve system performance by ensuring stability and error convergence 

under disturbances [6]. However, for complex nonlinear systems, obtaining accurate state information 

is crucial for ensuring stability, performance, and robustness in control. Observers serve this purpose 

by estimating the internal states of a system based on available outputs, which is especially important 

when direct measurements are impractical or noisy. Designing fractional-order observers for nonlinear 

systems provides a more adaptive and robust estimation framework, capturing the memory and 

hereditary effects inherent in fractional dynamics. This study aims to advance observer design by 

leveraging fractional-order calculus to improve estimation accuracy and stability in nonlinear systems. 

Traditionally, the Caputo derivative has been used in its standard form, which depends on the time 

variable. A recent advance in fractional calculus is the Caputo fractional derivative with respect to 

another function, which generalizes the classical Caputo derivative by incorporating an additional 

function into its definition. This derivative offers a broader framework for modeling complex systems 

by allowing greater flexibility in selecting the governing function, making it suitable for systems with 

non-uniform time scales or nonlinear growth rates. Despite its theoretical potential, this derivative 

remains underexplored in control theory, particularly in observer design and stability analysis [7,8]. 

The Caputo fractional derivative is specifically chosen in this study due to several distinct 

advantages that make it well-suited for control applications, particularly in observer design for 

nonlinear systems. Here are the primary reasons for selecting the Caputo derivative: 

 Compatibility with initial conditions: Unlike other fractional derivatives, such as the 

Riemann-Liouville derivative, the Caputo fractional derivative allows initial conditions to be 

specified in terms of classical integer-order derivatives. This compatibility simplifies the practical 

application of fractional calculus in control systems, where initial conditions are typically known 

and easier to set in classical terms. 

 Memory effects: Fractional derivatives are known for their ability to model memory and hereditary 

properties of dynamic systems. The Caputo derivative, in particular, is advantageous in systems 

where past states impact current dynamics, such as in systems with memory, delays, or feedback 

loops. This property is especially useful in nonlinear systems where state history influences 

behavior, improving estimation accuracy in observer design. 
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 Flexibility with respect to another function**: This study leverages the Caputo fractional 

derivative with respect to another function, an extension that generalizes the Caputo derivative. 

This extension allows for even greater flexibility by enabling system dynamics to depend on an 

auxiliary function, making it applicable to systems with non-uniform time scales or nonlinear 

growth rates. This adaptability is important for real-world control systems that exhibit varying 

dynamics over time. 

 Enhanced robustness for observer design**: The Caputo derivative’s ability to capture fractional 

dynamics enhances robustness in the observer design process, particularly under disturbances or 

uncertainties. By incorporating fractional-order dynamics, observers can provide more accurate state 

estimations for nonlinear systems, which is crucial for achieving stability and control objectives. 

The Caputo fractional derivative with respect to another function offers significant flexibility by 

allowing the derivative’s evolution to depend on a secondary function rather than strictly the time 

variable. This feature is advantageous for modeling systems with non-uniform time scales or nonlinear 

growth rates, as it enables the model to mirror variable dynamics that would otherwise be challenging 

for standard fractional derivatives. For instance, in systems where changes do not progress 

uniformly—such as biological processes that vary with environmental conditions or economic models 

with fluctuating growth rates—this approach allows for a more accurate representation by selecting an 

auxiliary function that reflects these unique dynamics. This added adaptability enhances the 

derivative’s capacity to capture complex behaviors in real-world systems, making it particularly useful 

in control and estimation applications for nonlinear and memory-dependent systems. 

On the other hand, the concept of practical stability has become important in control theory to 

address the limitations of classical stability definitions. Classical stability requires system solutions to 

converge exactly to an equilibrium point. However, in many real-world scenarios, exact convergence 

is neither feasible nor necessary. Instead, it is sufficient for system solutions to remain within a small, 

bounded region around the equilibrium, especially in the presence of external disturbances or model 

uncertainties. Practical stability offers a more realistic approach to control by ensuring that system 

trajectories converge to a neighborhood of the desired point rather than requiring precise 

convergence [9–12]. This makes practical stability particularly suitable for applications such as 

robotics, where systems are subject to external forces, or in industrial control processes, where 

environmental disturbances are common. In this work, we extend the notion of practical stability to 

systems governed by the Caputo fractional derivative with respect to another function, providing a 

novel framework that enhances robustness in nonlinear systems. 

Conversely, the one-side Lipschitz (OSL) condition has been extensively utilized in control 

theory to ensure the stability of nonlinear systems. The OSL condition facilitates the design of stable 

observers even in the presence of system nonlinearities [13–17]. In this paper, we extend the OSL 

condition to fractional-order systems by incorporating the Caputo fractional derivative with respect to 

another function. This extension is significant, as fractional-order systems exhibit different stability 

properties compared to their integer-order counterparts. Our extended OSL condition guarantees that 

the error between the actual state and the estimated state converges to a ball centered at the origin. This 

advance represents a substantial improvement in the design of fractional-order observers, providing a 

new stability criterion that is both more flexible and robust than existing methods. 

Our proposed methodology, which integrates the Caputo fractional derivative with respect to 

another function, provides a more comprehensive and adaptable framework for controlling nonlinear 

systems. By extending the OSL condition and introducing practical stability criteria, we offer an 

innovative solution that is both resilient to disturbances and adaptable to diverse system dynamics. The 

theoretical approach presented in this paper, which applies Caputo fractional-order derivatives with 
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respect to another function, represents a significant advancement in control theory with potential 

applications in various engineering fields. For instance, in robotics, this method can enhance stability 

and performance in dynamic environments, while in boiler turbine systems [22], it can be used to 

develop dynamic event-based tracking control strategies with guaranteed performance. Additionally, 

in energy management systems, our approach can optimize the performance of renewable energy 

sources, improving the stability and efficiency of the power grid. In biomedical engineering, it can 

ensure practical stability in drug delivery mechanisms and physiological control systems, maintaining 

desired therapeutic outcomes despite biological variability. Furthermore, in aerospace and automotive 

systems, the proposed methodologies can provide robust and precise control under uncertain 

conditions, enhancing safety and reliability. The implementation of these results into real-world 

applications is a future perspective, and we plan to collaborate with industry partners and researchers 

to develop practical implementations and validate the effectiveness of our theoretical findings in 

real-world settings. 

While our work builds upon established concepts in fractional calculus and control theory, it 

introduces several novel contributions that advance the field. We have clearly delineated these 

contributions to highlight the scientific value of our research: 

1. Novel application of Caputo derivatives with respect to another function: This paper is the 

first to apply the Caputo fractional derivative with respect to another function in the context of 

control theory. This generalization of the classical Caputo derivative allows for greater 

flexibility in modeling systems with non-uniform time scales and nonlinear growth rates, which 

has not been thoroughly explored in previous works. 

2. Introduction of practical stability for nonlinear systems: We extend the concept of practical 

stability to systems governed by the Caputo fractional derivative with respect to another 

function. This extension provides a more realistic approach to stability analysis, ensuring that 

system solutions remain within a bounded region around the equilibrium point, which is crucial 

for real-world applications. 

3. Extension of the one-sided Lipschitz (OSL) condition: Our work extends the OSL condition to 

fractional-order systems by incorporating the Caputo fractional derivative with respect to 

another function. This new stability criterion facilitates the design of stable observers and 

controllers for nonlinear systems, enhancing their robustness and adaptability. 

4. Development of observer and controller design methodologies: We propose novel observer 

and controller design methodologies for fractional-order systems that satisfy the extended OSL 

condition. These methodologies provide a comprehensive framework for ensuring practical 

stability and robust performance in the presence of disturbances and model uncertainties. 

5. Validation through numerical examples: The theoretical advancements are substantiated 

through detailed numerical examples that simulate real-world scenarios. These examples 

demonstrate the effectiveness of the proposed observer and controller designs, providing 

practical insights and validating the theoretical findings. 

The remainder of this paper is organized as follows: Section 2 provides the necessary 

preliminaries and foundational concepts. In Section 3, we delve into the observer design for Lipschitz 

fractional-order systems. Section 4 extends the discussion to observer design for systems satisfying the 

OSL and quasi-OSL conditions. Section 5 focuses on the implementation of observer-based control 

strategies. Finally, Section 6 presents illustrative examples to validate the effectiveness of the proposed 

methodologies. 
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2. Preliminaries 

In this part, some preliminaries are presented [7,8].  

Definition 1. Let 𝛿 ∈  𝐶1[𝑡0, 𝑏]. The fractional integral w.r.t. 𝛿 of a function z is expressed by: 

𝐼𝑡0,𝑡
𝑟,𝛿 𝑧(𝑡) =

1

Γ(𝑟)
∫ (𝛿(𝑡) − 𝛿(𝑠))

𝑟−1𝑡

𝑡0
𝛿′(𝑠)𝑧(𝑠)𝑑𝑠, 𝑓𝑜𝑟 𝑡 ∈ (𝑡0, 𝑏],    (1) 

where 𝑧 is a locally integrable function and 𝑟 > 0 is the order of the integral. 
Definition 2. Let 𝛿 ∈  𝐶1[𝑡0, 𝑏]. The CDF w.r.t. 𝛿 of a function z of order 0 < 𝑟 < 1 is given by: 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑧(𝑡) =

1

Γ(1−𝑟)
∫ (𝛿(𝑡) − 𝛿(𝑠))−𝑟𝑡

𝑡0
𝑧′(𝑠)𝑑𝑠, 𝑓𝑜𝑟 𝑡0 ∈ (1, 𝑏],    (2) 

where z is an absolutely continuous function. 

Lemma 1. Let R be a matrix in a manner that 𝑅 = 𝑅𝑇 > 0. Then, 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑧𝑇𝑅𝑧(𝑡) ≤ 2𝑧𝑇(𝑡)𝑅 𝐷𝑡0,𝑡

𝑟,𝛿𝐶 𝑧(𝑡),      (3) 

where 0 <  𝑟 < 1. 

Definition 3. The following 𝐸𝛼(𝑧) function:  

𝐸𝛼(𝑧) = ∑
𝑧𝑘

Γ(1+𝑘𝛼)
∞
𝑘=0    𝑎𝑛𝑑 𝐸𝛼,𝛽(𝑧) = ∑

𝑧𝑘

Γ(𝛽+𝑘𝛼)
∞
𝑘=0 , 𝛼 > 0, 𝛽 > 0.   (4) 

Named: “the Mittag-Leffler (ML) functions”.  

Consider the system:  

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑧(𝑡) = 𝜓(𝑧, 𝑡) for 𝑡 ≥ 1, 𝑟 𝜖 (0,1].      (5) 

Definition 4. Assume that 𝑚 is a locally Lipschitz function. System (5) is said to be practically 

stable if ∃ 𝜇, 𝛾 > 0 and 𝑟 ≥ 0 in a manner that ∀ 𝑧(·) of (5), the inequality  

‖𝑧(𝑡)‖ ≤ (𝑚(‖(𝑧(1)‖) 𝐸𝛼(−𝜇  (𝛿(𝑡) − 𝛿(𝑡0))𝛼))
𝛾

+ 𝑟 , 𝑡 ≥ 𝑡0 

is verified, with 𝑚(𝑠) ≥ 0, 𝑚(0) = 0. 

In our case study, the nonlinear system using Caputo derivatives with respect to another 

function is given by: 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑧(𝑡) = 𝐴𝑧 + 𝐵𝑢 + 𝑓(𝑧, 𝑢) + 𝐵𝜀(𝑡), 𝑡 ≥ 𝑡0, 

𝑦 = 𝐶𝑧,            (6) 

with 𝑓𝜖 𝐶(𝑅𝑛 × 𝑅𝑚, 𝑅𝑛) , 𝑧 𝜖 𝑅𝑛, 𝑢 𝜖 𝑅𝑚, 𝑦 𝜖 𝑅𝑞, 𝜀: [1, ∞) → 𝑅𝑚,𝐴 𝜖 𝑅𝑛×𝑛 , 𝐵 𝜖 𝑅𝑛×𝑚, 

𝐶 𝜖 𝑅𝑞×𝑛 . We have 𝑓(0, 𝑢) = 0.  

Remark 2.1. The motivation for considering system (6) stems from the need to address the 

complexities inherent in nonlinear dynamic systems, particularly those exhibiting non-uniform time 

scales and nonlinear growth rates. Traditional integer-order models often fall short of accurately 

capturing the dynamics of such systems, especially when historical influences play a significant role. 

System (6) leverages the Caputo fractional derivative with respect to another function, which 

provides a more flexible and comprehensive framework for modeling and control. This derivative 

allows for the incorporation of an additional function into the derivative’s definition, enabling the 

modeling of systems with varying time scales and growth rates more effectively. The specific form of 

system (6) is chosen to illustrate the practical applicability of the proposed observer and controller 
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design methodologies. By incorporating the Caputo fractional derivative with respect to another 

function, we can extend the classical stability and observer design techniques to a broader class of 

systems. This extension is crucial for applications in fields such as robotics, autonomous systems, 

and industrial process control, where robustness and adaptability to disturbances are paramount. 

Assumption 1. 𝜀 is a continuous function that satisfies  

 ∥ 𝜀(𝑡) ∥≤ 𝐶𝜀(𝑡),   𝑡 ≥ 𝑡0, 

where 𝜀 is an unknown disturbance and 𝛿𝜀 is a continuous function in a manner that:  

𝑔𝑙(𝑡) = ∫(𝛿(𝑡) − 𝛿(𝑠))
𝑟−1

𝑡

𝑡0

𝛿′(𝑠) 𝐸𝑟,𝑟(−𝑙 (𝛿(𝑡) − 𝛿(𝑠))𝛼 ) 𝐶𝜀
2(𝑠)𝑑𝑠 

is a bounded function for some l>0. 

3. Observer design for Lipschitz fractional-order systems with respect to another function 

In this part, we present the findings pertaining to the observer design for systems where the 

nonlinear component satisfies the Lipschitz condition.  

Assumption 2. The pair (A, C) is observable and ∃ 𝜃 > 0 in a manner that:  

−𝜃𝑆 − 𝐴𝑇𝑆 − 𝑆𝐴 + 𝐶𝑇𝐶 = 0,        (7) 

with 𝑆𝑇 = 𝑆 > 0. 

Definition 5. 𝑓(𝑥, 𝑢) is said to be a Lipschitz function, indicating that ∃ 𝑚 > 0 in a manner that 

∀ 𝑧1, 𝑧2 ∈ 𝑹𝑛, 𝑢 ∈ 𝑹𝑚:   

‖𝑓(𝑧1, 𝑢) − 𝑓(𝑧2, 𝑢)‖  ≤ 𝑚‖𝑧1 − 𝑧2‖,      (8) 

where 𝑟 is the Lipschitz constant and f is a continuous function. 

Based on the system outlined in Eq (5), we suggest the following observer based on Caputo 

derivatives with respect to another function to estimate the state: 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 �̂�(𝑡) = 𝐴�̂� + 𝐵𝑢 + 𝑓(�̂�, 𝑢) − 𝛽𝑆−1𝐶𝑇(𝐶�̂� − 𝑦), 𝑡 ≥ 𝑡0,    (9) 

with 𝛽 ≥ 1. 
Theorem 3.1. If condition (8) is verified and Assumption 2 is fulfilled, and if Assumption 1 is met for 

l=𝜆𝑚𝑖𝑛(𝜃𝑆 + (2𝛽 − 1)𝐶𝑇𝐶) − 2𝑚𝜆𝑚𝑎𝑥(𝑆) − 𝜂 > 0,     (10) 

with 𝜂 > 0, consequently, the origin of the error system between the actual state of the system 

described in Eq (5) and the estimated states produced by the observer in Eq (9) is practically stable. 

Proof. One supposes 

𝑒 = �̂� − 𝑧. 

Then,  

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑒(𝑡) = 𝐴�̂� + 𝐵𝑢 + 𝑓(�̂�, 𝑢) − 𝛽𝑆−1𝐶𝑇(𝐶�̂� − 𝑦) − 𝐴𝑧 − 𝐵𝑢 − 𝑓(𝑧, 𝑢) − 𝐵𝜀(𝑡) 

= (𝐴 − 𝛽𝑆−1𝐶𝑇𝐶)𝑒 + 𝛥𝑓 − 𝐵𝜀(𝑡),                      

where 𝛥𝑓 = 𝑓(�̂�, 𝑢) − 𝑓(𝑧, 𝑢). One supposes: 
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𝑉(𝑒) = 𝑒𝑇𝑆𝑒. 

Based on Lemma 1 and substituting the error dynamics into the Lyapunov function derivative, 

we get: 

  𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ 2𝑒𝑇(𝑡)𝑆 𝐷𝑡0,𝑡

𝛼𝐶 𝑒(𝑡),                        ∀𝑡 ≥ 𝑡0,

≤ [𝑒𝑇(𝐴 − 𝛽𝑆−1𝐶𝑇𝐶)𝑇 + 𝛥𝑓𝑇]𝑆𝑒 + 𝑒𝑇𝑆[(𝐴 − 𝛽𝑆−1𝐶𝑇𝐶)𝑒 + 𝛥𝑓] − 2𝑒𝑇𝑆𝐵𝜀(𝑡)

≤ 𝑒𝑇[(𝐴 − 𝛽𝑆−1𝐶𝑇𝐶)𝑇𝑆 + 𝑆(𝐴 − 𝛽𝑆−1𝐶𝑇𝐶)]𝑒 + 2𝑒𝑇𝑆𝛥𝑓 − 2𝑒𝑇𝑆𝐵𝜀(𝑡)

≤ 𝑒𝑇(𝐴𝑇𝑆 − 2𝛽𝐶𝑇𝐶 + 𝑆𝐴)𝑒 + 2𝑒𝑇𝑆𝛥𝑓 − 2𝑒𝑇𝑆𝐵𝜀(𝑡). 

We have 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝜃𝑒𝑇𝑆𝑒 + (1 − 2𝛽)𝑒𝑇𝐶𝑇𝐶𝑒 + 2𝑒𝑇𝑆𝛥𝑓 − 2𝑒𝑇𝑆𝐵𝜀(𝑡). 

And so 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝜃𝑒𝑇𝑆𝑒 + (1 − 2𝛽)𝑒𝑇𝐶𝑇𝐶𝑒 + 2‖𝑒‖‖𝑆‖‖𝛥𝑓‖ + 2‖𝑆‖‖𝐵‖‖𝜀(𝑡)‖‖𝑒‖. 

Using the Lipschitz condition, we have 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝜃𝑒𝑇𝑆𝑒 + (1 − 2𝛽)𝑒𝑇𝐶𝑇𝐶𝑒 + 2𝑚‖𝑒‖2‖𝑆‖ + 2‖𝑆‖‖𝐵‖‖𝜀(𝑡)‖‖𝑒‖. 

Using Assumption 1, we deduce that 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝜃𝑒𝑇𝑆𝑒 + (1 − 2𝛽)𝑒𝑇𝐶𝑇𝐶𝑒 + 2𝑚‖𝑒‖2‖𝑆‖ + 2𝐶𝜀(𝑡)‖𝑆‖‖𝐵‖‖𝑒‖. 

Let 𝜇(𝑡) = 𝐶𝜀(𝑡) ∥ 𝑆 ∥∥ 𝐵 ∥. Using the fact that  

2𝜇(𝑡) ∥ 𝑒 ∥≤
𝜇2(t)

𝜂
+ 𝜂 ∥ 𝑒 ∥2. 

Then using (8), one can have 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝜆𝑚𝑖𝑛(𝜃𝑆 + (2𝛽 − 1)𝐶𝑇𝐶)‖𝑒‖2 + 2 𝑚 𝜆𝑚𝑎𝑥(𝑆)‖𝑒‖2 +

𝜇2(t)

𝜂
+ 𝜂 ∥ 𝑒 ∥2. 

For practical stability, we require: 𝜆𝑚𝑖𝑛(𝜃𝑆 + (2𝛽 − 1)𝐶𝑇𝐶) − 2𝑚𝜆𝑚𝑎𝑥(𝑆) − 𝜂 > 0. 

Thus, if (10) is fulfilled, we have 𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝑙‖𝑒‖2 +

𝜇2(t)

𝜂
.  

Analogous to the demonstration of [18, Proposition 3.1], the result of Theorem 3.1 is reached.  

Below is the observer-based Caputo derivatives with respect to another function design 

algorithm for Lipschitz systems: 

Input: System matrices 𝐴, 𝐵, 𝐶 disturbance function 𝜀(𝑡)  

 Step 1: Check the Lipschitz condition, ensure 𝑓(𝑧, 𝑢) satisfies the Lipschitz constant 𝑚.  

 Step 2: Solve the matrix inequality in Theorem 3.1 to find 𝑆. 

 Step 3: Design the observer using Eq (4) with feedback gain based on 𝛽.  

Output: Estimated state �̂�.  
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4. Observer design for one-sided Lipschitz and quasi-one-sided Lipschitz fractional-order 

systems with respect to another function 

In this section, we present the findings pertaining to the observer design for systems where the 

nonlinear component satisfies the one-sided Lipschitz (OSL) condition and the quasi-one-sided 

Lipschitz (quasi-OSL) condition.  

Definition 6. 𝑓(𝑧, 𝑢) is said to be OSL in 𝑹𝑛, that is to say ∀  𝑧, �̂� ∈ 𝑹𝑛 𝑎𝑛𝑑 𝑢 ∈ 𝑹𝑚, the 

following inequality holds:  

〈𝑆𝑓(𝑧, 𝑢) − 𝑆𝑓(�̂�, 𝑢), 𝑧 − �̂�〉  ≤ 𝑣‖𝑧 − �̂�‖2,     (11) 

where 𝑣 is the OSL constant. 

Theorem 4.1. If Assumption 1 is verified and if condition (11) is satisfied and if  

l=𝜆𝑚𝑖𝑛(𝜃𝑆 + (2𝛽 − 1)𝐶𝑇𝐶) − 2𝑣 − 𝜂 > 0,     (12) 

consequently, the origin of the error system between the actual state of the system described in Eq (1) 

and the estimated states produced by the observer in Eq (4) is practically stable. 

Proof. The proof of Theorem 4.1 employs a methodology akin to that used for Theorem 3.1. It is 

assumed that:  

𝑒 = �̂� − 𝑧. 

So,  

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑒(𝑡) = (𝐴 − 𝛽𝑆−1𝐶𝑇𝐶)𝑒 + 𝛥𝑓 − 𝐵𝜀(𝑡). 

Consider 𝑉(𝑒) = 𝑒𝑇𝑆𝑒. Based on Lemma 1, we define the Lyapunov function: 

𝑉(𝑒) = 𝑒𝑇𝑆𝑒. 

Substituting the error dynamics into the Lyapunov function derivative, we get: 

   𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ 2𝑒𝑇(𝑡)𝑆 𝐷𝑡0,𝑡

𝛼𝐶 𝑒(𝑡),                       ∀𝑡 ≥ 𝑡0,

≤ [𝑒𝑇(𝐴 − 𝛽𝑆−1𝐶𝑇𝐶)𝑇 + 𝛥𝑓𝑇]𝑆𝑒 + 𝑒𝑇𝑆[(𝐴 − 𝛽𝑆−1𝐶𝑇𝐶)𝑒 + 𝛥𝑓] − 2𝑒𝑇𝑆𝐵𝜀(𝑡)

≤ 𝑒𝑇[(𝐴 − 𝛽𝑆−1𝐶𝑇𝐶)𝑇𝑆 + 𝑆(𝐴 − 𝛽𝑆−1𝐶𝑇𝐶)]𝑒 + 2𝑒𝑇𝑆𝛥𝑓 − 2𝑒𝑇𝑆𝐵𝜀(𝑡)

≤ 𝑒𝑇(𝐴𝑇𝑆 − 2𝛽𝐶𝑇𝐶 + 𝑆𝐴)𝑒 + 2𝑒𝑇𝑆𝛥𝑓 − 2𝑒𝑇𝑆𝐵𝜀(𝑡). 

Now using (7), we have 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝜃𝑒𝑇𝑆𝑒 + (1 − 2𝛽)𝑒𝑇𝐶𝑇𝐶𝑒 + 2𝑒𝑇𝑆𝛥𝑓 − 2𝑒𝑇𝑆𝐵𝜀(𝑡). 

So using Assumption 1, we deduce that 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝜃𝑒𝑇𝑆𝑒 + (1 − 2𝛽)𝑒𝑇𝐶𝑇𝐶𝑒 + 2𝑒𝑇𝑆𝛥𝑓 + 2𝐶𝜀(𝑡)‖𝑆‖‖𝐵‖‖𝑒‖. 

Let 𝜇(𝑡) = 𝐶𝜀(t) ∥ 𝑆 ∥∥ 𝐵 ∥. Using the fact that 

2𝜇(𝑡) ∥ 𝑒 ∥≤
𝜇2(t)

𝜂
+ 𝜂 ∥ 𝑒 ∥2. 

Then, using Assumption (11), one can have 
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𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝜆𝑚𝑖𝑛(𝜃𝑆 + (2𝛽 − 1)𝐶𝑇𝐶)‖𝑒‖2 + 2𝑣‖𝑒‖2 +

𝜇2(t)

𝜂
+ 𝜂 ∥ 𝑒 ∥2. 

For practical stability, we require: 𝜆𝑚𝑖𝑛(𝜃𝑆 + (2𝛽 − 1)𝐶𝑇𝐶) − 2𝑣 − 𝜂 > 0. 

So, if (12) is fulfilled, we have 𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝑙‖𝑒‖2 +

𝜇2(t)

𝜂
. 

So, the origin of the error system between the actual state of the system described in Eq (6) and 

the estimated states produced by the observer in Eq (9) is practically stable. 

We now introduce a quasi-OSL condition:  

Definition 7. 𝑓(𝑧, 𝑢) is said to be a quasi-OSL in 𝑹𝑛 with an OSL constant matrix 𝑀 in a 

manner that 𝑀𝑇 = 𝑀, i.e.,  

〈𝑆𝑓(𝑧, 𝑢) − 𝑆𝑓(�̂�, 𝑢), 𝑧 − �̂�〉  ≤ (𝑧 − �̂�)𝑇𝑀(𝑧 − �̂�),  ∀ 𝑧, �̂� ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚.   (13) 

Theorem 4.2. If condition (8) and Assumption 1 are verified and if 

𝑙 = 𝜆𝑚𝑖𝑛(𝜃𝑆 + (2𝛽 − 1)𝐶𝑇𝐶) − 2𝜆𝑚𝑎𝑥(𝑀) − 𝜂 > 0.     (14) 

So, the origin of the error system between the actual state of the system described in Eq (5) and 

the estimated states produced by the observer in Eq (9) is practically stable. 

Proof. We assume 𝑉(𝑒) = 𝑒𝑇𝑆𝑒 with 𝑒 = �̂� − 𝑧, we get: 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝜃𝑒𝑇𝑆𝑒 + (1 − 2𝛽)𝑒𝑇𝐶𝑇𝐶𝑒 + 2𝑒𝑇𝑆𝛥𝑓 − 2𝑒𝑇𝑆𝐵𝜀(𝑡). 

Then using (13), one can have 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(𝑒) ≤ −𝜆𝑚𝑖𝑛(𝜃𝑆 + (2𝛽 − 1)𝐶𝑇𝐶)‖𝑒‖2 + 2𝑒𝑇𝑀𝑒 + 2𝐶𝜀(𝑡)‖𝑆‖‖𝐵‖‖𝑒‖ 

     ≤ −[𝜆𝑚𝑖𝑛(𝜃𝑆 + (2𝛽 − 1)𝐶𝑇𝐶) − 2𝜆𝑚𝑎𝑥(𝑀) − 𝜂]‖𝑒‖2 +
𝜇2(t)

𝜂
. 

Then, the origin of the error system between the actual state of the system described in Eq (5) 

and the estimated states produced by the observer in Eq (9) is practically stable.  

5. Observer-based control of FOSs with respect to another function 

In this section, we introduce the separation principle technique for observer-based control of 

system (5).  

Assumption 2. We assume that (A, B) is stabilizable. ∃ 𝐾 in a manner that 𝑅𝑒(𝜆(𝐴 + 𝐵𝐾)) < 0, 

and a function named Lyapunov function can be expressed as 𝑧𝑇𝑃𝑧, where 𝑃 = 𝑃𝑇 > 0, in a 

manner that 

𝑃(𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)𝑇𝑃 = −𝑄, 𝑄 > 0.      (15) 

We introduce the following result. 

Lemma 2. One supposes that conditions 2 and 3 are fulfilled, and 𝑚 verifies the following inequality:  

−𝑙 = −𝜆𝑚𝑖𝑛(𝑄) + 2𝑚𝜆𝑚𝑎𝑥(𝑃) + 𝜂 < 0.      (16)  

Consequently, the control law 𝑢(𝑧) = 𝐾𝑧 ensures that the origin of the system described in Eq (5) 

is practically stable. 

Proof. Solving (15) for 𝑃 > 0. One supposes 𝑄 = 𝑄𝑇 > 0 and 𝑢(𝑧) = 𝐾𝑧. One defines 𝑉1(𝑧) =
𝑧𝑇𝑃𝑧. One obtains:  

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉1(𝑧) ≤ −𝑧𝑇𝑄𝑧 + 2𝑧𝑇𝑃𝑓(𝑧, 𝐾𝑧) + 2𝑧𝑇𝑃𝐵𝜀(𝑡). 
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Based on Assumption (15), condition 1 and recognizing that 𝑓(0, 𝑢) = 0,  

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉1(𝑥) ≤ [−𝜆𝑚𝑖𝑛(𝑄) + 2𝑚𝜆𝑚𝑎𝑥(𝑃)]‖𝑧‖2 + 2𝐶𝜀(𝑡)‖𝑃‖‖𝐵‖‖𝑧‖. 

Let 𝜇(𝑡) = 𝐶𝜀(t) ∥ 𝑃 ∥∥ 𝐵 ∥. Using the fact that 

2𝜇(𝑡) ∥ 𝑧 ∥≤
𝜇2(t)

𝜂
+ 𝜂 ∥ 𝑧 ∥2. 

Yields, 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉1(𝑧) ≤ [−𝜆𝑚𝑖𝑛(𝑄) + 2𝑚𝜆𝑚𝑎𝑥(𝑃)]‖𝑧‖2 +

𝜇2(t)

𝜂
+ 𝜂 ∥ 𝑧 ∥2, 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉1(𝑧) ≤ [−𝜆𝑚𝑖𝑛(𝑄) + 2𝑚𝜆𝑚𝑎𝑥(𝑃) + 𝜂]‖𝑧‖2 +

𝜇2(t)

𝜂
. 

So if (16) is verified, the result of Lemma 2 is reached. 

Below is the practical controller design algorithm-based Caputo derivatives with respect to 

another function.  

Input: System matrices 𝐴, 𝐵 

 Step 1: Solve the Lyapunov Eq (15) to find 𝑃 and 𝐾. 

 Step 2: Apply the control law 𝑢(𝑧) = 𝐾𝑧 to stabilize the system. 

 Step 3: Verify the stability conditions (Lemma 2).  

Output: State of the system 𝑧.  

Now, consider 𝑄 = 𝐼 with 𝑢(�̂�) = 𝐾�̂�.  

Theorem 5.1. If the condition (7) is verified and if conditions (8) and (15) are verified for  

𝑙 = 𝜆𝑚𝑖𝑛(𝜃𝑆 + (2𝛽 − 1)𝐶𝑇𝐶) − 2𝑚𝜆𝑚𝑎𝑥(𝑆) − 𝜂 > 0, 

and if  

𝑚 <
1

2
inf (

1

𝜆𝑚𝑎𝑥(𝑃)
,

𝜆𝑚𝑖𝑛(𝜃𝑆+(2𝛽−1)𝐶𝑇𝐶)−𝜂

𝜆𝑚𝑎𝑥(𝑆)
) , 𝛽 ≥ 1,     (17) 

then the system  

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 �̂�(𝑡) = 𝐴�̂� + 𝐵𝐾�̂� + 𝑓(�̂�, 𝐾�̂�) − 𝛽𝑆−1𝐶𝑇𝐶𝑒, 𝑡 ≥ 𝑡0, 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑒(𝑡) = (𝐴 − 𝛽𝑆−1𝐶𝑇𝐶)𝑒 + 𝑓(�̂�, 𝐾�̂�) − 𝑓(�̂� − 𝑒, 𝐾�̂�) − 𝐵𝜀(𝑡), 𝑡 ≥ 𝑡0,   (18) 

is practically stable. 

Proof. One supposes 𝑉1(�̂�) = �̂�𝑇𝑃�̂� and 𝑉2(𝑒) = 𝑒𝑇𝑆𝑒. 

One supposes the function 

𝑉(�̂�, 𝑒) = 𝜍𝑉1(�̂�) + 𝑉2(𝑒), 

where 𝜇 > 0. Then, we have 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(�̂�, 𝑒) = 𝜍 𝐷𝑡0,𝑡

𝑟,𝛿𝐶 𝑉1(�̂�) + 𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉2(𝑒). 

From Lemma 1, it follows that 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉1(�̂�) ≤ �̂�𝑇[𝑃(𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)𝑇𝑃]�̂� + 2�̂�𝑇𝑃𝑓(�̂�, 𝐾�̂�) − 2𝛽�̂�𝑇𝑃𝑆−1𝐶𝑇𝐶𝑒. 

Now, we have: 
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𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉1(�̂�) ≤ −‖�̂�‖2 + 2�̂�𝑇𝑃𝑓(�̂�, 𝐾�̂�) + 2𝛽𝜆𝑚𝑎𝑥(𝑃)‖�̂�‖‖𝑆−1‖‖𝐶𝑇𝐶‖‖𝑒‖, 

knowing that 𝑓(0, 𝑢) = 0 and using condition (8), So 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(�̂�, 𝑒) ≤ 𝜍[−1 + 2𝑚𝜆𝑚𝑎𝑥(𝑃)]‖�̂�‖2 + 2𝜍𝛽𝜆𝑚𝑎𝑥(𝑃)‖𝑆−1‖‖𝐶𝑇𝐶‖‖𝑒‖‖�̂�‖ + 𝐷𝑡0,𝑡

𝑟,𝛿𝐶 𝑉2(𝑒). 

If (17) satisfied, we present in the proof of theorem that 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉2(𝑒) ≤ −𝑙‖𝑒‖2 +

𝜇2(t)

𝜂
. 

So, one has  

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑉(�̂�, 𝑒) ≤ −𝜍𝑎‖�̂�‖2 + 2𝜍𝑏‖𝑒‖‖�̂�‖ − 𝑙‖𝑒‖2 +

𝜇2(t)

𝜂
, 

where  

𝑎 = 1 − 2𝑚𝜆𝑚𝑎𝑥(𝑃) > 0, 

𝑏 = 𝛽𝜆𝑚𝑎𝑥(𝑃)‖𝑆−1‖‖𝐶𝑇𝐶‖ > 0. 

Thus, if 𝜍 is chosen in a manner that 𝜍 < 𝑎𝑙/𝑏2, the result of Theorem 5.1 is reached. 

6. Numerical examples 

The examples selected for this study aim to validate the theoretical contributions in the design 

of the observer and controller for nonlinear fractional-order systems with respect to another function. 

The purpose is to showcase the effectiveness of the proposed methods through simulation. Each 

example highlights a particular aspect of the theoretical findings: 

 Example 1 illustrates the relevance of the observer design as outlined in Theorem 3.1, 

highlighting the practical stability of the system error. 

 Examples 2 and 3 expand upon the methodology to incorporate an observer-based controller 

design, demonstrating the efficacy of the integrated observer and controller in maintaining the 

practical stability of the system. 

The choice of these examples ensures that theoretical findings are effectively validated and that 

the simulations provided are clear.  

The parameters for the systems, such as the matrices 𝐴, 𝐵, and 𝐶, as well as the initial 

conditions for the state variables 𝑧 and �̂�, were chosen based on typical values used in control 

theory literature and previous studies [14]. These parameters were selected to represent realistic 

scenarios and to ensure that the systems exhibit the desired dynamic behavior for testing the 

proposed methodologies. The simulations were conducted using MATLAB and Simulink, which 

provide robust functions for solving differential equations and visualizing the results. The Caputo 

fractional derivative with respect to another function was implemented using a discretization 

approach that approximates the continuous-time dynamics. The simulation environment was 

configured to accurately model the fractional-order systems and to ensure the reliability of the 

results. While we have provided initial validation through numerical examples, a comprehensive 

sensitivity analysis is identified as a future perspective. This analysis will require further 

mathematical development to rigorously prove the robustness of the proposed observer and 

controller designs under varying parameters. We plan to address this in future work to provide a 

deeper understanding of the system’s behavior and stability. 
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The implementation of these results into real-world applications is a future perspective. We plan 

to collaborate with industry partners and researchers to develop practical implementations and 

validate the effectiveness of our theoretical findings in real-world settings. For examples of these 

applications, see [19–21]. The control of boiler turbine systems is a complex task due to the 

nonlinear dynamics and the presence of disturbances [22]. Our approach can be applied to develop 

dynamic event-based tracking control strategies for boiler turbine systems, ensuring guaranteed 

performance. By incorporating the Caputo fractional derivative with respect to another function, we 

can design controllers that maintain the desired performance despite variations in operating 

conditions and external disturbances. 

Example 1. We consider the following system based on Caputo derivatives with respect to another 

function: 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑧1(𝑡) = −7𝑧2 + 𝑢 + 0.02 𝑐𝑜𝑠(𝑧2) +

1

𝑡2+4
,   𝑡 ≥ 0, 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑧2(𝑡) = 𝑧1 + 0.03𝑐𝑜𝑠 (𝑧1), 𝑡 ≥ 0,      (19) 

where  

𝑧 = (𝑧1, 𝑧2)𝑇 ∈ ℝ2 and 𝛿(𝑡) = 𝑡4 + 𝑡. 

By solving (2), we find: 

𝑆 = [
5.7161 0

0 5.7161 
] = 𝑆𝑇 > 0, 

with 𝜃 = 5.2.  

One chooses 𝛽 = 1 and 𝑢 = 1. 

The Lipschitz constant 𝑚 equals to 0.03.  

All conditions of Theorem 3.1 are satisfied. By setting 𝑧10
= 4, 𝑧20

= −4 and �̂�10
= −2,

�̂�20
= 2, we have the following simulation results.  

These evolutions, displayed in Figure 1, indisputably demonstrate the practical stability of all 

signals, therefore confirming the theoretical findings of Theorem 3.1. 

 

Figure 1. The evolution of the errors 𝑒1 and 𝑒2 for Example 1. 

Example 2. We consider the following system based on Caputo derivatives with respect to another 

function: 
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𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑧1(𝑡) = 3𝑧2 + 𝑢 + 0.1 𝑠𝑖𝑛(𝑧2) +

𝑡2

𝑡2+1
,   𝑡 ≥ 1, 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑧2(𝑡) = 𝑧1 + 0.1𝑠𝑖𝑛 (𝑧1), 𝑡 ≥ 1,      (20) 

where 𝑧 = (𝑧1, 𝑧2)𝑇 ∈ ℝ2 and 𝛿(𝑡) = 𝑡 𝑙𝑜𝑔(𝑡). 

Using Lemma 2, 𝑢(𝑧) = −4𝑧2 − 𝑧1 practically stabilizes the linear part of system (18). One 

chooses 𝑄 = 𝐼 and one solves (15), One obtains: 

𝑃 = [
1.00 0.50
0.50 1.50

] = 𝑃𝑇 > 0. 

One has 𝑟 = 0.111 <
𝜆𝑚𝑖𝑛(𝑄)

2𝜆𝑚𝑎𝑥(𝑃)
≃ 0.2769. 

By solving (7), we find: 

𝑆 = [
0.1660 −0.0811

−0.0811 0.0695
] = 𝑆𝑇 > 0, 

with 𝜃 = 7. 

(17) holds because 𝑚 = 0.1 <
𝜆𝑚𝑖𝑛(𝜃𝑆+𝐶𝑇𝐶)

2𝜆𝑚𝑎𝑥(𝑆)
≃ 0.736, where 𝛽 = 1. So, 𝑢(�̂�) = −4�̂�2 − �̂�1 

practically stabilizes system (18), which confirms the result of Theorem 5.1 

By setting 𝑧10
= −2, 𝑧20

= −1  and �̂�10
= 2, �̂�20

= 1 , Figures 2 and 3 illustrate the 

evolution of the error curves 𝑒1 and 𝑒2 for 𝛼 = 0.5. These evolutions indisputably demonstrate 

the practical stability of all signals, therefore confirming theoretical findings. 

 

Figure 2. The evolution of the error 𝑒1 for Example 2. 
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Figure 3. The evolution of the error 𝑒2 for Example 2. 

Example 3. One supposes the following system based on Caputo derivatives with respect to another 

function:  

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑧1(𝑡) = 2𝑧2 + (

1

7
) √𝑧1

2 + 𝑧2
2 +

𝑡

𝑡2+1
,     𝑡 ≥ 1, 

𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑧2(𝑡) = 𝑧1 + 𝑢 + (

1

7
) 𝑠𝑖𝑛 (𝑧1),      𝑡 ≥ 0,      (21) 

with 𝑧 = (𝑧1, 𝑧2)𝑇 ∈ ℝ2 and 𝛿(𝑡) = 𝑡2 + 𝑡. 

We can present system (21) as 𝐷𝑡0,𝑡
𝑟,𝛿𝐶 𝑥(𝑡) = 𝐴𝑥 + 𝐵𝑢 + 𝑓(𝑥, 𝑢) + 𝐵𝜀(𝑡), where: 

𝐴 = [
0 2
1 0

] , 𝐵 = [
0
1

] , 𝑓(𝑧, 𝑢) =
1

7
[
√𝑧1

2 + 𝑧2
2

𝑠𝑖𝑛 (𝑧1)
] 𝑎𝑛𝑑 𝜀(𝑡) =

𝑡

𝑡2+1
. 

Using Lemma 2, 𝑢(𝑧) = −4𝑧2 − 𝑧1 practically stabilizes the linear part of system (21). One 

chooses 𝑄 = 𝐼 and one solves (15), we have : 

𝑃 = [
1.125 0.251
0.251 1

] = 𝑃𝑇 > 0. 

One has 𝑟 = 1/7 ≃ 0.14145 <
𝜆𝑚𝑖𝑛(𝑄)

2𝜆𝑚𝑎𝑥(𝑃)
≃ 0.378. 

By solving (7), we find: 

𝑆 = [
0.2327 −0.105
−0.105 0.0808

] = 𝑆𝑇 > 0, 

with 𝜃 = 5.2. 

(17) holds because 𝑚 ≃ 0.14 <
𝜆𝑚𝑖𝑛(𝜃𝑆+𝐶𝑇𝐶)

2𝜆𝑚𝑎𝑥(𝑆)
≃ 0.4669, where 𝛽 = 1. So, 𝑢(�̂�) = −3�̂�1 − �̂�2 

practically stabilizes system (18), which confirm the result of Theorem 5.1 

By setting 𝑧10
= 2, 𝑧20

= −2  and �̂�10
= −2, �̂�20

= 2 , Figures 4 and 5 illustrate the 

evolution of the error curves 𝑒1 and 𝑒2 for 𝛼 = 0.5. These numbers clearly show that all signals 

are practically stable, supporting the theoretical results. 
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Figure 4. The evolution of the error 𝑒1 for Example 3. 

 

Figure 5. The evolution of the error 𝑒2 for Example 3. 

7. Conclusions 

In conclusion, this work pioneers the application of the CDF with respect to another function in 

control theory, expanding the capabilities of the CH derivative. By introducing practical stability for 

nonlinear systems governed by this derivative, the study guarantees that system solutions approach 

and remain within a bounded region near the origin. Additionally, extending the OSL condition to 

fractional-order systems provides a solid foundation for observer design and observer-based control, 

boosting the adaptability and efficiency of control techniques. The theoretical advancements are 

substantiated through numerical examples, demonstrating the practical applicability and potential of 

the proposed framework in advancing control theory. Building on this framework, future research 

can address several key challenges and avenues for improvement. One area of interest lies in the 

analytical and computational challenges associated with fractional-order systems governed by 

Caputo derivatives with respect to other functions. Developing more efficient computational methods 
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for these systems will be essential for implementing these theories in real-time applications, where 

computational complexity could impact performance. Additionally, exploring different classes of 

auxiliary functions in the Caputo derivative framework could expand the applicability of our 

methods, allowing for a finer tuning of system responses across various applications. Expanding 

these theories to a wider range of systems and scenarios is another promising direction. For instance, 

applying our observer-based control framework in the fields of renewable energy, autonomous 

vehicles, and biomedical systems could yield substantial insights. In renewable energy, real-time 

stability control of power grids could be achieved by adapting our framework to handle time-varying 

loads and nonlinearities in grid dynamics. Similarly, the field of robotics, particularly in autonomous 

navigation, could benefit from robust, memory-inclusive observer designs that handle unpredictable 

environmental disturbances. Lastly, conducting a sensitivity analysis on the stability of 

fractional-order systems under varying parameters is crucial for understanding the robustness of our 

approach in diverse practical settings. Further work in this direction will allow us to develop adaptive 

control strategies that can respond dynamically to parameter shifts and disturbances. We aim to 

collaborate with industry and research partners to implement and validate our framework in these 

complex real-world settings, refining the theoretical foundations to ensure reliability and performance. 
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