In this paper, we introduce the notions of a left and a right idenfunction in a groupoid by using suitable functions, and we apply this concept to several algebraic structures. Especially, we discuss its role in linear groupoids over a field. We show that, given an invertible function $ \varphi $, there exists a groupoid such that $ \varphi $ is a right idenfunction. The notion of a right pseudo semigroup will be discussed in linear groupoids. The notion of an inversal is a generalization of an inverse element, and it will be discussed with idenfunctions in linear groupoids over a field.
Citation: Hee Sik Kim, J. Neggers, Sun Shin Ahn. A generalization of identities in groupoids by functions[J]. AIMS Mathematics, 2022, 7(9): 16907-16916. doi: 10.3934/math.2022928
In this paper, we introduce the notions of a left and a right idenfunction in a groupoid by using suitable functions, and we apply this concept to several algebraic structures. Especially, we discuss its role in linear groupoids over a field. We show that, given an invertible function $ \varphi $, there exists a groupoid such that $ \varphi $ is a right idenfunction. The notion of a right pseudo semigroup will be discussed in linear groupoids. The notion of an inversal is a generalization of an inverse element, and it will be discussed with idenfunctions in linear groupoids over a field.
[1] | R. H. Bruck, A survey of binary systems, Berlin, Heidelberg: Springer, 1971. |
[2] | O. Bor$ \rm \dot{u} $vka, Foundations of the theory of groupoids and groups, New York: John Wiley & Sons, 1976. |
[3] | P. Flondor, Groupoid truncations, U.P.B. Sci. Bull., Series A, A (2010), 3-10. |
[4] | J. S. Han, H. S. Kim, J. Neggers, On Fibonacci functions with Fibonacci numbers, Adv. Differ. Equ., 2012 (2012), 126. https://doi.org/10.1186/1687-1847-2012-126 doi: 10.1186/1687-1847-2012-126 |
[5] | M. H. Hooshmand, Grouplikes, Bull. Iran. Math. Soc., 39 (2013), 65-85. |
[6] | Y. S. Huang, $BCI$-algebras, Beijing: Science Press, 2006. |
[7] | I. Hwang, H. S. Kim, J. Neggers, Some implicativities for groupoids and $BCK$-algebras, Mathematics, 7 (2019), 973. http://doi.org/10.3390/math7100973 doi: 10.3390/math7100973 |
[8] | A. Iorgulescu, Algebras of logic as $BCK$-algebras, Bucharest: Editura ASE, 2008. |
[9] | Y. B. Jun, I. Chajda, H. S. Kim, E. H. Roh, J. M. Zhan, A. Iorgulescu, $BCK$-algebras and related algebraic systems, Int. J. Math. Math., 2011 (2011), 268683. https://doi.org/10.1155/2011/268683 doi: 10.1155/2011/268683 |
[10] | J. Y. Kim, Y. B. Jun, H. S. Kim, $BCK$-algebras inherited from the posets, Math. Jpn., 45 (1997), 119-123. |
[11] | H. S. Kim, J. Neggers, The semigroups of binary systems and some perspectives, B. Korean Math. Soc., 45 (2008), 651-661. |
[12] | Y. L. Liu, H. S. Kim, J. Neggers, Some special elements and pseudo inverse functions in groupoids, Mathematics, 7 (2019), 173. http://doi.org/10.3390/math7020173 doi: 10.3390/math7020173 |
[13] | J. Meng, Y. B. Jun, $BCK$-algebras, Seoul: Kyungmoon Sa, 1994. |
[14] | J. Neggers, H. S. Kim, On $d$-algebras, Math. Slovaca, 49 (1999), 19-26. |
[15] | A. B. Saeid, A. Rezaei, A. Radfar, A generalization of groups, Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis., Mat. Nat., 96 (2018), A4. http://doi.org/10.1478/AAPP.961A4 |
[16] | K. K. Sharma, Generalized tribonacci function and tribonacci numbers, IJRTE, 9 (2020), 1313-1316. |
[17] | B. Sroysang, On Fibonacci functions with period $k$, Discrete Dyn. Nat. Soc., 2013 (2013), 418123. http://doi.org/10.1155/2013/418123 doi: 10.1155/2013/418123 |