Research article Special Issues

A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients

  • Received: 20 May 2022 Revised: 02 July 2022 Accepted: 06 July 2022 Published: 18 July 2022
  • MSC : 22E70, 34A08, 35R11, 65L05, 70G65

  • The goal of this research is to develop a novel analytic technique for obtaining the approximate and exact solutions of the Caputo time-fractional partial differential equations (PDEs) with variable coefficients. We call this technique as the Aboodh residual power series method (ARPSM), because it apply the Aboodh transform along with the residual power series method (RPSM). It is based on a new version of Taylor's series that generates a convergent series as a solution. Establishing the coefficients for a series, like the RPSM, necessitates the computation of the fractional derivatives each time. As ARPSM just requires the idea of an infinite limit, we simply need a few computations to get the coefficients. This technique solves nonlinear problems without the He's polynomials and Adomian polynomials, so the small size of computation of this technique is the strength of the scheme, which is an advantage over the homotopy perturbation method and the Adomian decomposition method. The absolute and relative errors of five linear and non-linear problems are numerically examined to determine the efficacy and accuracy of ARPSM for time-fractional PDEs with variable coefficients. In addition, numerical results are also compared with other methods such as the RPSM and the natural transform decomposition method (NTDM). Some graphs are also plotted for various values of fractional orders. The results show that our technique is easy to use, accurate, and effective. Mathematica software is used to calculate the numerical and symbolic quantities in the paper.

    Citation: Muhammad Imran Liaqat, Sina Etemad, Shahram Rezapour, Choonkil Park. A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients[J]. AIMS Mathematics, 2022, 7(9): 16917-16948. doi: 10.3934/math.2022929

    Related Papers:

  • The goal of this research is to develop a novel analytic technique for obtaining the approximate and exact solutions of the Caputo time-fractional partial differential equations (PDEs) with variable coefficients. We call this technique as the Aboodh residual power series method (ARPSM), because it apply the Aboodh transform along with the residual power series method (RPSM). It is based on a new version of Taylor's series that generates a convergent series as a solution. Establishing the coefficients for a series, like the RPSM, necessitates the computation of the fractional derivatives each time. As ARPSM just requires the idea of an infinite limit, we simply need a few computations to get the coefficients. This technique solves nonlinear problems without the He's polynomials and Adomian polynomials, so the small size of computation of this technique is the strength of the scheme, which is an advantage over the homotopy perturbation method and the Adomian decomposition method. The absolute and relative errors of five linear and non-linear problems are numerically examined to determine the efficacy and accuracy of ARPSM for time-fractional PDEs with variable coefficients. In addition, numerical results are also compared with other methods such as the RPSM and the natural transform decomposition method (NTDM). Some graphs are also plotted for various values of fractional orders. The results show that our technique is easy to use, accurate, and effective. Mathematica software is used to calculate the numerical and symbolic quantities in the paper.



    加载中


    [1] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [2] A. Loverro, Fractional calculus: history, definitions and applications for the engineer, Tech. Rep., Univ. Notre Dame, Notre Dame, IN, USA, 2004.
    [3] C. Li, Y. Chen, J. Kurths, Fractional calculus and its applications, Phil. Trans. R. Soc. A, 371 (2013), 20130037. https://doi.org/10.1098/rsta.2013.0037 doi: 10.1098/rsta.2013.0037
    [4] M. I. Liaqat, A. Khan, A. Akgul, Adaptation on power series method with conformable operator for solving fractional order systems of nonlinear partial differential equations, Chaos Soliton. Fract., 157 (2022), 111984. https://doi.org/10.1016/j.chaos.2022.111984 doi: 10.1016/j.chaos.2022.111984
    [5] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [6] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 753601. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486
    [7] D. Valerio, J. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17 (2014), 552–578. https://doi.org/10.2478/s13540-014-0185-1 doi: 10.2478/s13540-014-0185-1
    [8] E. Ilhan, Analysis of the spread of Hookworm infection with Caputo-Fabrizio fractional derivative, Turkish Journal of Science, 7 (2022), 43–52.
    [9] R. Murali, A. P. Selvan, C. Park, J. R. Lee, Aboodh transform and the stability of second order linear differential equations, Adv. Differ. Equ., 2021 (2021), 296. https://doi.org/10.1186/s13662-021-03451-4 doi: 10.1186/s13662-021-03451-4
    [10] M. A. Ragusa, Parabolic Herz spaces and their applications, Appl. Math. Lett., 25 (2012), 1270–1273. https://doi.org/10.1016/j.aml.2011.11.022 doi: 10.1016/j.aml.2011.11.022
    [11] A. Atangana, J. F. Gomez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu, Numer. Meth. Part. Differ. Equ., 34 (2018), 1502–1523. https://doi.org/10.1002/num.22195 doi: 10.1002/num.22195
    [12] S. Rezapour, S. Etemad, H. Mohammadi, A mathematical analysis of a system of Caputo-Fabrizio fractional differential equationsfor the anthrax disease model in animals, Adv. Differ. Equ., 2020 (2020), 481. https://doi.org/10.1186/s13662-020-02937-x doi: 10.1186/s13662-020-02937-x
    [13] A. Khan, M. I. Liaqat, M. Younis, A. Alam, Approximate and exact solutions to fractional order Cauchy reaction-diffusion equations by new combine techniques, J. Math., 2021 (2021), 5337255. https://doi.org/10.1155/2021/5337255 doi: 10.1155/2021/5337255
    [14] D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. https://doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0
    [15] D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903–917. https://doi.org/10.1007/s10092-017-0213-8 doi: 10.1007/s10092-017-0213-8
    [16] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [17] C. T. Deressa, S. Etemad, S. Rezapour, On a new four-dimensional model of memristor-based chaotic circuit in the context of nonsingular Atangana-Baleanu-Caputo operators, Adv. Differ. Equ., 2021 (2021), 444. https://doi.org/10.1186/s13662-021-03600-9 doi: 10.1186/s13662-021-03600-9
    [18] C. T. Deressa, S. Etemad, M. K. A. Kaabar, S. Rezapour, Qualitative analysis of a hyperchaotic Lorenz-Stenflo mathematical modelvia the Caputo fractional operator, J. Funct. Space., 2022 (2022), 4975104. https://doi.org/10.1155/2022/4975104 doi: 10.1155/2022/4975104
    [19] C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, S. Rezapour, On the qualitative analysis of the fractional boundary valueproblem describing thermostat control model via $\psi$-Hilfer fractional operator, Adv. Differ. Equ., 2021 (2021), 201. https://doi.org/10.1186/s13662-021-03359-z doi: 10.1186/s13662-021-03359-z
    [20] M. Bataineh, M. Alaroud, S. Al-Omari, P. Agarwal, Series representations for uncertain fractional IVPs in the fuzzy conformable fractional sense, Entropy, 23 (2021), 1646. https://doi.org/10.3390/e23121646 doi: 10.3390/e23121646
