Research article

A generalization of identities in groupoids by functions

  • Received: 18 March 2022 Revised: 02 June 2022 Accepted: 06 June 2022 Published: 18 July 2022
  • MSC : 06F35, 20N02

  • In this paper, we introduce the notions of a left and a right idenfunction in a groupoid by using suitable functions, and we apply this concept to several algebraic structures. Especially, we discuss its role in linear groupoids over a field. We show that, given an invertible function $ \varphi $, there exists a groupoid such that $ \varphi $ is a right idenfunction. The notion of a right pseudo semigroup will be discussed in linear groupoids. The notion of an inversal is a generalization of an inverse element, and it will be discussed with idenfunctions in linear groupoids over a field.

    Citation: Hee Sik Kim, J. Neggers, Sun Shin Ahn. A generalization of identities in groupoids by functions[J]. AIMS Mathematics, 2022, 7(9): 16907-16916. doi: 10.3934/math.2022928

    Related Papers:

  • In this paper, we introduce the notions of a left and a right idenfunction in a groupoid by using suitable functions, and we apply this concept to several algebraic structures. Especially, we discuss its role in linear groupoids over a field. We show that, given an invertible function $ \varphi $, there exists a groupoid such that $ \varphi $ is a right idenfunction. The notion of a right pseudo semigroup will be discussed in linear groupoids. The notion of an inversal is a generalization of an inverse element, and it will be discussed with idenfunctions in linear groupoids over a field.



    加载中


    [1] R. H. Bruck, A survey of binary systems, Berlin, Heidelberg: Springer, 1971.
    [2] O. Bor$ \rm \dot{u} $vka, Foundations of the theory of groupoids and groups, New York: John Wiley & Sons, 1976.
    [3] P. Flondor, Groupoid truncations, U.P.B. Sci. Bull., Series A, A (2010), 3-10.
    [4] J. S. Han, H. S. Kim, J. Neggers, On Fibonacci functions with Fibonacci numbers, Adv. Differ. Equ., 2012 (2012), 126. https://doi.org/10.1186/1687-1847-2012-126 doi: 10.1186/1687-1847-2012-126
    [5] M. H. Hooshmand, Grouplikes, Bull. Iran. Math. Soc., 39 (2013), 65-85.
    [6] Y. S. Huang, $BCI$-algebras, Beijing: Science Press, 2006.
    [7] I. Hwang, H. S. Kim, J. Neggers, Some implicativities for groupoids and $BCK$-algebras, Mathematics, 7 (2019), 973. http://doi.org/10.3390/math7100973 doi: 10.3390/math7100973
    [8] A. Iorgulescu, Algebras of logic as $BCK$-algebras, Bucharest: Editura ASE, 2008.
    [9] Y. B. Jun, I. Chajda, H. S. Kim, E. H. Roh, J. M. Zhan, A. Iorgulescu, $BCK$-algebras and related algebraic systems, Int. J. Math. Math., 2011 (2011), 268683. https://doi.org/10.1155/2011/268683 doi: 10.1155/2011/268683
    [10] J. Y. Kim, Y. B. Jun, H. S. Kim, $BCK$-algebras inherited from the posets, Math. Jpn., 45 (1997), 119-123.
    [11] H. S. Kim, J. Neggers, The semigroups of binary systems and some perspectives, B. Korean Math. Soc., 45 (2008), 651-661.
    [12] Y. L. Liu, H. S. Kim, J. Neggers, Some special elements and pseudo inverse functions in groupoids, Mathematics, 7 (2019), 173. http://doi.org/10.3390/math7020173 doi: 10.3390/math7020173
    [13] J. Meng, Y. B. Jun, $BCK$-algebras, Seoul: Kyungmoon Sa, 1994.
    [14] J. Neggers, H. S. Kim, On $d$-algebras, Math. Slovaca, 49 (1999), 19-26.
    [15] A. B. Saeid, A. Rezaei, A. Radfar, A generalization of groups, Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis., Mat. Nat., 96 (2018), A4. http://doi.org/10.1478/AAPP.961A4
    [16] K. K. Sharma, Generalized tribonacci function and tribonacci numbers, IJRTE, 9 (2020), 1313-1316.
    [17] B. Sroysang, On Fibonacci functions with period $k$, Discrete Dyn. Nat. Soc., 2013 (2013), 418123. http://doi.org/10.1155/2013/418123 doi: 10.1155/2013/418123
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1269) PDF downloads(55) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog