
The finite-time H∞ performance of the interval type-2 Takagi-Sugeno fuzzy system (IT2 T-S) in presence of immeasurable states and input saturation is investigated. At first, an observer associated with IT2 T-S states is considered to address the problem of immeasurable states. After that, the input saturation is described based on the polyhedron model, and accordingly, a robust H∞ observer-based finite-time controller is proposed via non-PDC algorithm. Then, on the basis of the Lyapunov function method and LMIs theory, the sufficient conditions for the finite time stability of fuzzy systems are derived. At last, the feasibility of the designed algorithm is verified by two examples of the nonlinear mass-spring-damping system and tunnel diode circuit system, respectively.
Citation: Chuang Liu, Jinxia Wu, Weidong Yang. Robust H∞ output feedback finite-time control for interval type-2 fuzzy systems with actuator saturation[J]. AIMS Mathematics, 2022, 7(3): 4614-4635. doi: 10.3934/math.2022257
[1] | Gengjiao Yang, Fei Hao, Lin Zhang, Lixin Gao . Stabilization of discrete-time positive switched T-S fuzzy systems subject to actuator saturation. AIMS Mathematics, 2023, 8(6): 12708-12728. doi: 10.3934/math.2023640 |
[2] | YeongJae Kim, YongGwon Lee, SeungHoon Lee, Palanisamy Selvaraj, Ramalingam Sakthivel, OhMin Kwon . Design and experimentation of sampled-data controller in T-S fuzzy systems with input saturation through the use of linear switching methods. AIMS Mathematics, 2024, 9(1): 2389-2410. doi: 10.3934/math.2024118 |
[3] | Arthit Hongsri, Wajaree Weera, Thongchai Botmart, Prem Junsawang . Novel non-fragile extended dissipative synchronization of T-S fuzzy complex dynamical networks with interval hybrid coupling delays. AIMS Mathematics, 2023, 8(12): 28601-28627. doi: 10.3934/math.20231464 |
[4] | Majid Roohi, Saeed Mirzajani, Ahmad Reza Haghighi, Andreas Basse-O'Connor . Robust stabilization of fractional-order hybrid optical system using a single-input TS-fuzzy sliding mode control strategy with input nonlinearities. AIMS Mathematics, 2024, 9(9): 25879-25907. doi: 10.3934/math.20241264 |
[5] | Liandi Fang, Li Ma, Shihong Ding . Finite-time fuzzy output-feedback control for $ p $-norm stochastic nonlinear systems with output constraints. AIMS Mathematics, 2021, 6(3): 2244-2267. doi: 10.3934/math.2021136 |
[6] | Omar Kahouli, Amina Turki, Mohamed Ksantini, Mohamed Ali Hammami, Ali Aloui . On the boundedness of solutions of some fuzzy dynamical control systems. AIMS Mathematics, 2024, 9(3): 5330-5348. doi: 10.3934/math.2024257 |
[7] | Zhengqi Zhang, Huaiqin Wu . Cluster synchronization in finite/fixed time for semi-Markovian switching T-S fuzzy complex dynamical networks with discontinuous dynamic nodes. AIMS Mathematics, 2022, 7(7): 11942-11971. doi: 10.3934/math.2022666 |
[8] | R. Sriraman, R. Samidurai, V. C. Amritha, G. Rachakit, Prasanalakshmi Balaji . System decomposition-based stability criteria for Takagi-Sugeno fuzzy uncertain stochastic delayed neural networks in quaternion field. AIMS Mathematics, 2023, 8(5): 11589-11616. doi: 10.3934/math.2023587 |
[9] | Han Geng, Huasheng Zhang . A new $ H_{\infty} $ control method of switched nonlinear systems with persistent dwell time: $ H_{\infty} $ fuzzy control criterion with convergence rate constraints. AIMS Mathematics, 2024, 9(9): 26092-26113. doi: 10.3934/math.20241275 |
[10] | Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Fei Huang . Error estimates of variational discretization for semilinear parabolic optimal control problems. AIMS Mathematics, 2021, 6(1): 772-793. doi: 10.3934/math.2021047 |
The finite-time H∞ performance of the interval type-2 Takagi-Sugeno fuzzy system (IT2 T-S) in presence of immeasurable states and input saturation is investigated. At first, an observer associated with IT2 T-S states is considered to address the problem of immeasurable states. After that, the input saturation is described based on the polyhedron model, and accordingly, a robust H∞ observer-based finite-time controller is proposed via non-PDC algorithm. Then, on the basis of the Lyapunov function method and LMIs theory, the sufficient conditions for the finite time stability of fuzzy systems are derived. At last, the feasibility of the designed algorithm is verified by two examples of the nonlinear mass-spring-damping system and tunnel diode circuit system, respectively.
The Takagi-Sugeno (T-S) fuzzy system has a strong ability to approximate the nonlinear systems [1,2,3]. Compared with the T-S fuzzy system based on type-1 theory, the superiority of IT2 T-S is that it can solve the parametric uncertainties existing in the systems. Due to this fact, many significant works based on the IT2 T-S scheme were explored in [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]. Among them, the authors in [4] and [5] investigated reasonable initialization enhanced Karnik-Mendel algorithms and weighted-based non-iterative algorithms for interval type-2 fuzzy logic systems. The authors in [6,7,8,9,10] studied the state feedback control design for the IT2 T-S fuzzy systems. Alternatively, [11,12,13] introduced the output feedback fuzzy control schemes to address this issue. The authors in [14,15,16,17,18] proposed stable fuzzy state feedback controllers for IT2 T-S with the discrete-time form. For IT2 T-S fuzzy interconnected systems, the fuzzy decentralized output feedback controller has been proposed in [19]. However, it is obvious that although the control methods mentioned in the above results can make the T-S systems based on IT2 fuzzy theory reach the asymptotically stable performance, they ignored the finite convergence time problem which is eagerly desired in practical situations.
Note that the control target of the finite time stability is that the trajectory of system state can approximate the periodic orbits or equilibrium values within a finite time. Besides, the systems converge rapidly and have better robustness subject to uncertainties. Hence, the concept of finite-time is introduced in [20,21,22,23] and it has received increasing attention and achieved great progress over past decade [24,25,26,27,28,29,30,31]. Among them, [24,25] respectively studied the H∞ finite-time control design problem subject to the measurable uncertain continuous-time Markovian jump systems and discrete-time Markovian jump systems, respectively. Alternatively, the authors in [26] and [27] studied the output feedback H∞ finite-time control design problems. For IT2 T-S fuzzy systems, the finite-time control design problems subject to time delays and actuator faults are studied in [28] and [29]. Besides, the designed approaches in [30] and [31] have extended the fuzzy decentralized control schemes for IT2 T-S fuzzy interconnected systems while the states of each subsystem is available. However, the aforementioned works are based on the assumption that the system states are measurable, thus they are not suitable for the condition in which the states are immeasurable. Besides, they also ignore the phenomenon of the actuator saturation. In practice, the impact of input saturation will extremely damage the control performance of the systems. Hence, the robust H∞ output feedback finite-time control for IT2 T-S fuzzy systems with input saturation and external disturbances is worthy studying. By far, there are no results on investigating the robust H∞ output feedback finite-time control for IT2 T-S fuzzy systems in presence of external disturbances and input saturation.
This paper develops the robust observer-based H∞ output feedback finite-time controller for the IT2 T-S fuzzy systems in presence of external disturbances and input saturation. In the process of control design, an observer associated with IT2 T-S states is firstly designed, and then a robust fuzzy finite-time controller is developed by using the estimating states. After that, a polyhedron model to represent input saturation is introduced. Based on the Lyapunov function scheme and LMIs theory, the sufficient conditions of finite-time stabilization for system with input saturation and external disturbances are gained. The primary contributions of this paper can be roughly concluded as follows
(i) This paper first studied the fuzzy output feedback finite-time H∞ control design problem for the IT2 T-S fuzzy systems. By developing a state observer, the proposed the fuzzy output feedback finite-time control method can not only guarantee the finite-time stabilization of the closed-loop system, but also solve the state unmeasured problem. Note that although the reference [11,12,13,19] also developed the fuzzy output feedback control methods for a class of IT2 T-S fuzzy systems, they do not consider the finite-time stability, that is, it investigate output feedback asymptotic control, not the output feedback finite-time control like this paper.
(ii) Note that [28,29,30,31] investigated the finite-time control of IT2 T-S fuzzy system, however, the limitation is that the system state must be completely measurable which are not suitable for systems with immeasurable states like this study. Besides, the impact of input saturation is also investigated in this paper.
The rest of this paper is comprised such that: Section 2 gives the descriptions of the IT2 T-S fuzzy systems, state observer design, actuator saturation functions and necessary definitions and lemmas. The robust finite-time H∞ controller design, the finite-time stabilization and the finite-time boundedness conditions of the considered system are derived in Section 3. In order to verify the feasibility of the developed scheme, two practical examples are given in Section 4. Section 5 derives the conclusion.
In this section, the descriptions of the IT2 T-S fuzzy system and input saturation functions will be shown.
Consider the IT2 T-S fuzzy system with continue-time form as follows.
Plant rule p: If θ1(x(t)) is Fp1 and ⋯ and θi(x(t)) is Fpi, then
{˙x(t)=Apx(t)+Bpsat(u(t))+Dpw(t)z(t)=Epx(t)+Fpsat(u(t))y(t)=Cpx(t) | (2.1) |
where θs(x(t))=[θ1(x(t)),θ2(x(t)),…,θi(x(t))]T represents the premise vector and Fps represents the IT2 fuzzy set. x(t)∈ℜn, sat(u(t))∈ℜm and w(t)∈ℜh are system state vector, saturated control input vector and bounding external disturbances satisfying L2(0,∞], respectively. z(t)∈ℜg is the controlled output and y(t)∈ℜl is the measured output. Ap, Bp, Dp, Ep, Fp and Cp are known constant matrices with appropriate dimensions.
Based on the IT2 fuzzy logic systems theory, the firing strength of the pth fuzzy rule can be defined within the following interval sets
ψp(x(t))∈[ϑLp(x(t)),ϑUp(x(t))],p=1,2…,r | (2.2) |
Through utilizing the method of singleton fuzzifier, product fuzzy inference, and weighted average defuzzifier, the IT2 T-S fuzzy system (2.1) is inferred as follows
{˙x(t)=∑rp=1ϑp(x(t))[Apx(t)+Bpsat(u(t))+Dpw(t)]z(t)=∑rp=1ϑp(x(t))[Epx(t)+Fpsat(u(t))]y(t)=∑rp=1ϑp(x(t))Cpx(t) | (2.3) |
in which
ϑp(x(t))=ϑLp(x(t))υLp(x(t))+ϑUp(x(t))υUp(x(t))∑rp=1[ϑLp(x(t))υLp(x(t))+ϑUp(x(t))υUp(x(t))],∑rp=1ϑp(x(t))=1, |
ϑLp(x(t))=i∏s=1μ_Fps(x(t))≥0,ϑUp(x(t))=i∏s=1ˉμFps(x(t))≥0, |
υLp(x(t))∈[0,1],υUp(x(t))∈[0,1],υLp(x(t))+υUp(x(t))=1. |
the above ϑLP(θ(x(t))), ϑUP(θ(x(t))) are the lower and upper grades of memberships, respectively. μ_Fps(x(t)) and ˉμFps(x(t)) are the lower and upper membership functions of IT2 fuzzy sets Fps. υLP(θ(x(t))), υUP(θ(x(t))) are known weighting coefficient nonlinear functions.
The aforementioned u(t) is the control signal given by the ideal output feedback fuzzy controller and sat(u(t))=[sat(u1),sat(u2),…,sat(um)]T is the practical control signal, which is used to address saturation problem.
In order to model better saturation effect, the polytopic model introduced in [32,33] will be utilized. Referring from [32,33], we can obtain such that
sat(u(t))=sat(u(t),ˉu)=[sat(u1),sat(u2),…,sat(um)]T | (2.4) |
in which sat(ua)=sign(ua)min{¯ua,|ua|},¯u∈ℜm is the saturation level and u(t)∈ℜm represents the control input, ¯ua and ua are the ath element of the saturation level and the control input, respectively.
Let V be the set of m×m diagonal matrices whose diagonal elements are either 1 or 0. For example, when m=2, then
V={[0000],[0000],[1000],[1000]} |
There are 2m elements in V. Suppose that each that element of V is labeled as Hl,(l=1,2,…,2m), and denote H−l=I−Hl. Clearly, H−l is also an element of V when Hl∈V.
For development, the following lemma associated with input saturation is required.
Lemma 1 [32,33]. Assume |va|≤ˉua, in which va and ua denote the ath element of v∈ℜm and u∈ℜm, respectively. If x(t) is inside r∩j=1{x∈ℜn||hjpx|≤ˉup}, then
sat(u(t),ˉu)=∑2ml=1δl(Hlu+H−lv) | (2.5) |
in which 0≤δl≤1(l=1,…,2m) are scalars and ∑2ml=1δl=1.
In this subsection, a state observer will be designed to estimate immeasurable states. Subsequently, the fuzzy controller will be proposed.
The identical membership functions, which rely on estimated states rather than system states, are used to design the fuzzy observer.
Observer Rule q:If θ1(ˆx(t)) is Fq1 and ⋯ and θq(ˆx(t)) is Fqi, then
{˙ˆx(t)=Aqˆx(t)+Bqsat(u(t))+Lq(y(t)−ˆy(t))ˆz(t)=Eqˆx(t)+Fqsat(u(t))ˆy(t)=Cqˆx(t) | (2.6) |
where ˆx(t)∈ℜn denotes the estimated state vector, ˆz(t)∈ℜl is the estimation output and ˆy(t)∈ℜl is the observer output, Lp is observer gain matrix to be solved.
After that, the final state observer is described such that
{˙ˆx(t)=∑rq=1ϑq(ˆx(t))[Aqˆx(t)+Bqsat(u(t))+Lq(y(t)−ˆy(t))]ˆz(t)=∑rq=1ϑq(ˆx(t))[Eqˆx(t)+Fqsat(u(t))]ˆy(t)=∑rq=1ϑq(ˆx(t))Cqˆx(t) | (2.7) |
Due to that the membership functions of fuzzy observer rely on the estimated state variable rather than x(t), thereby, ˆx(t) is selected as the membership function representations.
For the purpose of improving the flexibly of fuzzy controller design, by utilizing non-PDC design algorithm, the controller possesses its exclusive membership functions which are different from fuzzy system (2.3) and fuzzy observer (2.7). The details are shown such that:
Controller Rule j:If g1(ˆx(t)) is Mj1 and ⋯ and gj(ˆx(t)) is Mjτ, then
u(t)=Kjˆx(t) | (2.8) |
where Kj(j=1,2,…,r) are the controller gains to be solved later. Similarly, the jth firing strength can be expressed as
ωj(ˆx(t))=[ηLj(ˆx(t)),ηUj(ˆx(t))],j=1,2,…,r | (2.9) |
in which
ηLj(ˆx(t))=τ∏ℏμ_Mjℏ(gℏ(ˆx(t)))≥0,ηUj(ˆx(t))=τ∏ℏˉμMjℏ(gℏ(ˆx(t)))≥0 |
Then, the fuzzy controller based on IT2 fuzzy theory can be obtained
u(t)=∑rj=1ηj(ˆx(t))Kjˆx(t) | (2.10) |
where
ηj(ˆx(t))=ηLj(ˆx(t))bLj(ˆx(t))+ηUj(ˆx(t))bUj(ˆx(t))∑rj=1[ηLj(ˆx(t))bLj(ˆx(t))+ηUj(ˆx(t))bUj(ˆx(t))],∑rj=1ηj(ˆx(t))=1, |
bLj(ˆx(t))∈[0,1],bUj(ˆx(t))∈[0,1],bLj(ˆx(t))+bUj(ˆx(t))=1, |
the above μ_Mjℏ(gℏ(ˆx(t))), ˉμMjℏ(gℏ(ˆx(t))), ηLj(ˆx(t)), ηUj(ˆx(t)), bLj(ˆx(t)) and bUj(ˆx(t)) respectively denote the lower and upper membership functions, the lower and upper grades of membership, the tradeoff coefficient nonlinear functions.
Then, from Lemma 1, the observer-based controller in presence of input saturation is given as
sat(u(t))=sat(u(t),ˉu)=∑2ml=1δl(Hl∑rj=1ηj(ˆx(t))Kj+H−l∑rj=1ηj(ˆx(t))Zj)ˆx(t)=∑2ml=1∑rj=1δlηj(ˆx(t))(HlKj+H−lZj)ˆx(t) | (2.11) |
where Zj is m×n matrix and hjp represents the pth row of Zj.
Define the estimation error ˜x(t)=x(t)−ˆx(t), controlled output error ˜z(t)=z(t)−ˆz(t) and considering equations (2.3), (2.7) and (2.11), one can obtain
{˙ξ(t)=∑2ml=1∑rp=1∑rq=1∑rj=1ϑp(x(t))ϑq(ˆx(t))ηj(ˆx(t))[Apqjξ(t)+Dpqjw(t)]˜z(t)=∑2ml=1∑rp=1∑rq=1ϑp(θ(x(t)))ϑq(θ(ˆx(t)))[Cpqjξ(t)] | (2.12) |
where
ξ(t)=[x(t)˜x(t)]T, Apqj=[Ap+δlBpHlKj+δlBpH−lZj−δlBpHlKj−δlBpH−lZjAp−Aq−LqCp−LqCqAq−LqCq], Dpqj=[DpDp], Cpqj=[Ep−EqEq].
Control objective: This study will design a robust H∞ finite-time output feedback controller for the IT2 T-S fuzzy systems (2.3). The developed controller can make the T-S systems based on IT2 fuzzy theory reach the finite-time stable, in which the input saturation and external disturbances are considered.
Remark 1: Note that the authors in [19] studied the output feedback control design problem for IT2 T-S fuzzy system, the developed controller can make the controlled system achieve asymptotic stability. However, the authors in [19] do not consider the finite-time stability problem. Unlike the above work, in this paper, the robust output feedback finite-time control design problem for T-S systems with input saturation based on IT2 theory is studied. Therefore, the control design and stability analysis are more difficult and challenging.
For development, the following definitions and lemmas are needed to achieve the control objective.
Definition 1 [20,21]. If for given constants a2>a1≥0 and a positive matrix R>0 satisfying
ξT(0)Rξ(0)≤a1⇒ξT(t)Rξ(t)<a2,∀t∈[0,T] | (2.13) |
Then the system (2.3) can be robust finite-time stable within (a1,a2,R,T).
Definition 2 [34]. System (2.3) is of robust H∞ finite-time boundedness performance if there exist positive constants ˉρ>0 and h>0, and the closed–loop system based on IT2 T-S fuzzy theory satisfies (2.13) and following H∞ performance index
∫T0˜zT(t)z(t)dt≤ˉρ2∫T0wT(t)w(t)dt |
where ‖w(t)‖2<h, and T is a given positive scalar.
Lemma 2 [29]. For full rank matrix rank(C)=l,F∈ℜl×n with l<n, there exist a singular value decomposition (SVD) for C=Cp can be described as C=O[S0]UT, in which V∈ℜl×l, O∈ℜl×n, S∈ℜn×n, U⋅UT=I and O⋅OT=I. Let matrices X>0, X11∈ℜl×l, X22∈ℜ(n−l)×(n−l). Then, there exists ˉX satisfies CX=ˉXC if and only if the following Eigen-value decomposition (EVD) condition holds
X=U[X1100X22]UT |
The robust finite-time stability analysis and the robust finite-time H∞ boundedness of the fuzzy system (2.3) will be respectively proved in this section. Based on the Lyapunov function method and LMIs theory, several sufficient conditions will be derived.
Theorem 1: For given positive scalars T>0, a1>0, h>0, β>0, δl>0, ˉρ>0 and a positive symmetric R>0, system (2.3) can achieve robust finite-time stability within (a1,a2,R,T,ˉρ,h), if there exist matrix P=PT>0 satisfying the following matrix inequalities
R<P<R/λ2 | (3.1) |
Πpqj−Ω<0 | (3.2) |
γjΠpqj+γqΠpjq−γjΩ−γqΩ+2Ω<0,q≤j | (3.3) |
eβT(λ1a1+ˉρ2e−βThβ(1−e−βT))λ2<a2 | (3.4) |
[ˉu2phjpP−11P−11(hjp)TP−11]≥0 | (3.5) |
in which
λ1=λmax |
{\Pi _{pqj}} = \left[ {\begin{array}{*{20}{c}} {\Pi _{pqj}^{11}} & {\Pi _{pqj}^{12}} & 0 \\ * & {\Pi _{pqj}^{22}} & 0 \\ * & * & {\Pi _{pqj}^{33}} \\ \end{array}} \right] < 0, \;\;\Omega = \left[ {\begin{array}{*{20}{c}} {{\Omega _{11}}} & {{\Omega _{12}}} & {{\Omega _{13}}} \\ * & {{\Omega _{22}}} & {{\Omega _{23}}} \\ * & * & {{\Omega _{33}}} \\ \end{array}} \right], |
\begin{array}{l} \Pi _{pqj}^{11} = {P_1}{A_p} + A_p^T{P_1} + {\delta _l}{P_1}{B_p}{H_l}{K_j} + {\delta _l}K_j^TH_l^TB_p^T{P_1} + {\delta _l}{P_1}{B_p}H_l^ - {Z_j} + {\delta _l}Z_j^T{(H_l^ - )^T}B_p^T{P_1} \\ \quad \quad \;\, - \beta {P_1} + E_p^T{E_p} - E_p^T{E_q} - E_q^T{E_p} - E_q^T{E_q} - \beta {P_1} + {P_1}{P_1} \\ \end{array}, |
\Pi _{pqj}^{12} = - {\delta _l}{P_1}{B_p}{H_l}{K_j} - {\delta _l}{P_1}{B_p}H_l^ - {Z_j} + A_p^T{P_1} - A_q^T{P_1} - C_p^TL_q^T{P_1} - C_q^TL_q^T{P_1} - E_q^T{E_q} + E_p^TE_q^T, |
\Pi _{pqj}^{22} = {P_1}{A_q} - {P_1}{L_q}{C_q} + A_q^T{P_1} - C_q^TL_q^T{P_1} - \beta {P_1} + E_q^T{E_q} + {P_1}{P_1}, \;\;\Pi _{pqj}^{33} = D_p^T{D_p} - {\bar \rho ^2}{e^{ - \beta T}}I. |
Proof: Construct the following Lyapunov function
\begin{equation} V(\xi (t)) = {\xi ^T}(t)P\xi (t) \end{equation} | (3.6) |
For convenience, one define P = {\rm{diag\{ }}{P_1}{\rm{, }}{P_1}{\rm{\} }} and then calculate the time derivative of (3.6), one has
\begin{equation} \begin{array}{l} \dot V(\xi (t)) - \beta V(\xi (t)) + {{\tilde z}^T}(t)\tilde z(t) - {{\bar \rho }^2}{e^{ - \beta T}}{w^T}(t)w(t) \\ {\rm{ = }}\sum\nolimits_{l = 1}^{{2^m}} {\sum\nolimits_{p = 1}^r {\sum\nolimits_{q = 1}^r {\sum\nolimits_{j = 1}^r {{\vartheta _p}(x(t)){\vartheta _q}(\hat x(t)){\eta _j}(\hat x(t))} } } } \\ \;\, \times [{\xi ^T}(t)(P{A_{pqj}} + A_{pqj}^TP - \beta P + C_{pqj}^T{C_{pqj}})\xi (t) \\ \;\, + {\xi ^T}(t)(P{D_{pqj}} + D_{pqj}^TP)w(t)] - {{\bar \rho }^2}{e^{ - \beta T}}{w^T}(t)w(t) \\ \end{array} \end{equation} | (3.7) |
Define \chi (t) = {\left[{\begin{array}{*{20}{c}} {\xi (t)} & {w(t)} \\ \end{array}} \right]^T} , and then substituting the definition of {A_{pqj}} , {C_{pqj}} , {D_{pqj}} into (3.7), (3.7) can be rewritten as
\begin{equation} \begin{array}{l} \dot V(\xi (t)) - \beta V(\xi (t)) + {{\tilde z}^T}(t)\tilde z(t) - {{\bar \rho }^2}{e^{ - \beta T}}{w^T}(t)w(t) \\ {\rm{ = }}\sum\nolimits_{l = 1}^{{2^m}} {\sum\nolimits_{p = 1}^r {\sum\nolimits_{q = 1}^r {\sum\nolimits_{j = 1}^r {{\vartheta _p}(x(t)){\vartheta _q}(\hat x(t)){\eta _j}(\hat x(t))} } } } \{ {x^T}(t)[({P_1}{A_p} + {\delta _l}{P_1}{B_p}{H_l}{K_j} \\ \;\, + {\delta _l}{P_1}{B_p}H_l^ - {Z_j}) + {({P_1}{A_p} + {\delta _l}{P_1}{B_p}{H_l}{K_j} + {\delta _l}{P_1}{B_p}H_l^ - {Z_j})^T} - \beta {P_1} + {P_1}{P_1} + E_p^T{E_p} \\ \;\, - E_p^T{E_q} - E_q^T{E_p} - E_q^T{E_q}]x(t) + {x^T}(t)[( - {\delta _l}{P_1}{B_p}{H_l}{K_j} - {\delta _l}{P_1}{B_p}H_l^ - {Z_j}) + ({P_1}{A_p} \\ \;\, - {P_1}{A_q} - {P_1}{L_q}{C_p} - {P_1}{L_q}{C_q}{)^T} - E_q^T{E_q}]\tilde x(t) + {{\tilde x}^T}(t)[({P_1}{A_p} - {P_1}{A_q} - {P_1}{L_q}{C_p} \\ \;\, - {P_1}{L_q}{C_q}) + {( - {\delta _l}{P_1}{B_p}{H_l}{K_j} - {\delta _l}{P_1}{B_p}H_l^ - {Z_j})^T} + E_q^T{E_p} - E_q^T{E_q}]x(t) + {{\tilde x}^T}(t)[({P_1}{A_q} \\ \;\, - {P_1}{L_q}{C_q}) + {({P_1}{A_q} - {P_1}{L_q}{C_q})^T} - \beta {P_1} + E_q^T{E_q} + {P_1}{P_1}]\tilde x(t) + {w^T}(t)(D_p^T{D_p} - {{\bar \rho }^2}{e^{ - \beta T}}I)w(t) \\ \le \sum\nolimits_{l = 1}^{{2^m}} {\sum\nolimits_{p = 1}^r {\sum\nolimits_{q = 1}^r {\sum\nolimits_{j = 1}^r {{\vartheta _p}(x(t)){\vartheta _q}(\hat x(t)){\eta _j}(\hat x(t))} } } [} {\chi ^T}(t){\Pi _{pqj}}\chi (t)] \\ \end{array} \end{equation} | (3.8) |
According to [28], the slack matrix is introduced to avoid conservative results as shown such that
\begin{equation} \sum\nolimits_{p = 1}^r {\sum\nolimits_{q = 1}^r {\sum\nolimits_{j = 1}^r {{\vartheta _p}(x(t)){\vartheta _q}(\hat x(t))[{\vartheta _j}(\hat x(t)) - {\eta _j}(\hat x(t))]\Omega = 0} } } \end{equation} | (3.9) |
Then, from (3.8) and (3.9), one has
\begin{equation} \begin{array}{l} \sum\nolimits_{l = 1}^{{2^m}} {\sum\nolimits_{p = 1}^r {\sum\nolimits_{q = 1}^r {\sum\nolimits_{j = 1}^r {{\vartheta _p}(x(t)){\vartheta _q}(\hat x(t)){\eta _j}(\hat x(t))} } } } {\Pi _{pqj}} \\ = \sum\nolimits_{l = 1}^{{2^m}} {\sum\nolimits_{p = 1}^r {\sum\nolimits_{q = 1}^r {\sum\nolimits_{j = 1}^r {{\vartheta _p}(x(t)){\vartheta _q}(\hat x(t))[{\vartheta _j}(\hat x(t))({\gamma _j}{\Pi _{pqj}} - {\gamma _j}\Omega + \Omega )} } } } \\ \;\;\, + ({\eta _j}(\hat x(t)) - {\gamma _j}{\vartheta _j}(\hat x(t)))({\Pi _{pqj}} - \Omega )] \\ = \frac{1}{2}\sum\nolimits_{l = 1}^{{2^m}} {\sum\nolimits_{p = 1}^r {\sum\nolimits_{q = 1}^r {\sum\nolimits_{j = 1}^r {{\vartheta _p}(x(t)){\vartheta _q}(\hat x(t))} [{\eta _j}(\hat x(t))} } } ({\gamma _j}{\Pi _{pqj}} + {\gamma _q}{\Pi _{pjq}} - {\gamma _j}\Omega - {\gamma _q}\Omega + 2\Omega )] \\ \;\;\, + \sum\nolimits_{l = 1}^{{2^m}} {\sum\nolimits_{p = 1}^r {\sum\nolimits_{q = 1}^r {\sum\nolimits_{j = 1}^r {{\vartheta _p}(x(t)){\vartheta _q}(\hat x(t))({\eta _j}(\hat x(t)) - {\gamma _j}{\vartheta _j}(\hat x(t)))} } } } ({\Pi _{pqj}} - \Omega ) \\ \end{array} \end{equation} | (3.10) |
Then, based on Theorem 1, one gets
\begin{equation} \sum\nolimits_{l = 1}^{{2^m}} {\sum\nolimits_{p = 1}^r {\sum\nolimits_{q = 1}^r {\sum\nolimits_{j = 1}^r {{\vartheta _p}(x(t)){\vartheta _q}(\hat x(t)){\eta _j}(\hat x(t))} } } [} {\chi ^T}(t){\Pi _{pqj}}\chi (t)] < 0 \end{equation} | (3.11) |
Multiplying (3.11) by {e^{ - \beta t}} and integrating both sides of (24) from 0 to t , then since {\tilde z^T}(t)\tilde z(t) > 0 and {\Pi _{pqj}} < 0 , one can obtain
\begin{equation} {e^{ - \beta t}}V(\xi (t)) - V(\xi (0)) < {\bar \rho ^2}{e^{ - \beta T}}\int_0^t {{e^{ - \beta t}}{w^T}(t)w(t)dt} \end{equation} | (3.12) |
Then, multiplying (3.12) by {e^{\beta t}} , (3.12) can be represented as
\begin{equation} V(\xi (t)) < {e^{\beta t}}V(\xi (0)) + {\bar \rho ^2}{e^{ - \beta T}}{e^{\beta t}}\int_0^t {{e^{ - \beta t}}{w^T}(t)w(t)dt} \end{equation} | (3.13) |
Recalling to V(\xi (t)) = {\xi ^T}(t)P\xi (t) , \tilde P = {R^{ - \frac{1}{2}}}P{R^{ - \frac{1}{2}}} and {\left\| {w(t)} \right\|^2} < h , (3.13) leads to
\begin{equation} \begin{array}{l} {\xi ^T}(t)P\xi (t) < {e^{\beta t}}({\xi ^T}(0)P\xi (0) + {{\bar \rho }^2}{e^{ - \beta T}}h\int_0^t {{e^{ - \beta t}}} dt) \\ \quad \quad \quad \quad \;\, < {e^{\beta t}}({\lambda _1}{a_1} + \frac{{{{\bar \rho }^2}{e^{ - \beta T}}h}}{\beta }(1 - {e^{ - \beta t}})) \\ \quad \quad \quad \quad \;\, \le {e^{\beta T}}({\lambda _1}{a_1} + \frac{{{{\bar \rho }^2}{e^{ - \beta T}}h}}{\beta }(1 - {e^{ - \beta T}})) \\ \end{array} \end{equation} | (3.14) |
in which {\lambda _1} = {\lambda _{\max }}(\tilde P) .
Define {\lambda _2} = {\lambda _{\min }}(\tilde P) , since V(\xi (t)) = {\xi ^T}(t)P\xi (t) \ge {\lambda _2}{\xi ^T}(t)R\xi (t) , then form (3.14), one has
\begin{equation} {\xi ^T}(t)R\xi (t) < \frac{{{e^{\beta T}}({\lambda _1}{a_1} + \frac{{{{\bar \rho }^2}{e^{ - \beta T}}h}}{\beta }(1 - {e^{ - \beta T}}))}}{{{\lambda _2}}}, \;\;\forall t \in [0, T] \end{equation} | (3.15) |
Suppose {\xi ^T}(t)R\xi (t) < \frac{{{e^{\beta T}}({\lambda _1}{a_1} + \frac{{{{\bar \rho }^2}{e^{ - \beta T}}h}}{\beta }(1 - {e^{ - \beta T}}))}}{{{\lambda _2}}}, \; \; \forall t \in [0, T] , then from Definition 1, finite-time stability of fuzzy system (2.3) is ensured within ({a_1}, {a_2}, R, T, \bar \rho, h) .
In what follows, we will give the proof of the robust {H_\infty } output feedback finite-time boundedness performance of the fuzzy system (2.3).
From the inequality (3.7), on can easily find that
\begin{equation} \dot V(\xi (t)) - \beta V(\xi (t)) < - {\tilde z^T}(t)\tilde z(t) + {\bar \rho ^2}{e^{ - \beta T}}{w^T}(t)w(t) \end{equation} | (3.16) |
Similarly, multiplying (3.16) by {e^{ - \beta t}} , and then integrating it from 0 to T , one has
\begin{equation} {e^{ - \beta T}}V(\xi (T)) - V(\xi (0)) < - \int_0^T {{e^{ - \beta t}}{{\tilde z}^T}(t)\tilde z(t)dt} + {\bar \rho ^2}{e^{ - \beta T}}\int_0^T {{e^{ - \beta t}}{w^T}(t)w(t)dt} \end{equation} | (3.17) |
Under the condition of V(\xi (0)) = 0 and V(\xi (T)) > 0 , (3.17) can be rewritten such that
\begin{equation} \int_0^T {{e^{ - \beta t}}{{\tilde z}^T}(t)\tilde z(t)dt} < {\bar \rho ^2}{e^{ - \beta T}}\int_0^T {{e^{ - \beta t}}{w^T}(t)w(t)dt} \end{equation} | (3.18) |
Since {e^{ - \beta T}}\int_0^T {{e^{ - \beta t}}{w^T}(t)w(t)dt} < \int_0^T {{e^{ - \beta t}}{{\tilde z}^T}(t)\tilde z(t)dt} , {\bar \rho ^2}{e^{ - \beta T}}\int_0^T {{e^{ - \beta t}}{w^T}(t)w(t)dt} < {\bar \rho ^2}{e^{ - \beta T}}\int_0^T {{w^T}(t)w(t)dt} , then from (3.18), one can get
\int_0^T {{{\tilde z}^T}(t)\tilde z(t)dt} < {\bar \rho ^2}\int_0^T {{w^T}(t)w(t)dt} |
Further, the robust {H_\infty } finite-time boundedness performance index has been obtained. Hence, from Definition 2, the fuzzy system (2.3) is finite-time and can achieve a robust {H_\infty } performance.
The solution of positive controller gains {K_j} , observer gains {L_q} and positive definite symmetric matrix P are given in following.
Firstly, define X = P_1^{ - 1} , {Y_j} = {K_j}X , {S_j} = {Z_j}X and {T_q} = {L_q}\bar X , by left and right multiplying {\rm{diag}}\{ X, X, I\} on both sides of (3.2) and (3.3), thus one can get the following LMIs
\begin{equation} {\bar \Pi _{pqj}} - \bar \Omega < 0 \end{equation} | (3.19) |
\begin{equation} {\gamma _j}{\bar \Pi _{pqj}} + {\gamma _q}{\bar \Pi _{pjq}} - {\gamma _j}\bar \Omega - {\gamma _q}\bar \Omega + 2\bar \Omega < 0, \;\, q \le j \end{equation} | (3.20) |
where
{\Theta _{pqj}} = \left[ {\begin{array}{*{20}{c}} {\Theta _{pqj}^{11}} & X & {\Theta _{pqj}^{13}} & X & 0 \\ * & {\Theta _{pqj}^{22}} & X & { - {{(E_q^T{E_q} + E_p^T{E_q})}^{ - 1}}} & 0 \\ * & * & {\Theta _{pqj}^{33}} & X & 0 \\ * & * & * & { - {{(E_q^T{E_q})}^{ - 1}}I} & 0 \\ * & * & * & * & {( - {{\bar \rho }^2}{e^{ - \beta T}} + D_p^T{D_p})I} \\ \end{array}} \right], |
\bar \Omega = \left[ {\begin{array}{*{20}{c}} {X{\Omega _{11}}X} & {X{\Omega _{12}}X} & {X{\Omega _{13}}} \\ * & {X{\Omega _{22}}X} & {X{\Omega _{23}}} \\ * & * & {{\Omega _{33}}} \\ \end{array}} \right], |
with
\Theta _{pqj}^{11} = {A_p}X + XA_p^T + {\delta _l}{B_p}{H_l}{Y_j} + {\delta _l}Y_j^TH_l^TB_p^T + {\delta _l}{B_p}H_l^ - {S_j} + {\delta _l}S_j^T{(H_l^ - )^T}B_p^T - \beta X + I, |
\Theta _{pqj}^{13} = - {\delta _l}{B_p}{H_l}{Y_j} - {\delta _l}{B_p}H_l^ - {S_j} + XA_p^T - XA_q^T - C_p^TT_q^T - C_q^TT_q^T, |
\Theta _{pqj}^{22} = - {(E_p^T{E_p} - E_p^T{E_q} - E_q^T{E_p} - E_q^T{E_q})^{ - 1}}I, \;\;\Theta _{pqj}^{33} = {A_q}X + XA_q^T - {T_q}{C_q} - C_q^TT_q^T - \beta X + I. |
Subsequently, by solving LMIs (3.19) and (3.20), one can obtain X , {Y_j} , {S_j} and {T_q} , the it follows {P_1} , {K_j} = {Y_j}{X^{ - 1}} and {S_j} = {H_j}{X^{ - 1}} . According to Lemma 2, the SVD of the output matrix C \in {\Re ^{l \times n}} , for C = {C_p} with a full rank C = O[S, 0]{U^T} , and there exists a matrix \bar X \in {\Re ^{n \times n}} satisfying CX = \bar XC , if there exists EVD X = U\left[{\begin{array}{*{20}{c}} {{X_{11}}} & 0 \\ 0 & {{X_{22}}} \\ \end{array}} \right]{U^T} . Then, one can find that O[S, 0]{U^T}U\left[{\begin{array}{*{20}{c}} {{X_{11}}} & 0 \\ 0 & {{X_{22}}} \\ \end{array}} \right]{U^T} = \bar XO[S, 0]{U^T} . By calculation, one gets \bar X = OS{X_{11}}{S^{ - 1}}{O^{ - 1}} , thus, {\bar X^{ - 1}} = OSX_{11}^{ - 1}{S^{ - 1}}{O^{ - 1}} . For bilinear terms {L_q}CX = {L_q}\bar XC , let {T_q} = {L_q}\bar X , then one can obtain {L_q} = {T_q}{\bar X^{ - 1}} = {T_q}OSX_{11}^{ - 1}{S^{ - 1}}{O^{ - 1}} .
From [28,29], we know that the constraint \mathop \cap \limits_{j = 1}^r \left\{ {x \in {\Re ^n}\left| {\; \left| {h_p^jx} \right| \le {{\bar u}_p}} \right.} \right\} is equivalent to
\begin{equation} h_p^jP_1^{ - 1}{(h_p^j)^T} \le \bar u_p^2 \end{equation} | (3.21) |
By Schur complement, (3.21) is equivalent to the following LMI
\begin{equation} \left[ {\begin{array}{*{20}{c}} {\bar u_p^2} & {h_p^sP_1^{ - 1}} \\ {P_1^{ - 1}{{(h_p^s)}^T}} & {P_1^{ - 1}} \\ \end{array}} \right] \ge 0 \end{equation} | (3.22) |
The design procedures are organized:
Step1: Choose the fuzzy rules, and then give {\bar u_p}(p = 1, \ldots, r) , T > 0 , a_1 > 0 , h > 0 , \bar \rho > 0 , \beta > 0 and select 0 \le {\delta _l} \le 1\, (l = 1, \ldots, {2^m}) which satisfies \sum\nolimits_{l = 1}^{{2^m}} {{\delta _l}} = 1 , and diagonal matrices {H_l} , H_l^ - , which satisfies {H_l} + H_l^ - = {I_n} .
Step 2: Solve the LMI (3.19), (3.20) to get X , {K_j} , {Z_j} and {L_q} .
Step 3: Substitute the solved gains into (3.1), (3.4) and (3.5) to verify whether they are established.
Step 4: In case of the condition (3.1), (3.4) and (3.5) are not satisfied, increase \bar \rho , {a_2} and {\bar u_p}(p = 1, \ldots, r) and increase \beta until the conditions are established. Else, decrease \bar \rho , {a_2} and {\bar u_p}(p = 1, \ldots, r) and increase \beta and go to Steps 1-4 until X cannot be obtained.
Step 5: Represent the fuzzy state observer (2.7) and fuzzy controller (2.11).
Example 1 (Mass-spring-damping system) A mass-spring-damping system example as shown in Figure 1 is employed to verify the feasibility of the developed scheme in this section. The corresponding dynamical equation is shown as follows
\begin{equation} M\ddot x + {F_{c2}} + {F_{c1}} = u(t) \end{equation} | (4.1) |
where M is the mass, F_{c1} and F_{c2} = r\dot{x} denote the friction force, F_{c2} is the restoring force of the spring, and u(t) denotes the control input. F_{c2} = r\dot{x} with r > 0 and {F_{c1}} = d(1 + {\varepsilon ^2}{x^2})x . Then, (4.1) can be described as
\begin{equation} M\ddot x + r\dot x + dx + d{\varepsilon ^2}{x^3} = u(t) \end{equation} | (4.2) |
where x is the displacement from a reference point. Define x(t) = {\left[{\begin{array}{*{20}{c}} {{x_1}(t)} & {{x_2}(t)} \end{array}} \right]^T} = {\left[{\begin{array}{*{20}{c}} x & {\dot x} \end{array}} \right]^T} and \tilde f(t) = (- d - d{\varepsilon ^2}x_1^2(t))/M . The operating domain are {x_1}(t) \in [-2, 2] and d \in [5,8]N/M . Let M = 1\; {\rm{kg}} , r = 2\; {\rm{N}} \cdot {\rm{m/s}} , and \varepsilon = 0.3\; {{\rm{m}}^{ - 1}} . Then, we can calculate that {\tilde f_{\max }} = - 5 in which d = 5 and {x_1}(t) = 0 . {\tilde f_{\min }} = - 10.88 , d = 8 and x_1^2(t) = 4 .
System (4.2) is approximated by the following two fuzzy models
Rule 1: If {\theta _1}(x(t)) is F_{11} , then:
\begin{equation} \left\{ \begin{array}{l} \dot x(t) = {A_1}x(t) + {B_1}sat({u_1}(t)) + {D_1}w(t)\\ z(t) = {E_1}x(t) + {F_1}sat({u_1}(t))\\ y(t) = {C_1}x(t) \end{array} \right. \end{equation} | (4.3) |
Rule 2: If {\theta _1}(x(t)) is F_{21} , then:
\begin{equation} \left\{ \begin{array}{l} \dot x(t) = {A_2}x(t) + {B_2}sat({u_2}(t)) + {D_2}w(t)\\ z(t) = {E_2}x(t) + {F_2}sat({u_2}(t))\\ y(t) = {C_2}x(t) \end{array} \right. \end{equation} | (4.4) |
where x(t) = {\left[{\begin{array}{*{20}{c}} {{x_1}(t)} & {{x_2}(t)} \end{array}} \right]^T} = {\left[{\begin{array}{*{20}{c}} x & {\dot x} \end{array}} \right]^T} , in which {x_1}(t) represents the premise vector. F_{11} and F_{21} represent the IT2 fuzzy sets of the known function {x_1}(t) .
{A_1}(t) = \left[ {\begin{array}{*{20}{c}} 0&1\\ {{{\tilde f}_{\min }}}&{ - \frac{r}{M}} \end{array}} \right], {A_2} = \left[ {\begin{array}{*{20}{c}} 0&1\\ {{{\tilde f}_{\max }}}&{ - \frac{r}{M}} \end{array}} \right], {B_1} = \left[ {\begin{array}{*{20}{c}} 0\\ {\frac{1}{M}} \end{array}} \right], {B_2} = \left[ {\begin{array}{*{20}{c}} 0\\ {\frac{1}{M}} \end{array}} \right], {D_1} = \left[ {\begin{array}{*{20}{c}} { - 0.03} \\ { - 0.02} \\ \end{array}} \right], {D_2} = \left[ {\begin{array}{*{20}{c}} {0.02} \\ {0.02} \\ \end{array}} \right], |
{E_1} = {\left[ {\begin{array}{*{20}{c}} {0.5} \\ 1 \\ \end{array}} \right]^T, {E_2} = {\left[ {\begin{array}{*{20}{c}} {0.5} \\ 1 \\ \end{array}} \right]^T}}, {F_1} = 0.9, {F_2} = 1.1, {C_1} = {\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ \end{array}} \right]^T}, {C_2} = {\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ \end{array}} \right]^T}. |
Finally, the system (4.3) and (4.4) based on IT2 fuzzy theory is represented such that
\begin{equation} \left\{ \begin{array}{l} \dot x(t) = \sum\nolimits_{p = 1}^2 {{\vartheta _p}} (\theta (x(t)))[{A_p}x(t) + {B_p}sat(u(t)) + {D_p}w(t)]\\ z(t) = \sum\nolimits_{p = 1}^2 {{\vartheta _p}} (\theta (x(t)))[{E_p}x(t) + {F_p}sat(u(t))]\\ y(t) = \sum\nolimits_{p = 1}^2 {{\vartheta _p}} (\theta (x(t))){C_p}x(t) \end{array} \right. \end{equation} | (4.5) |
The fuzzy state observer is designed such that
\begin{equation} \left\{ \begin{array}{l} \dot {\hat x}(t) = \sum\nolimits_{q = 1}^r {{\vartheta _q}} (\hat x(t))[{A_q}\hat x(t) + {B_q}sat(u(t)){\rm{ + }}{L_q}(y(t) - \hat y(t))] \\ \hat z(t) = \sum\nolimits_{q = 1}^r {{\vartheta _q}} (\hat x(t))[{E_q}\hat x(t) + {F_q}sat(u(t))] \\ \hat y(t) = \sum\nolimits_{q = 1}^r {{\vartheta _q}} (\hat x(t)){C_q}\hat x(t) \\ \end{array} \right. \end{equation} | (4.6) |
Then the IT2 T-S fuzzy {H_\infty } output feedback finite-time controller can be obtained as
\begin{equation} \begin{array}{l} sat(u(t)) = sat(u(t), \bar u) \\ \quad \;\quad \quad \, = \sum\nolimits_{l = 1}^{{2^m}} {{\delta _l}({H_l}\sum\nolimits_{j = 1}^r {{\eta _j}(\hat x(t))} {K_j} + H_l^ - \sum\nolimits_{j = 1}^r {{\eta _j}(\hat x(t))} {Z_j})\hat x(t)} \\ \quad \quad \quad \;\, {\rm{ = }}\sum\nolimits_{l = 1}^{{2^m}} {\sum\nolimits_{j = 1}^r {{\delta _l}{\eta _j}(\hat x(t))} ({H_l}{K_j} + H_l^ - {Z_j})} \hat x(t) \\ \end{array} \end{equation} | (4.7) |
where {H_1} = 1 , H_1^ - = 0 , {H_2} = 0 , H_2^ - = 1 , {\delta _1} = 0.6 and {\delta _2} = 0.4 .
The disturbance input is selected as
\begin{equation} w(t) = \left\{ \begin{array}{l} 0.5, \quad \;\, {\rm{if}}\;0 < t < 1 \\ 0.1, \quad \;\, {\rm{if}}\;2 < t < 5 \\ 0, \quad \;\, \;\;\, {\rm{else}} \\ \end{array} \right. \end{equation} | (4.8) |
The normalized membership functions of fuzzy system, state observer and controller are selected by Table 1, Table 2 and Table 3, respectively.
\vartheta _1^L(x(t)) = \frac{{ - \tilde f({x_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 | \vartheta _1^U(x(t)) = \frac{{ - \tilde f({x_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} with d = 8 |
\vartheta _2^L(x(t)) = \frac{{\tilde f({x_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 8 | \vartheta _2^U(x(t)) = \frac{{\tilde f({x_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 |
\upsilon _1^L(x(t)){\rm{ = }}{\sin ^2}({x_1}(t)) | \upsilon _1^U(x(t)) = 1 - {\sin ^2}({x_1}(t)) |
\upsilon _2^L(x(t)) = 1 - {\sin ^2}({x_1}(t)) | \upsilon _2^U(x(t)){\rm{ = }}{\sin ^2}({x_1}(t)) |
\vartheta _1^L(\hat x(t)) = \frac{{ - \tilde f({{\hat x}_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 | \vartheta _1^U(\hat x(t)) = \frac{{ - \tilde f({{\hat x}_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} with d = 8 |
\vartheta _2^L(\hat x(t)) = \frac{{\tilde f({{\hat x}_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 8 | \vartheta _2^U(\hat x(t)) = \frac{{\tilde f({{\hat x}_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 |
\upsilon _1^L(\hat x(t)){\rm{ = }}{\sin ^2}({\hat x_1}(t)) | \upsilon _1^U(\hat x(t)) = 1 - {\sin ^2}({\hat x_1}(t)) |
\upsilon _2^L(\hat x(t)) = 1 - {\sin ^2}({\hat x_1}(t)) | \upsilon _2^U(\hat x(t)){\rm{ = }}{\sin ^2}({\hat x_1}(t)) |
\eta _1^L(\hat x(t)) = 1 - \frac{1}{9}\hat x_1^2(t) | \eta _1^U(\hat x(t)) = 1 - \frac{1}{{27}}\hat x_1^2(t) |
\eta _2^L(\hat x(t)) = \frac{1}{{27}}\hat x_1^2(t) | \eta _2^U(\hat x(t)) = \frac{1}{9}\hat x_1^2(t) |
b_1^L(\hat x(t)){\rm{ = 0}}{\rm{.6}}{\sin ^2}({\hat x_1}(t)) | b_1^U(\hat x(t)) = 1 - 0.6{\sin ^2}({\hat x_1}(t)) |
b_2^L(\hat x(t)) = 1 - 0.6{\sin ^2}({\hat x_1}(t)) | b_2^U(\hat x(t)){\rm{ = 0}}{\rm{.6}}{\sin ^2}({\hat x_1}(t)) |
For given {a_1} = 5.8426 , {a_2} = 12.8613 , {h} = 3 , {\beta} = 0.01 , \bar \rho = 0.3 , {T} = 10 , and then by solving LMIs in Theorem 1 with the saturation levels \bar u = 0.18 , we are able to get the constants and positive definite matrices as follows:
{K_1} = {\left[ {\begin{array}{*{20}{c}} {0.3223} \\ { - 0.1475} \\ \end{array}} \right]^T}, {K_2} = {\left[ {\begin{array}{*{20}{c}} {0.3223} \\ { - 0.1475} \\ \end{array}} \right]^T}, {Z_1} = {\left[ {\begin{array}{*{20}{c}} {0.4835} \\ { - 0.2212} \\ \end{array}} \right]^T}, |
{Z_2} = {\left[ {\begin{array}{*{20}{c}} {0.4835} \\ { - 0.2212} \\ \end{array}} \right]^T}, {L_1} = \left[ {\begin{array}{*{20}{c}} {0.4834} \\ { - 0.2212} \\ \end{array}} \right], {L_2} = \left[ {\begin{array}{*{20}{c}} {0.4834} \\ { - 0.2212} \\ \end{array}} \right]. |
The results are carried out by choosing the initial conditions x(0) = {\left[{\begin{array}{*{20}{c}} {0.7} & { - 0.6} \end{array}} \right]^T} , \hat x(0) = {\left[{\begin{array}{*{20}{c}} {0.6} & { - 0.5} \end{array}} \right]^T} . Then, Figures 2-6 show the responses of closed-loop system. In addition, by Figures 2-3, from which we can see that all the estimations converge to zero asymptotically. Besides, the precise condition {\xi ^T}(0)R\xi (0) \le {a_1} = 5.8426 is verified, and operating domain of the membership functions is established, i.e, {x_1}(t) \in [-2, 2] . Figure 4 is the response of the saturated control input u which satisfies the conditions that \bar u \le 0.18 . From Figure 5, one can find that {\xi ^T}(t)R\xi (t) stays within the bound of {a_2} = 12.8613 , which implies that the definition of robust {H_\infty } finite-time stability is satisfied. Figure 6 shows the distance attenuation for the fuzzy system, from which one can know that the robust {H_\infty } finite-time boundedness is satisfied.
Example 2 (Tunnel diode circuit system) A nonlinear tunnel diode circuit system example as shown in Figure 7 is employed to verify the feasibility of the developed scheme in this subsection.
where {i_L}(t) is the inductor current, and {i_D}(t) depicts the nonlinear volt-ampere characteristic of tunnel diode. {V_C} is the voltage of the capacitor C . {V_D} is the voltage of the tunnel diode D , R and L are electrical resistance.
The corresponding dynamical equation is shown as follows
\begin{equation} {i_D}(t) = 0.002{V_D}(t) + \tau V_D^3(t) \end{equation} | (4.9) |
in which \tau \in [0.01, 0.03] is an uncertain parameter. Let {x_1}(t) = {V_D}(t) , {x_2}(t) = {i_D}(t) and g({V_D}(t)) = 0.002 + \tau V_D^2(t) as nonlinear function composed of the terminal voltage across the tunnel diode. Here, state variable is supposed to be {x_1}(t) \in [-3, 3] . Then, one can find that {g_{\max }} = 0.0272 with \tau = 0.03 and {x_1}(t) = 3 . {g_{\min }} = 0.002 with \tau = 0.01 and {x_1}(t) = 0 .
Then, (4.9) can be described as
\begin{equation} \left\{ \begin{array}{l} {{\dot x}_1}(t) = - 50g({V_D}(t)){x_1}(t) + 50{x_2}(t) + u(t) \\ {{\dot x}_2}(t) = - {x_1}(t) - 10{x_2}(t) + u(t) \\ \end{array} \right. \end{equation} | (4.10) |
Then system (4.10) is approximated by the following two fuzzy models
Rule 1: If {\theta _1}(x(t)) is F_{11} , then:
\begin{equation} \left\{ \begin{array}{l} \dot x(t) = {A_1}x(t) + {B_1}sat({u_1}(t)) + {D_1}w(t)\\ z(t) = {E_1}x(t) + {F_1}sat({u_1}(t))\\ y(t) = {C_1}x(t) \end{array} \right. \end{equation} | (4.11) |
Rule 2: If {\theta _1}(x(t)) is F_{21} , then:
\begin{equation} \left\{ \begin{array}{l} \dot x(t) = {A_2}x(t) + {B_2}sat({u_2}(t)) + {D_2}w(t)\\ z(t) = {E_2}x(t) + {F_2}sat({u_2}(t))\\ y(t) = {C_2}x(t) \end{array} \right. \end{equation} | (4.12) |
where x(t) = {\left[{\begin{array}{*{20}{c}} {{x_1}(t)} & {{x_2}(t)} \\ \end{array}} \right]^T} , in which {x_1}(t) represents the premise vector. F_{11} and F_{21} represent the IT2 fuzzy sets of the known function {x_1}(t) .
{A_1} = \left[ {\begin{array}{*{20}{c}} { - \frac{{{g_{\min }}}}{{0.02}}} & {50} \\ { - 1} & { - 10} \\ \end{array}} \right], {A_2} = \left[ {\begin{array}{*{20}{c}} { - \frac{{{g_{\max }}}}{{0.02}}} & {50} \\ { - 1} & { - 10} \\ \end{array}} \right], {B_1} = \left[ {\begin{array}{*{20}{c}} 0 \\ 1 \\ \end{array}} \right], {B_2} = \left[ {\begin{array}{*{20}{c}} 0 \\ 1 \\ \end{array}} \right], {D_1} = \left[ {\begin{array}{*{20}{c}} { - 0.03} \\ { - 0.02} \\ \end{array}} \right], {D_2} = \left[ {\begin{array}{*{20}{c}} {0.02} \\ {0.02} \\ \end{array}} \right], |
{E_1} = {\left[ {\begin{array}{*{20}{c}} {0.5} \\ 1 \\ \end{array}} \right]^T}, {E_2} = {\left[ {\begin{array}{*{20}{c}} {0.5} \\ 1 \\ \end{array}} \right]^T}, {F_1} = 0.9, {F_2} = 1.1, {C_1} = {\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ \end{array}} \right]^T}, {C_2} = {\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ \end{array}} \right]^T}. |
The normalized membership functions of fuzzy system, state observer and controller are selected by Table 4, Table 5 and Table 6, respectively.
\vartheta _1^L(x(t)) = \frac{{{g_{\max }} - g({V_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.03 | \vartheta _1^U(x(t)) = \frac{{{g_{\max }} - g({V_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.01 |
\vartheta _2^L(x(t)) = 1 - \vartheta _1^U(x(t)) | \vartheta _2^U(x(t)) = 1 - \vartheta _1^L(x(t)) |
\upsilon _1^L(x(t)){\rm{ = }}{\sin ^2}({V_D}(t)) | \upsilon _1^U(x(t)) = 1 - {\sin ^2}({V_D}(t)) |
\upsilon _2^L(x(t)) = 1 - {\sin ^2}({V_D}(t)) | \upsilon _2^U(x(t)){\rm{ = }}{\sin ^2}({V_D}(t)) |
\vartheta _1^L(\hat x(t)) = \frac{{{g_{\max }} - g({{\hat V}_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.03 | \vartheta _1^U(\hat x(t)) = \frac{{{g_{\max }} - g({{\hat V}_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.01 |
\vartheta _2^L(\hat x(t)) = 1 - \vartheta _1^U(\hat x(t)) | \vartheta _2^U(\hat x(t)) = 1 - \vartheta _1^L(\hat x(t)) |
\upsilon _1^L(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) | \upsilon _1^U(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) |
\upsilon _2^L(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) | \upsilon _2^U(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) |
\eta _1^L(\hat x(t)) = 1 - \frac{1}{9}\hat V_D^2(t) | \eta _1^U(\hat x(t)) = 1 - \frac{1}{{27}}\hat V_D^2(t) |
\eta _2^L(\hat x(t)) = \frac{1}{{27}}\hat V_D^2(t) | \eta _2^U(\hat x(t)) = \frac{1}{9}\hat V_D^2(t) |
b_1^L(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) | b_1^U(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) |
b_2^L(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) | b_2^U(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) |
For given {\delta _1} = 0.7 , {\delta _2} = 0.3 , {a_1} = 2.9403 , {a_2} = 10.4953 , {h} = 0.3 , {\beta} = 0.2 , \bar \rho = 0.3 , {T} = 6 , and then by solving LMIs in Theorem 1 with the saturation levels \bar u = 0.82 , we are able to get the constants and positive definite matrices as follows:
{K_1} = {\left[ {\begin{array}{*{20}{c}} { - 5.7955} \\ { - 2.4495} \\ \end{array}} \right]^T}, {K_2} = {\left[ {\begin{array}{*{20}{c}} { - 5.7955} \\ { - 2.4495} \\ \end{array}} \right]^T}, {Z_1} = {\left[ {\begin{array}{*{20}{c}} { - 13.5228} \\ { - 5.7155} \\ \end{array}} \right]^T}, |
{Z_2} = {\left[ {\begin{array}{*{20}{c}} { - 13.5228} \\ { - 5.7155} \\ \end{array}} \right]^T}, {L_1} = \left[ {\begin{array}{*{20}{c}} {0.2208} \\ {1.4482} \\ \end{array}} \right], {L_2} = \left[ {\begin{array}{*{20}{c}} {0.2295} \\ {1.4482} \\ \end{array}} \right]. |
The results are carried out by choosing the initial conditions the same as Example 1. Then, Figures 8-12 show the responses of closed-loop system. In this example, {\xi ^T}(0)R\xi (0) \le {a_1} = 2.9403 , saturated control input \bar u \le 0.82 and {\xi ^T}(t)R\xi (t) \le {a_2} = 10.4953 .
To further verify the feasibility of the proposed fuzzy output feedback finite-time controller, we apply the fuzzy controller in [19], which is designed based on asymptotic stability theory to control system (4.9). Especially pointed out that, the controlled IT2 T-S interconnected system in [19] has been revised as IT2 T-S fuzzy system, thus can be compared further. In the simulation, we utilize the same IT2 T-S fuzzy system and the same initial conditions of x(t) and \hat x(t) . The controller and observer gain matrices are as follows:
{K_1} = {\left[ {\begin{array}{*{20}{c}} {13.8487} \\ {10.1729} \\ \end{array}} \right]^T}, {K_2} = {\left[ {\begin{array}{*{20}{c}} { - 19.8188} \\ { - 10.9547} \\ \end{array}} \right]^T}, {Z_1} = {\left[ {\begin{array}{*{20}{c}} { - 69.9688} \\ { - 22.7800} \\ \end{array}} \right]^T}, |
{Z_2} = {\left[ {\begin{array}{*{20}{c}} {8.5887} \\ {24.7800} \\ \end{array}} \right]^T}, {L_1} = \left[ {\begin{array}{*{20}{c}} {2.8107} \\ {8.4807} \\ \end{array}} \right], {L_2} = \left[ {\begin{array}{*{20}{c}} {2.8107} \\ {8.4807} \\ \end{array}} \right]. |
The simulation results are also depicted by Figs. 8-9. From Figs. 8-9, we clearly know that the variables and their estimations of the controlled system in this study have faster convergent rates than those by [19].
The robust {H_\infty } observer-based finite-time control problem for IT2 T-S fuzzy system in presence actuator saturation has been studied. In order to obtain the finite-time stability and robust {H_\infty } finite-time boundedness for the controlled plant, a fuzzy state observer and a fuzzy robust {H_\infty } finite-time controller with saturation limitation have been proposed. Then, on the basis of the Lyapunov function method and LMIs theory, the finite-time stability sufficient conditions are derived to ensure of IT2 T-S fuzzy systems in presence of input saturation limitation. At last, two practical examples of nonlinear mass-spring-damping and tunnel diode circuit systems is given to verify the feasibility of the developed fuzzy control scheme.
This work was supported by the National Natural Science Foundation of China (No. 61903167).
The authors declare that there is no conflicts of interest.
[1] |
X. D. Li, J. H. Shen, H. Akca, R. Rakkiyappan, LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter, Appl. Math. Comput., 250 (2015), 798–804. https://doi.org/10.1016/j.amc.2014.10.113 doi: 10.1016/j.amc.2014.10.113
![]() |
[2] |
X. D. Li, P. Li, Stability of time-delay systems with impulsive control involving stabilizing delays, Automatica, 124 (2021), 109336. https://doi.org/10.1016/j.automatica.2020.109336 doi: 10.1016/j.automatica.2020.109336
![]() |
[3] |
D. Yang, X. D. Li, J. L. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal-Hybri., 32 (2019), 294–305. https://doi.org/10.1016/j.nahs.2019.01.006 doi: 10.1016/j.nahs.2019.01.006
![]() |
[4] |
Y. Chen, J. X. Wu, J. Lan, Study on reasonable initialization enhanced Karnik-Mendel algorithms for centroid type-reduction of interval type-2 fuzzy logic systems, AIMS Mathematics, 5 (2020), 6149–6168. https://doi.org/10.3934/math.2020395 doi: 10.3934/math.2020395
![]() |
[5] |
Y. Chen, J. X. Wu, J. Lan, Study on weighted-based noniterative algorithms for centroid type-reduction of interval type-2 fuzzy logic systems, AIMS Mathematics, 5 (2020), 7719–7745. https://doi.org/10.3934/math.2020494 doi: 10.3934/math.2020494
![]() |
[6] |
H. K. Lam, L. D. Seneviratne, Stability analysis of interval type-2 fuzzy-model-based control systems, IEEE T. Syst. Man Cy. B, 38 (2008), 617–628. https://doi.org/10.1109/TSMCB.2008.915530 doi: 10.1109/TSMCB.2008.915530
![]() |
[7] |
T. Zhao, S. Y. Dian, State feedback control for interval type-2 fuzzy systems with time-varying delay and unreliable communication links, IEEE T. Fuzzy Syst., 26 (2018), 951–966. https://doi.org/10.1109/TFUZZ.2017.2699947 doi: 10.1109/TFUZZ.2017.2699947
![]() |
[8] |
L. Sheng, X. Y. Ma, Stability analysis and controller design of interval type-2 fuzzy systems with time delay, Int. J. Syst. Sci., 45 (2014), 977–993. https://doi.org/10.1080/00207721.2012.743056 doi: 10.1080/00207721.2012.743056
![]() |
[9] |
R. Kavikumar, R. Sakthivel, O. M. Kwon, B. Kaviarasan, Faulty actuator-based control synthesis for interval type-2 fuzzy systems via memory state feedback approach, Int. J. Syst. Sci., 51 (2020), 2958–2981. https://doi.org/10.1080/00207721.2020.1804643 doi: 10.1080/00207721.2020.1804643
![]() |
[10] |
H. K. Lam, H. Y. Li, C. Deters, E. L. Secco, H-A. Wurdemann, K. Althoefer, Control design for interval type-2 fuzzy systems under imperfect premise matching, IEEE T. Ind. Electron., 61 (2014), 956–968. https://doi.org/10.1109/TIE.2013.2253064 doi: 10.1109/TIE.2013.2253064
![]() |
[11] |
H. Y. Li, X. J. Sun, L. G. Wu, H. K. Lam, State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions, IEEE T. Fuzzy Syst., 23 (2015), 1943–1957. https://doi.org/10.1109/TFUZZ.2014.2387876 doi: 10.1109/TFUZZ.2014.2387876
![]() |
[12] |
W. Zheng, Z. M. Zhang, H. B. Wang, H. R. Wang, Robust H_\infty dynamic output feedback control for interval type-2 T-S fuzzy multiple time-varying delays systems with external disturbance, J. Franklin I., 357 (2020), 3193–3218. https://doi.org/10.1016/j.jfranklin.2019.03.039 doi: 10.1016/j.jfranklin.2019.03.039
![]() |
[13] | W. T. Song, S. C. Tong, Observer-based fuzzy event-triggered control for interval type-2 fuzzy systems, Int. J. Fuzzy Syst., (2021). https://doi.org/10.1007/s40815-021-01114-w |
[14] |
O. Uncu, I. B. Turksen, Discrete interval type 2 fuzzy system models using uncertainty in learning parameters, IEEE T. Fuzzy Syst., 15 (2007), 90–106. https://doi.org/10.1109/TFUZZ.2006.889765 doi: 10.1109/TFUZZ.2006.889765
![]() |
[15] |
Y. B. Gao, H. Y. Li, L. G. Wu, H. R. Karimi, H. K. Lam, Optimal control of discrete-time interval type-2 fuzzy-model-based systems with D-stability constraint and control saturation, Signal Process., 120 (2016), 409–421. https://doi.org/10.1016/j.sigpro.2015.09.007 doi: 10.1016/j.sigpro.2015.09.007
![]() |
[16] |
Q. Zhou, D. Liu, Y. B. Cao, H. K. Lam, R. Sakthivel, Interval type-2 fuzzy control for nonlinear discrete-time systems with time-varying delays, Neurocomputing, 157 (2015), 22–32. https://doi.org/10.1016/j.neucom.2015.01.042 doi: 10.1016/j.neucom.2015.01.042
![]() |
[17] |
T. Zhao, S. Y. Dian, Delay-dependent stabilization of discrete-time interval type-2 T- S fuzzy systems with time-varying delay, J. Franklin I., 354 (2017), 1542–1567. https://doi.org/10.1016/j.jfranklin.2016.12.002 doi: 10.1016/j.jfranklin.2016.12.002
![]() |
[18] | Y. Zeng, H. K. Lam, B. Xiao, L. G. Wu, L_2 - {L_\infty } control of discrete-time state-delay interval type-2 fuzzy systems via dynamic output feedback, IEEE T. Cybernetics, (2020), 1–11. http://dx.doi.org/10.1109/TCYB.2020.3024754 |
[19] |
W. T. Song, S. C. Tong, Fuzzy decentralized output feedback event-triggered control for interval type-2 fuzzy systems with saturated inputs, Inform. Sciences, 575 (2021), 639–653. https://doi.org/10.1016/j.ins.2021.07.070 doi: 10.1016/j.ins.2021.07.070
![]() |
[20] |
F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica, 37 (2001), 1459–1463. https://doi.org/10.1016/S0005-1098(01)00087-5 doi: 10.1016/S0005-1098(01)00087-5
![]() |
[21] |
Y. Li, L. Liu, G. Feng, Finite-time stabilization of a class of T-S fuzzy systems, IEEE T. Fuzzy Syst., 25 (2017), 1824–1829. https://doi.org/10.1109/TFUZZ.2016.2612301 doi: 10.1109/TFUZZ.2016.2612301
![]() |
[22] |
L. Han, C. Y. Qiu, J. Xiao, Finite-time {H_\infty } control Synthesis for nonlinear switched systems using T-S fuzzy model, Neurocomputing, 171 (2016), 156–170. https://doi.org/10.1016/j.neucom.2015.06.028 doi: 10.1016/j.neucom.2015.06.028
![]() |
[23] |
M. Chen, J. Sun, {H_\infty } finite time control for discrete time-varying system with interval time-varying delay, J. Franklin I., 355 (2018), 5037–5057. https://doi.org/10.1016/j.jfranklin.2018.05.031 doi: 10.1016/j.jfranklin.2018.05.031
![]() |
[24] |
Y. Q. Zhang, Y. Shi, P. Shi, Robust and non-fragile finite-time {H_\infty } control for uncertain Markovian jump nonlinear systems, Appl. Math. Comput., 279 (2016), 125–138. https://doi.org/10.1016/j.amc.2016.01.012 doi: 10.1016/j.amc.2016.01.012
![]() |
[25] |
Y. Q. Zhang, Y. Shi, P. Shi, Resilient and robust finite-time {H_\infty } control for uncertain discrete-time jump nonlinear systems, Appl. Math. Model., 49 (2017), 612–629. https://doi.org/10.1016/j.apm.2017.02.046 doi: 10.1016/j.apm.2017.02.046
![]() |
[26] |
Y. Q. Zhang, C. X. Liu, X. W. Mu, Robust finite-time {H_\infty } control of singular stochastic systems via static output feedback, Appl. Math. Comput., 218 (2012), 5629–5640. https://doi.org/10.1016/j.amc.2011.11.057 doi: 10.1016/j.amc.2011.11.057
![]() |
[27] |
Y. Q. Zhang, P. Shi, S. K. Nguang, Observer-based finite-time {H_\infty } control for discrete singular stochastic systems, Appl. Math. Lett., 38 (2014), 115–121. https://doi.org/10.1016/j.aml.2014.07.010 doi: 10.1016/j.aml.2014.07.010
![]() |
[28] |
T. Zhao, J. H. Liu, S. Y. Dian, Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity, Inform. Sciences, 483 (2019), 153–173. https://doi.org/10.1016/j.ins.2019.01.044 doi: 10.1016/j.ins.2019.01.044
![]() |
[29] |
R. Kavikumar, R. Sakthivel, O. M. Kwon, B. Kaviarasan, Finite-time boundedness of interval type-2 fuzzy systems with time delay and actuator faults, J. Franklin I., 356 (2019), 8296–8324. https://doi.org/10.1016/j.jfranklin.2019.07.031 doi: 10.1016/j.jfranklin.2019.07.031
![]() |
[30] |
N. N. Rong, Z. S. Wang, H. G. Zhang, Finite-time stabilization for discontinuous interconnected delayed systems via interval type-2 T-S fuzzy model approach, IEEE T. Fuzzy Syst., 27 (2019), 249–261. https://doi.org/10.1109/TFUZZ.2018.2856181 doi: 10.1109/TFUZZ.2018.2856181
![]() |
[31] |
Z. S. Wang, N. N. Rong, H. G. Zhang, Finite-time decentralized control of IT2 T-S fuzzy interconnected systems with discontinuous interconnections, IEEE T. Cybernetics, 49 (2019), 3547–3556. https://doi.org/10.1109/TCYB.2018.2848626 doi: 10.1109/TCYB.2018.2848626
![]() |
[32] |
Y. Y. Cao, Z. L. Lin, Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation, IEEE T. Fuzzy Syst., 11 (2003), 57–67. https://doi.org/10.1109/TFUZZ.2002.806317 doi: 10.1109/TFUZZ.2002.806317
![]() |
[33] |
D. Saifia, C. Mohammed, S. Labiod, T. M. Guerra, Robust {H_\infty } static output feedback stabilization of T-S fuzzy systems subject to actuator saturation, Int. J. Control Autom., 10 (2012), 613–622. https://doi.org/10.1007/s12555-012-0319-3 doi: 10.1007/s12555-012-0319-3
![]() |
[34] |
F. W. Yang, Z. D. Wang, Y. S. Hung, M. Gani, Robust {H_\infty } control for networked systems with random communication delays, IEEE T. Automat. Contr., 51 (2006), 511–518. https://doi.org/10.1109/TAC.2005.864207 doi: 10.1109/TAC.2005.864207
![]() |
1. | Chuang Liu, Jinxia Wu, Weidong Yang, Robust Control for Interval Type-2 T-S Fuzzy Discrete Systems with Input Delays and Cyber Attacks, 2023, 36, 1009-6124, 1443, 10.1007/s11424-023-2215-8 | |
2. | Mourad Kchaou, Muhammed Haneef Mubeen Tajudeen, Muhammed Syed Ali, Ramachandran Perumal, Bandana Priya, Ganesh Kumar Thakur, Annular finite-time stability for IT2 fuzzy networked switched system via non-fragile AETS under multiple attacks: Application to tank reactor chemical process model, 2024, 255, 09574174, 124552, 10.1016/j.eswa.2024.124552 |
\vartheta _1^L(x(t)) = \frac{{ - \tilde f({x_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 | \vartheta _1^U(x(t)) = \frac{{ - \tilde f({x_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} with d = 8 |
\vartheta _2^L(x(t)) = \frac{{\tilde f({x_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 8 | \vartheta _2^U(x(t)) = \frac{{\tilde f({x_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 |
\upsilon _1^L(x(t)){\rm{ = }}{\sin ^2}({x_1}(t)) | \upsilon _1^U(x(t)) = 1 - {\sin ^2}({x_1}(t)) |
\upsilon _2^L(x(t)) = 1 - {\sin ^2}({x_1}(t)) | \upsilon _2^U(x(t)){\rm{ = }}{\sin ^2}({x_1}(t)) |
\vartheta _1^L(\hat x(t)) = \frac{{ - \tilde f({{\hat x}_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 | \vartheta _1^U(\hat x(t)) = \frac{{ - \tilde f({{\hat x}_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} with d = 8 |
\vartheta _2^L(\hat x(t)) = \frac{{\tilde f({{\hat x}_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 8 | \vartheta _2^U(\hat x(t)) = \frac{{\tilde f({{\hat x}_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 |
\upsilon _1^L(\hat x(t)){\rm{ = }}{\sin ^2}({\hat x_1}(t)) | \upsilon _1^U(\hat x(t)) = 1 - {\sin ^2}({\hat x_1}(t)) |
\upsilon _2^L(\hat x(t)) = 1 - {\sin ^2}({\hat x_1}(t)) | \upsilon _2^U(\hat x(t)){\rm{ = }}{\sin ^2}({\hat x_1}(t)) |
\eta _1^L(\hat x(t)) = 1 - \frac{1}{9}\hat x_1^2(t) | \eta _1^U(\hat x(t)) = 1 - \frac{1}{{27}}\hat x_1^2(t) |
\eta _2^L(\hat x(t)) = \frac{1}{{27}}\hat x_1^2(t) | \eta _2^U(\hat x(t)) = \frac{1}{9}\hat x_1^2(t) |
b_1^L(\hat x(t)){\rm{ = 0}}{\rm{.6}}{\sin ^2}({\hat x_1}(t)) | b_1^U(\hat x(t)) = 1 - 0.6{\sin ^2}({\hat x_1}(t)) |
b_2^L(\hat x(t)) = 1 - 0.6{\sin ^2}({\hat x_1}(t)) | b_2^U(\hat x(t)){\rm{ = 0}}{\rm{.6}}{\sin ^2}({\hat x_1}(t)) |
\vartheta _1^L(x(t)) = \frac{{{g_{\max }} - g({V_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.03 | \vartheta _1^U(x(t)) = \frac{{{g_{\max }} - g({V_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.01 |
\vartheta _2^L(x(t)) = 1 - \vartheta _1^U(x(t)) | \vartheta _2^U(x(t)) = 1 - \vartheta _1^L(x(t)) |
\upsilon _1^L(x(t)){\rm{ = }}{\sin ^2}({V_D}(t)) | \upsilon _1^U(x(t)) = 1 - {\sin ^2}({V_D}(t)) |
\upsilon _2^L(x(t)) = 1 - {\sin ^2}({V_D}(t)) | \upsilon _2^U(x(t)){\rm{ = }}{\sin ^2}({V_D}(t)) |
\vartheta _1^L(\hat x(t)) = \frac{{{g_{\max }} - g({{\hat V}_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.03 | \vartheta _1^U(\hat x(t)) = \frac{{{g_{\max }} - g({{\hat V}_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.01 |
\vartheta _2^L(\hat x(t)) = 1 - \vartheta _1^U(\hat x(t)) | \vartheta _2^U(\hat x(t)) = 1 - \vartheta _1^L(\hat x(t)) |
\upsilon _1^L(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) | \upsilon _1^U(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) |
\upsilon _2^L(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) | \upsilon _2^U(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) |
\eta _1^L(\hat x(t)) = 1 - \frac{1}{9}\hat V_D^2(t) | \eta _1^U(\hat x(t)) = 1 - \frac{1}{{27}}\hat V_D^2(t) |
\eta _2^L(\hat x(t)) = \frac{1}{{27}}\hat V_D^2(t) | \eta _2^U(\hat x(t)) = \frac{1}{9}\hat V_D^2(t) |
b_1^L(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) | b_1^U(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) |
b_2^L(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) | b_2^U(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) |
\vartheta _1^L(x(t)) = \frac{{ - \tilde f({x_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 | \vartheta _1^U(x(t)) = \frac{{ - \tilde f({x_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} with d = 8 |
\vartheta _2^L(x(t)) = \frac{{\tilde f({x_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 8 | \vartheta _2^U(x(t)) = \frac{{\tilde f({x_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 |
\upsilon _1^L(x(t)){\rm{ = }}{\sin ^2}({x_1}(t)) | \upsilon _1^U(x(t)) = 1 - {\sin ^2}({x_1}(t)) |
\upsilon _2^L(x(t)) = 1 - {\sin ^2}({x_1}(t)) | \upsilon _2^U(x(t)){\rm{ = }}{\sin ^2}({x_1}(t)) |
\vartheta _1^L(\hat x(t)) = \frac{{ - \tilde f({{\hat x}_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 | \vartheta _1^U(\hat x(t)) = \frac{{ - \tilde f({{\hat x}_1}(t)) + {{\tilde f}_{\max }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} with d = 8 |
\vartheta _2^L(\hat x(t)) = \frac{{\tilde f({{\hat x}_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 8 | \vartheta _2^U(\hat x(t)) = \frac{{\tilde f({{\hat x}_1}(t)) - {{\tilde f}_{\min }}}}{{{{\tilde f}_{\max }} - {{\tilde f}_{\min }}}} , with d = 5 |
\upsilon _1^L(\hat x(t)){\rm{ = }}{\sin ^2}({\hat x_1}(t)) | \upsilon _1^U(\hat x(t)) = 1 - {\sin ^2}({\hat x_1}(t)) |
\upsilon _2^L(\hat x(t)) = 1 - {\sin ^2}({\hat x_1}(t)) | \upsilon _2^U(\hat x(t)){\rm{ = }}{\sin ^2}({\hat x_1}(t)) |
\eta _1^L(\hat x(t)) = 1 - \frac{1}{9}\hat x_1^2(t) | \eta _1^U(\hat x(t)) = 1 - \frac{1}{{27}}\hat x_1^2(t) |
\eta _2^L(\hat x(t)) = \frac{1}{{27}}\hat x_1^2(t) | \eta _2^U(\hat x(t)) = \frac{1}{9}\hat x_1^2(t) |
b_1^L(\hat x(t)){\rm{ = 0}}{\rm{.6}}{\sin ^2}({\hat x_1}(t)) | b_1^U(\hat x(t)) = 1 - 0.6{\sin ^2}({\hat x_1}(t)) |
b_2^L(\hat x(t)) = 1 - 0.6{\sin ^2}({\hat x_1}(t)) | b_2^U(\hat x(t)){\rm{ = 0}}{\rm{.6}}{\sin ^2}({\hat x_1}(t)) |
\vartheta _1^L(x(t)) = \frac{{{g_{\max }} - g({V_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.03 | \vartheta _1^U(x(t)) = \frac{{{g_{\max }} - g({V_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.01 |
\vartheta _2^L(x(t)) = 1 - \vartheta _1^U(x(t)) | \vartheta _2^U(x(t)) = 1 - \vartheta _1^L(x(t)) |
\upsilon _1^L(x(t)){\rm{ = }}{\sin ^2}({V_D}(t)) | \upsilon _1^U(x(t)) = 1 - {\sin ^2}({V_D}(t)) |
\upsilon _2^L(x(t)) = 1 - {\sin ^2}({V_D}(t)) | \upsilon _2^U(x(t)){\rm{ = }}{\sin ^2}({V_D}(t)) |
\vartheta _1^L(\hat x(t)) = \frac{{{g_{\max }} - g({{\hat V}_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.03 | \vartheta _1^U(\hat x(t)) = \frac{{{g_{\max }} - g({{\hat V}_D}(t))}}{{{g_{\max }} - {g_{\min }}}} with \tau = 0.01 |
\vartheta _2^L(\hat x(t)) = 1 - \vartheta _1^U(\hat x(t)) | \vartheta _2^U(\hat x(t)) = 1 - \vartheta _1^L(\hat x(t)) |
\upsilon _1^L(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) | \upsilon _1^U(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) |
\upsilon _2^L(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) | \upsilon _2^U(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) |
\eta _1^L(\hat x(t)) = 1 - \frac{1}{9}\hat V_D^2(t) | \eta _1^U(\hat x(t)) = 1 - \frac{1}{{27}}\hat V_D^2(t) |
\eta _2^L(\hat x(t)) = \frac{1}{{27}}\hat V_D^2(t) | \eta _2^U(\hat x(t)) = \frac{1}{9}\hat V_D^2(t) |
b_1^L(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) | b_1^U(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) |
b_2^L(\hat x(t)) = 1 - {\sin ^2}({\hat V_D}(t)) | b_2^U(\hat x(t)){\rm{ = }}{\sin ^2}({\hat V_D}(t)) |