    [21] H. Aljarrah, M. Alaroud, A. Ishak, M. Darus, Adaptation of residual-error series algorithm to handle fractional system of partial differential equations, Mathematics, 9 (2021), 2868. https://doi.org/10.3390/math9222868 doi: 10.3390/math9222868
    [22] A. Freihet, S. Hasan, M. Alaroud, M. Al-Smadi, R. R. Ahmad, U. K. S. Din, Toward computational algorithm for time-fractional Fokker-Planck models, Adv. Mech. Eng., 11 (2019), 1–11. https://doi.org/10.1177/1687814019881039 doi: 10.1177/1687814019881039
    [23] M. Alaroud, Application of Laplace residual power series method for approximate solutions of fractional IVP's, Alex. Eng. J., 61 (2022), 1585–1595. https://doi.org/10.1016/j.aej.2021.06.065 doi: 10.1016/j.aej.2021.06.065
    [24] A. Ali, Z. Gul, W. A. Khan, S. Ahmad, S. Zeb, Investigation of fractional order sine-Gordon equation using Laplace Adomian decomposition method, Fractals, 29 (2021), 2150121. https://doi.org/10.1142/S0218348X21501218 doi: 10.1142/S0218348X21501218
    [25] G. Sowmya, I. E. Sarris, C. S. Vishalakshi, R. S. V. Kumar, B. C. Prasannakumara, Analysis of transient thermal distribution in a convective-radiative moving rod using two-dimensional differential transform method with multivariate pade approximant, Symmetry, 13 (2021), 1793. https://doi.org/10.3390/sym13101793 doi: 10.3390/sym13101793
    [26] S. Etemad, B. Tellab, J. Alzabut, J. Rezapour, M. I. Abbas, Approximate solutions and Hyers-Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform, Adv. Differ. Equ., 2021 (2021), 428. https://doi.org/10.1186/s13662-021-03563-x doi: 10.1186/s13662-021-03563-x
    [27] S. Rezapour, B. Tellab, C. T. Deressa, S. Etemad, K. Nonlaopon, H-U-type stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method, Fractal Fract., 5 (2021), 166. https://doi.org/10.3390/fractalfract5040166 doi: 10.3390/fractalfract5040166
    [28] E. Rama, K. Somaiah, K. Sambaiah, A study of variational iteration method for solving various types of problems, Malaya Journal of Matematik, 9 (2021), 701–708. https://doi.org/10.26637/MJM0901/0123 doi: 10.26637/MJM0901/0123
    [29] S. Yuzbasi, An operational matrix method to solve the Lotka-Volterra predator-prey models with discrete delays, Chaos Soliton. Fract., 153 (2021), 111482. https://doi.org/10.1016/j.chaos.2021.111482 doi: 10.1016/j.chaos.2021.111482
    [30] P. Jain, M. Kumbhakar, K. Ghoshal, Application of homotopy analysis method to the determination of vertical sediment concentration distribution with shear-induced diffusivity, Eng. Comput., 2021, in press. https://doi.org/10.1007/s00366-021-01491-8
    [31] S. N. Tural-Polat, A. T. Dincel, Numerical solution method for multi-term variable order fractional differential equations by shifted Chebyshev polynomials of the third kind, Alex. Eng. J., 61 (2022), 5145–5153. https://doi.org/10.1016/j.aej.2021.10.036 doi: 10.1016/j.aej.2021.10.036
    [32] M. I. Liaqat, A. Khan, M. Alam, M. K. Pandit, A highly accurate technique to obtain exact solutions to time-fractional quantum mechanics problems with zero and nonzero trapping potential, J. Math., 2022 (2022), 9999070. https://doi.org/10.1155/2022/9999070 doi: 10.1155/2022/9999070
    [33] M. H. Al-Tai, A. Al-Fayadh, Solving two-dimensional coupled Burger's equations and Sine-Gordon equation using El-Zaki transform-variational iteration method, Al-Nahrain J. Sci., 24 (2021), 41–47. https://doi.org/10.22401/ANJS.24.2.07 doi: 10.22401/ANJS.24.2.07
    [34] S. Rezapour, M. I. Liaqat, S. Etemad, An effective new iterative method to solve conformable Cauchy reaction-diffusion equation via the Shehu transform, J. Math., 2022 (2022), 4172218. https://doi.org/10.1155/2022/4172218 doi: 10.1155/2022/4172218
    [35] E. Az-Zo'bi, Exact analytic solutions for nonlinear diffusion equations via generalized residual power series method, Int. J. Math. Comput. Sci., 14 (2019), 69–78.
    [36] E. Az-Zo'bi, A. Yildirim, L. Akinyemi, Semi-analytic treatment of mixed hyperbolic-elliptic Cauchy problem modeling three-phase flow in porous media, Int. J. Mod. Phys. B, 35 (2021), 2150293. https://doi.org/10.1142/S0217979221502933 doi: 10.1142/S0217979221502933
    [37] E. Az-Zo'bi, A. Yildirim, W. A. AlZoubi, The residual power series method for the one-dimensional unsteady flow of a van der Waals gas, Physica A, 517 (2019), 188–196. https://doi.org/10.1016/j.physa.2018.11.030 doi: 10.1016/j.physa.2018.11.030
    [38] E. Az-Zo'bi, A reliable analytic study for higher-dimensional telegraph equation, J. Math. Comput. Sci., 18 (2018), 423–429. http://dx.doi.org/10.22436/jmcs.018.04.04 doi: 10.22436/jmcs.018.04.04
    [39] O. Abu Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31–52. https://doi.org/10.5373/jaram.1447.051912 doi: 10.5373/jaram.1447.051912
    [40] O. Abu Arqub, Z. Abo-Hammour, R. Al-Badarneh, S. Momani, A reliable analytical method for solving higher-order initial value problems, Discr. Dyn. Nat. Soc., 2013 (2013), 673829. https://doi.org/10.1155/2013/673829 doi: 10.1155/2013/673829
    [41] O. Abu Arqub, A. El-Ajou, Z. Al Zhour, S. Momani, Multiple solutions of nonlinear boundary value problems of fractional order: A new analytic iterative technique, Entropy, 16 (2014), 471–493. https://doi.org/10.3390/e16010471 doi: 10.3390/e16010471
    [42] A. El-Ajou, O. Abu Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. https://doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004
    [43] F. Xu, Y. Gao, X. Yang, H. Zhang, Construction of fractional power series solutions to fractional Boussinesq equations using residual power series method, Math. Probl. Eng., 2016 (2016), 5492535. https://doi.org/10.1155/2016/5492535 doi: 10.1155/2016/5492535
    [44] J. Zhang, Z. Wei, L. Li, C. Zhou, Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019 (2019), 6159024. https://doi.org/10.1155/2019/6159024 doi: 10.1155/2019/6159024
    [45] I. Jaradat, M. Alquran, R. Abdel-Muhsen, An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers' models with twofold Caputo derivatives ordering, Nonlinear Dyn., 93 (2018), 1911–1922. https://doi.org/10.1007/s11071-018-4297-8 doi: 10.1007/s11071-018-4297-8
    [46] I. Jaradat, M. Alquran, K. Al-Khaled, An analytical study of physical models with inherited temporal and spatial memory, Eur. Phys. J. Plus, 133 (2018), 162. https://doi.org/10.1140/epjp/i2018-12007-1 doi: 10.1140/epjp/i2018-12007-1
    [47] M. Alquran, K. Al-Khaled, S. Sivasundaram, H. M. Jaradat, Mathematical and numerical study of existence of bifurcations of the generalized fractional Burgers-Huxley equation, Nonlinear Stud., 24 (2017), 235–244.
    [48] M. F. Zhang, Y. Q. Liu, X. S. Zhou, Efficient homotopy perturbation method for fractional non-linear equations using Sumudu transform, Therm. Sci., 19 (2015), 1167–1171. https://doi.org/10.2298/TSCI1504167Z doi: 10.2298/TSCI1504167Z
    [49] A. Khan, M. Junaid, I. Khan, F. Ali, K. Shah, D. Khan, Application of homotopy analysis natural transform method to the solution of nonlinear partial differential equations, Sci. Int. (Lahore), 29 (2017), 297–303.
    [50] M. I. Liaqat, A. Khan, M. Alam, M. K. Pandit, S. Etemad, S. Rezapour, Approximate and closed-form solutions of Newell-Whitehead-Segel equations via modified conformable Shehu transform decomposition method, Math. Probl. Eng., 2022 (2022), 6752455. https://doi.org/10.1155/2022/6752455 doi: 10.1155/2022/6752455
    [51] M. Alquran, M. Ali, M. Alsukhour, I. Jaradat, Promoted residual power series technique with Laplace transform to solve some time-fractional problems arising in physics, Res. Phys., 19 (2020), 103667. https://doi.org/10.1016/j.rinp.2020.103667 doi: 10.1016/j.rinp.2020.103667
    [52] T. Eriqat, A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Soliton. Fract., 138 (2020), 109957. https://doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957
    [53] M. Alquran, M. Alsukhour, M. Ali, I. Jaradat, Combination of Laplace transform and residual power series techniques to solve autonomous n-dimensional fractional nonlinear systems, Nonlinear Eng., 10 (2021), 282–292. https://doi.org/10.1515/nleng-2021-0022 doi: 10.1515/nleng-2021-0022
    [54] R. Al-Deiakeh, M. Ali, M. Alquran, T. A. Sulaiman, S. Momani, M. H. Al-Smadi, On finding closed-form solutions to some nonlinear fractional systems via the combination of multi-Laplace transform and the Adomian decomposition method, Rom. Rep. Phys., 74 (2022), 111.
    [55] H. Eltayeb, A. Kilicman, A note on double Laplace transform and telegraphic equations, Abstr. Appl. Anal., 2013 (2013), 932578. https://doi.org/10.1155/2013/932578 doi: 10.1155/2013/932578
    [56] M. Alquran, K. Al-Khaled, M. Ali, A. Ta'any, The combined Laplace transform-differential transform method for solving linear non-homogeneous PDEs, J. Math. Comput. Sci., 2 (2012), 690–701.
    [57] H. Khan, R. Shah, P. Kumam, M. Arif, Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method, Entropy, 21 (2019), 597. https://doi.org/10.3390/e21060597 doi: 10.3390/e21060597
    [58] A. Khalouta, A. Kadem, A new computational for approximate analytical solutions of nonlinear time-fractional wave-like equations with variable coefficients, AIMS Mathematics, 5 (2020), 1–14. https://doi.org/10.3934/math.2020001 doi: 10.3934/math.2020001
    [59] B. Chen, L. Qin, F. Xu, J. Zu, Applications of general residual power series method to differential equations with variable coefficients, Discr. Dyn. Nat. Soc., 2018 (2018), 2394735. https://doi.org/10.1155/2018/2394735 doi: 10.1155/2018/2394735
    [60] D. Lu, J. Wang, M. Arshad, A. Ali, Fractional reduced differential transform method for space-time fractional-order heat-like and wave-like partial differential equations, J. Adv. Phys., 6 (2017), 598–607. https://doi.org/10.1166/jap.2017.1383 doi: 10.1166/jap.2017.1383
    [61] A. Khalouta, A. Kadem, Solutions of nonlinear time-fractional wave-like equations with variable coefficients in the form of Mittag-Leffler functions, Thai J. Math., 18 (2020), 411–424.
    [62] R. P. Agarwal, F. Mofarreh, R. Shah, W. Luangboon, K. Nonlaopon, An analytical technique, based on natural transform to solve fractional-order parabolic equations, Entropy, 23 (2021), 1086. https://doi.org/10.3390/e23081086 doi: 10.3390/e23081086
    [63] S. Khalid, K. S. Aboodh, The new integral transform "Aboodh Transform", Global Journal of Pure and Applied Mathematics, 9 (2013), 35–43.
    [64] S. Aggarwal, R. Chauhan, A comparative study of Mohand and Aboodh transforms, Int. J. Res. Adv. Tech., 7 (2019), 520–529. https://doi.org/10.32622/ijrat.712019107 doi: 10.32622/ijrat.712019107
    [65] M. E. Benattia, K. Belghaba, Application of the Aboodh transform for solving fractional delay differential equations, Univ. J. Math. Appl., 3 (2020), 93–101. https://doi.org/10.32323/UJMA.702033 doi: 10.32323/UJMA.702033
    [66] B. B. Delgado, J. E. Macias-Diaz, On the general solutions of some non-homogeneous Div-Curl systems with Riemann-Liouville and Caputo fractional derivatives, Fractal Fract., 5 (2021), 117. https://doi.org/10.3390/fractalfract5030117 doi: 10.3390/fractalfract5030117
    [67] S. Alshammari, M. Al-Smadi, I. Hashim, M. A. Alias, Residual power series technique for simulating fractional Bagley-Torvik problems emerging in applied physics, Appl. Sci., 9 (2019), 5029. https://doi.org/10.3390/app9235029 doi: 10.3390/app9235029
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1787) PDF downloads(148) Cited by(30)

Article outline

Figures and Tables

Figures(5)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog