In the current work, in the presence of a heat source and temperature gradients, the onset of triple-diffusive convective stability is studied for a fluid, and a fluid-saturated porous layer confined vertically by adiabatic limits for the Darcy model is thoroughly analyzed. With consistent heat sources in both layers, this composite layer is subjected to three temperature profiles with Marangoni effects. The fluid-saturated porous region's lower boundary is a rigid surface, while the fluid region's upper boundary is a free surface. For the system of ordinary differential equations, the thermal surface-tension-driven (Marangoni) number, which also happens to be the Eigenvalue, is solved in closed form. The three different temperature profiles are investigated, the thermal surface-tension-driven (Marangoni) numbers are calculated analytically, and the effects of the heat source/sink are studied in terms of corrected internal Rayleigh numbers. Graphs are used to show how different parameters have an impact on the onset of triple-diffusive convection. The study's parameters have a greater influence on porous layer dominant composite layer systems than on fluid layer dominant composite layer systems. Finally, porous parameters and corrected internal Rayleigh numbers are stabilize the system, and solute1 Marangoni number and ratio of solute2 diffusivity to thermal diffusivity of fluid are destabilize the system.
Citation: Yellamma, N. Manjunatha, Umair Khan, Samia Elattar, Sayed M. Eldin, Jasgurpreet Singh Chohan, R. Sumithra, K. Sarada. Onset of triple-diffusive convective stability in the presence of a heat source and temperature gradients: An exact method[J]. AIMS Mathematics, 2023, 8(6): 13432-13453. doi: 10.3934/math.2023681
[1] | Fahad Alsharari, Ahmed O. M. Abubaker, Islam M. Taha . On r-fuzzy soft γ-open sets and fuzzy soft γ-continuous functions with some applications. AIMS Mathematics, 2025, 10(3): 5285-5306. doi: 10.3934/math.2025244 |
[2] | Dina Abuzaid, Samer Al-Ghour . Supra soft Omega-open sets and supra soft Omega-regularity. AIMS Mathematics, 2025, 10(3): 6636-6651. doi: 10.3934/math.2025303 |
[3] | Rui Gao, Jianrong Wu . Filter with its applications in fuzzy soft topological spaces. AIMS Mathematics, 2021, 6(3): 2359-2368. doi: 10.3934/math.2021143 |
[4] | Arife Atay . Disjoint union of fuzzy soft topological spaces. AIMS Mathematics, 2023, 8(5): 10547-10557. doi: 10.3934/math.2023535 |
[5] | Ibtesam Alshammari, Islam M. Taha . On fuzzy soft β-continuity and β-irresoluteness: some new results. AIMS Mathematics, 2024, 9(5): 11304-11319. doi: 10.3934/math.2024554 |
[6] | Orhan Göçür . Amply soft set and its topologies: AS and PAS topologies. AIMS Mathematics, 2021, 6(4): 3121-3141. doi: 10.3934/math.2021189 |
[7] | Rehab Alharbi, S. E. Abbas, E. El-Sanowsy, H. M. Khiamy, Ismail Ibedou . Soft closure spaces via soft ideals. AIMS Mathematics, 2024, 9(3): 6379-6410. doi: 10.3934/math.2024311 |
[8] | Tareq M. Al-shami, Zanyar A. Ameen, A. A. Azzam, Mohammed E. El-Shafei . Soft separation axioms via soft topological operators. AIMS Mathematics, 2022, 7(8): 15107-15119. doi: 10.3934/math.2022828 |
[9] | G. Şenel, J. I. Baek, S. H. Han, M. Cheong, K. Hur . Compactness and axioms of countability in soft hyperspaces. AIMS Mathematics, 2025, 10(1): 72-96. doi: 10.3934/math.2025005 |
[10] | Dina Abuzaid, Samer Al Ghour . Three new soft separation axioms in soft topological spaces. AIMS Mathematics, 2024, 9(2): 4632-4648. doi: 10.3934/math.2024223 |
In the current work, in the presence of a heat source and temperature gradients, the onset of triple-diffusive convective stability is studied for a fluid, and a fluid-saturated porous layer confined vertically by adiabatic limits for the Darcy model is thoroughly analyzed. With consistent heat sources in both layers, this composite layer is subjected to three temperature profiles with Marangoni effects. The fluid-saturated porous region's lower boundary is a rigid surface, while the fluid region's upper boundary is a free surface. For the system of ordinary differential equations, the thermal surface-tension-driven (Marangoni) number, which also happens to be the Eigenvalue, is solved in closed form. The three different temperature profiles are investigated, the thermal surface-tension-driven (Marangoni) numbers are calculated analytically, and the effects of the heat source/sink are studied in terms of corrected internal Rayleigh numbers. Graphs are used to show how different parameters have an impact on the onset of triple-diffusive convection. The study's parameters have a greater influence on porous layer dominant composite layer systems than on fluid layer dominant composite layer systems. Finally, porous parameters and corrected internal Rayleigh numbers are stabilize the system, and solute1 Marangoni number and ratio of solute2 diffusivity to thermal diffusivity of fluid are destabilize the system.
In this paper, we consider the following Rao-Nakra sandwich beam with time-varying weights and frictional dampings in (x,t)∈(0,L)×(0,∞),
ρ1h1utt−E1h1uxx−k(−u+v+αwx)+α1(t)f1(ut)=0,ρ3h3vtt−E3h3vxx+k(−u+v+αwx)+α2(t)f2(vt)=0,ρhwtt+EIwxxxx−αk(−u+v+αwx)x+α3(t)f3(wt)=0, | (1.1) |
in which u and v denote the longitudinal displacement and shear angle of the bottom and top layers, and w represents the transverse displacement of the beam. The positive constants ρi, hi, and Ei (i=1,3) are physical parameters representing, respectively, density, thickness, and Young's modulus of the i-th layer for i=1,2,3 and ρh=ρ1h1+ρ2h2+ρ3h3. EI=E1I1+E3I3, α=h2+(h1+h32), k=1h2(E22(1+μ)), where μ is the Poisson ratio −1<μ<12. The functions α1(t), α2(t), α3(t) are the time dependent of the nonlinear frictional dampings f1(ut), f2(vt), f3(wt), respectively. For the system (1.1), we consider the following Dirichlet-Neumann boundary conditions
u(0,t)=u(L,t)=0,t∈(0,∞),v(0,t)=v(L,t)=0,t∈(0,∞),w(0,t)=wx(0,t)=0,t∈(0,∞),w(L,t)=wx(L,t)=0,t∈(0,∞), | (1.2) |
and the initial conditions
u(x,0)=u0,ut(x,0)=u1in (0,L),v(x,0)=v0,vt(x,0)=v1in (0,L),w(x,0)=w0,wt(x,0)=w1in (0,L). | (1.3) |
The system (1.1)–(1.3) consists of one Euler-Bernoulli beam equation for the transversal displacement, and two wave equations for the longitudinal displacements of the top and bottom layers.
Our aim is to investigate the asymptotic behavior of solutions for the system (1.1)–(1.3). We study the effect of the three nonlinear dampings on the asymptotic behavior of the energy function. Under nonrestrictive on the growth assumption on the frictional damping terms, we establish exponential and general energy decay rates for this system by using the multiplier approach. The results generalize some earlier decay results on the Rao-Nakra sandwich beam equation.
First, let's review some previous findings about multilayered sandwich beam models. By applying the Riesz basis approach, Wang et al. [1] studied a sandwich beam system with a boundary control and established the exponential stability as well as the exact controllability and observability of the system. The author of [2] employed the multiplier approach to determine the precise controllability of a Rao-Nakra sandwich beam with boundary controls rather than the Riesz basis approach. Hansen and Imanuvilov [3,4] investigated a multilayer plate system with locally distributed control in the boundary and used Carleman estimations to determine the precise controllability results. Özer and Hansen [5,6] succeeded in obtaining, for a multilayer Rao-Nakra sandwich beam, boundary feedback stabilization and perfect controllability. One viscous damping effect on either the beam equation or one of the wave equations was all that was taken into account by Liu et al. [7] when they established the polynomial decay rate using the frequency domain technique. The semigroup created by the system is polynomially stable of order 1/2, according to Wang [8], who analyzed a Rao-Nakra beam with boundary damping only on one end for two displacements using the same methodology. One can find additional results on the multilayer beam in [9,10,11,12,13,14,15].
In this paper, we consider a Rao-Nakra sandwich beam with time-varying weights and frictional dampings, i.e., system (1.1)–(1.3). The main results are twofold:
(I) We establish an exponential decay of the system in the case of linear frictional dampings by using the multiplier approach, and the decay result depends on the time-varying weights αi.
(II) We establish more general decay of the system in the case of nonlinear frictional dampings by using the multiplier approach, and the decay result depends on the time-varying weights αi and the frictional dampings fi. To the best of our knowledge, there is no stability results on the Rao-Nakra sandwich beam with nonlinear frictional dampings. The remainder of the paper is as follows. In Section 2, we introduce some notations and preliminary results. In Section 3, we state the theorem of the stability and give a detailed proof.
In this section, we present some materials needed in the proof of our results. Throughout this paper, c and ε are used to denote generic positive constants. We consider the following assumptions:
(H1) For (i=1,2,3), the functions fi:R→R are C0 nondecreasing satisfying, for c1,c2>0,
s2+f2i(s)|≤F−1i(sfi(s))for all|s|≤ri,c1|s|≤|fi(s)|≤c2|s|for all|s|≥ri, | (2.1) |
where Fi:(0,∞)→(0,∞) (i=1,2,3) are C1 functions, which are linear or strictly increasing and strictly convex C2 functions on (0,ri] with Fi(0)=F′i(0)=0.
(H2) For (i=1,2,3), the time dependent functions αi:[0,∞)→(0,∞) are C1 functions satisfying ∫∞0αi(t)dt=∞.
Remark 2.1. (1) Hypothesis (H1) implies that sfi(s)>0, for all s≠0. This condition (H1) was introduced and employed by Lasiecka and Tataru [16]. It was shown there that the monotonicity and continuity of fi guarantee the existence of the function Fi with the properties stated in (H1).
(2) For more results on the convexity properties on the nonlinear frictional dampings and sharp energy decay rates, we refer to the works by Boussouira and her co-authors [17,18,19].
The following lemmas will be of essential use in establishing our main results.
Lemma 3.1. [20] Let E:R+→R+ be a nonincreasing function and γ:R+→R+ be a strictly increasing C1-function, with γ(t)→+∞ as t→+∞. Assume that there exists c>0 such that
∞∫Sγ′(t)E(t)dt≤cE(S),1≤S<+∞, |
then there exist positive constants k and ω such that
E(t)≤ke−ωγ(t). |
Lemma 3.2. Let E:R+→R+ be a differentiable and nonincreasing function and let χ:R+→R+ be a convex and increasing function such that χ(0)=0. Assume that
∫+∞sχ(E(t))dt≤E(s),∀s≥0, | (3.1) |
then E satisfies the estimate
E(t)≤ψ−1(h(t)+ψ(E(0))),∀t≥0, | (3.2) |
where ψ(t)=∫1t1χ(s)ds for t>0, and
{h(t)=0,0≤t≤E(0)χ(E(0)),h−1(t)=t+ψ−1(t+ψ(E(0)))χ(ψ−1(t+ψ(E(0)))),t>0. |
Proof. Since E′(t)≤0, this implies E(0)≤E(t0) for all t≥t0≥0. If E(t0)=0 for t0≥0, then E(t)=0 for all t≥t0≥0, and there is nothing to prove in this case. As in [21], we assume that E(t)>0 for t≥0 without loss of generality. Let
L(s)=∫∞sχ(E(t))dt,∀s≥0. |
We have L(s)≤E(s),∀s≥0. The functional L is positive, decreasing, and of class C1(0,∞) satisfying
−L′(s)=χ(E(s))≥χ(L(s)),∀s≥0. |
Since the functional χ is decreasing, we have
χ(L(s))′=−L′(s)χ(L(s))≥1,∀s≥0. |
Integrating this differential equation over (0,t), we get
χ(L(t))≥t+ψ(E(0)),∀t≥0. | (3.3) |
Since χ is convex and χ(0)=0, we have
χ(s)≤sχ(1),∀s∈[0,1]andχ(s)≥sχ(1),∀s≥1. |
We find limt→0ψ(t)=∞ and [ψ(E(0)),∞))⊂Image(ψ), then (3.3) imply that
L(t)≤ψ−1(t+ψ(E(0))),∀t≥0. | (3.4) |
Now, using the properties of χ and E, we have
L(s)≥∫tsχ(E(τ))dτ≥(t−s)χ(E(t)),∀t≥s≥0. | (3.5) |
Since limt→0χ(t)=∞,χ(0)=0, and χ is increasing, (3.4) and (3.5) imply that
E(t)≥χ−1(infs∈[0,t)ψ−1(t+ψ(E(0)))t−s),∀t>0. | (3.6) |
Now, let t>E(0)χ(E(0)) and J(s)=ψ−1(t+ψ(E(0)))t−s,s∈[0,t).
The function J is differentiable, then we have
J′(s)=(t−s)−2[ψ−1(s+ψ(E(0)))−(t−s)χ(ψ−1(s+ψ(E(0))))]. | (3.7) |
Thus, J′(s)=0⇔K(s)=t and J′(s)<0⇔K(s)<t, where
K(t)=t+ψ−1(t+ψ(E(0)))χ(ψ−1(t+ψ(E(0)))). |
Since K(0)=E(0)χ(E(0)) and K is increasing (because ψ−1 is decreasing and s→sχ(s),s>0 is nonincreasing thanks to the fact χ is convex), for t>E(0)χ(E(0)), we have
infs∈[0,t)J(K−1(t))=J(h(t)). |
Since h satisfies J′(h(t))=0, we conclude from (3.6) our desired estimate (3.2).
We define the energy associated to the problem (1.1)–(1.3) by the following formula
E(t)=12[ρ1h1∫L0u2tdx+E1h1∫L0u2xdx+ρ3h3∫L0v2tdx+E3h3∫L0v2xdx+ρh∫L0w2tdx+EI∫L0w2xxdx+k∫L0(−u+v+αwx)2dx]. | (3.8) |
Lemma 3.3. The energy E(t) satisfies
E′(t)≤−α1(t)∫L0utf1(ut)dx−α2(t)∫L0vtf2(vt)dx−α3(t)∫L0wtf3(wt)dx≤0. | (3.9) |
Proof. Multiplying (1.1)1 by ut, (1.1)2 by vt, (1.1)3 by wt and integrating each of them by parts over (0,L), we get the desired result.
In this section, we state and prove our main result. For this purpose, we establish some lemmas. From now on, we denote by c various positive constants, which may be different at different occurrences. For simplicity, we consider the case α(t)=α1(t)=α2(t)=α3(t).
Lemma 4.1. (Case: Fi is linear) For T>S≥0, the energy functional of the system (1.1)–(1.3) satisfies
∫TSα(t)E(t)dt≤cE(S). | (4.1) |
Proof. Multiplying (1.1)1 by αu and integrating over (S,T)×(0,L), we obtain
∫TSα(t)∫L0u[ρ1h1utt−E1h1uxx−k(−u+v+αwx)+α(t)f1(ut)]dxdt=0. |
Notice that
uttu=(utu)t−u2t. |
Using integration by parts and the boundary conditions, we get
−∫TSα(t)∫L0ρ1h1u2tdxdt+∫TSα(t)∫L0E1h1u2xdxdt−∫TSα(t)∫L0ku(−u+v+αwx)dxdt=−ρ1h1[α(t)∫L0uutdx]TS−∫TSα2(t)∫L0uf1(ut)dxdt. | (4.2) |
Adding 2∫TSα(t)∫L0ρ1h1u2tdxdt to both sides of the above equation, we have
∫TSα(t)∫L0ρ1h1u2tdxdt+∫TSα(t)∫L0E1h1u2xdxdt−∫TSα(t)∫L0ku(−u+v+αwx)dxdt=−ρ1h1[α(t)∫L0uutdx]TS−∫TSα2(t)∫L0uf1(ut)dxdt+2∫TSα(t)∫L0ρ1h1u2tdxdt. | (4.3) |
Similarly, multiplying (1.1)2 by α(t)v and (1.1)3 by α(t)w, and integrating each of them over (S,T)×(0,L), we obtain
∫TSα(t)∫L0ρ3h3v2tdxdt+∫TSα(t)∫L0E3h3v2xdxdt+∫TSα(t)∫L0kv(−u+v+αwx)dxdt=−ρ3h3[∫L0α(t)vvtdx]TS−∫TSα2(t)∫L0vf2(vt)dxdt+2∫TSα(t)∫L0ρ3h3v2tdxdt, | (4.4) |
and
∫TSα(t)∫L0ρhw2tdxdt+∫TSα(t)∫L0EIw2xxdxdt−∫TSα(t)∫L0kαw(−u+v+αwx)xdxdt=−ρh[∫L0α(t)wwtdx]TS−∫TSα2(t)∫L0wf3(wt)dxdt+2∫TSα(t)∫L0ρhw2tdxdt. | (4.5) |
Recalling the definition of E, and from (4.2)–(4.5), we get
2∫TSα(t)E(t)dt≤−ρ1h1[α(t)∫L0uutdx]TS−ρ3h3[α(t)∫L0vvtdx]TS−ρh[α(t)∫L0wwtdx]TS−∫TSα2(t)∫L0uf1(ut)dxdt−∫TSα2(t)∫L0vf2(vt)dxdt−∫TSα2(t)∫L0wf3(wt)dxdt+2∫TSα(t)∫L0ρ1h1u2tdxdt+2∫TSα(t)∫L0ρ3h3v2tdxdt+2∫TSα(t)∫L0ρhw2tdxdt. | (4.6) |
Now, using Young's and Poincaré inequalities, we get for any εi>0(i=1,2,3),
∫L0uutdx≤ε1∫L0u2dx+14ε1∫L0u2tdx≤cpε1∫L0u2xdx+14ε1∫L0u2tdx≤cE(t),∫L0zztdx≤ε2∫L0z2dx+14ε2∫L0z2tdx≤cpε2∫L0z2dx+14ε2∫L0z2tdx≤cE(t),∫L0wwtdx≤ε3∫L0w2dx+14ε3∫L0w2tdx≤cpε3∫L0w2dx+14ε3∫L0w2tdx≤cE(t), | (4.7) |
which implies that
−[α(t)∫L0uutdx]TS≤cα(S)E(S)−cα(S)E(T)≤cE(S), |
−[α(t)∫L0vvtdx]TS≤cE(S), |
and
−[α(t)∫L0wwtdx]TS≤cE(S). |
Using (H1), the fact that F1 is linear, Hölder and Poincaré inequalities, we obtain
α2(t)∫L0uf1(ut)dx≤α2(t)(∫L0|u|2dx)12(∫L0|f1(ut)|2dx)12≤α32||u||2(α∫L0utf1(ut)dx)12≤cE12(t)(−E′(t))12. | (4.8) |
Applying Young's inequality on the term E12(t)(−E′(t))12, we obtain for ε>0
α2(t)∫L0uf1(ut)dx≤cα(t)(εE(t)−CεE′(t))≤cεα(t)E(t)−CεE′(t), | (4.9) |
which implies that
∫TSα2(t)(∫L0(−uf1(ut))dx)dt≤cε∫TSα(t)E(t)dt+CεE(S). | (4.10) |
In the same way, we have
∫TSα2(t)(∫L0(−vf2(vt))dx)dt≤cε∫TSα(t)E(t)dt+CεE(S), | (4.11) |
and
∫TSα2(t)(∫L0(−wf3(wt))dx)dt≤cε∫TSα(t)E(t)dt+CεE(S). | (4.12) |
Finally, using (H1), and the fact that F1 is linear, we find that
2∫TSα(t)∫L0ρ1h1u2tdxdt≤c∫TSα(t)∫L0utf1(ut)dxdt≤c∫TS(−E′(t))dt≤cE(S). | (4.13) |
Similarly, we get
2∫TSα(t)∫L0ρ3h3v2tdxdt≤cE(S),and2∫TSα(t)∫L0ρhw2tdxdt≤cE(S). | (4.14) |
We combine the above estimates and take ε small enough to get the estimate (4.1).
Lemma 4.2. (Case: Fi are nonlinear) For T>S≥0, the energy functional of the system (1.1)–(1.3) satisfies
∫TSα(t)Λ(E(t))dt≤cΛ(E(S))+c∫TSα(t)Λ(E)E∫L0(|ut|2+|uf1(ut)|)dxdt+c∫TSα(t)Λ(E)E∫L0(|vt|2+|vf2(vt)|)dxdt+c∫TSα(t)Λ(E)E∫L0(|vt|2+|vf3(wt)|)dxdt, | (4.15) |
where Λ is convex, increasing, and of class C1[0,∞) such that Λ(0)=0.
Proof. We multiply (1.1)1 by α(t)Λ(E)Eu and integrate over (0,L)×(S,T) to get
ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt+E1h1∫TSα(t)Λ(E)E∫L0u2xdxdt−k∫TSα(t)Λ(E)E∫L0u(−u+v+αwx)dxdt=−ρ1h1∫TSα(t)Λ(E)E∫L0(uut)tdxdt−∫TSα2(t)Λ(E)E∫L0uf1(ut)dxdt+2ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt. | (4.16) |
Also, we multiply (1.1)2 by α(t)Λ(E)Ev and integrate over (0,L)×(S,T) to get
ρ3h3∫TSα(t)Λ(E)E∫L0v2tdxdt+E3h3∫TSα(t)Λ(E)E∫L0v2xdxdt+k∫TSα(t)Λ(E)E∫L0v(−u+v+αwx)dxdt=−ρ3h3∫TSα(t)Λ(E)E∫L0(vvt)tdxdt−∫TSα2(t)Λ(E)E∫L0vf2(vt)dxdt+2ρ3h3∫TSα(t)Λ(E)E∫L0v2tdxdt. | (4.17) |
Similarly, we multiply (1.1)3 by α(t)Λ(E)Ew and integrate over (0,L)×(S,T) to get
ρh∫TSα(t)Λ(E)E∫L0w2tdxdt+Eh∫TSα(t)Λ(E)E∫L0w2xxdxdt+αk∫TSα(t)Λ(E)E∫L0wx(−u+v+αwx)dxdt=−ρh∫TSα(t)Λ(E)E∫L0(wwt)tdxdt−∫TSα2(t)Λ(E)E∫L0wf3(wt)dxdt+2ρh∫TSα(t)Λ(E)E∫L0w2tdxdt. | (4.18) |
Integrating by parts in the first term of the righthand side of the Eq (4.16), we find that Eq (4.16) becomes
ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt+E1h1∫TSα(t)Λ(E)E∫L0u2xdxdt−k∫TSα(t)Λ(E)E∫L0u(−u+v+αwx)dxdt=−ρ1h1[α(t)Λ(E)E∫L0uutdx]TS+ρ1h1∫TS∫L0ut(α′(t)Λ(E)Eu+α(t)(Λ(E)E)′u)dxdt+2ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt−∫TSα2(t)Λ(E)E∫L0uf1(ut)dxdt. |
Using the fact that ∫L0uutdx≤cE(t), the properties of α(t), and the facts that the function s→Λ(s)s is nondecreasing and E is nonincreasing, we have
∫TSα′(t)Λ(E)E∫L0uutdxdt≤c∫TSα′(t)Λ(E)EE(t)dt≤cΛ(E(S))∫TSα′(t)dt≤cΛ(E(S)). | (4.19) |
Similarly, we get
∫TSα(t)(Λ(E)E)′∫L0uutdxdt≤E(S)∫TSα(t)(Λ(E)E)′dt≤E(S)[α(t)Λ(E)E]TS−E(S)∫TSα′(t)Λ(E)Edt≤E(S)(α(T)Λ(E(T))E(T)−α(S)Λ(E(S))E(S))−E(S)Λ(E(S))E(S)∫TSα′(t)dt≤E(S)α(T)Λ(E(T))E(T)−Λ(E(S))(α(T)−α(S))≤E(S)α(S)Λ(E(S))E(S)+Λ(E(S))α(S)≤cΛ(E(S)). | (4.20) |
Combining (4.19)–(4.20), we have
ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt+E1h1∫TSα(t)Λ(E)E∫L0u2xdxdt−k∫TSα(t)Λ(E)E∫L0u(−u+v+αwx)dxdt≤cΛ(E(S))+2ρ1h1∫TSα(t)Λ(E)E∫L0u2tdxdt−∫TSα2(t)Λ(E)E∫L0uf1(ut)dxdt. |
Similarly, we have
ρ3h3∫TSα(t)Λ(E)E∫L0v2tdxdt+E3h3∫TSα(t)Λ(E)E∫L0v2xdxdt+k∫TSα(t)Λ(E)E∫L0v(−u+v+αwx)dxdt≤cΛ(E(S))+2ρ3h3∫TSα(t)Λ(E)E∫L0v2tdxdt−∫TSα2(t)Λ(E)E∫L0vf2(vt)dxdt, |
and
ρh∫TSα(t)Λ(E)E∫L0w2tdxdt+Eh∫TSα(t)Λ(E)E∫L0w2xxdxdt+αk∫TSα(t)Λ(E)E∫L0wx(−u+v+αwx)dxdt≤cΛ(E(S))+2ρh∫TSα(t)Λ(E)E∫L0w2tdxdt−∫TSα2(t)Λ(E)E∫L0wf3(wt)dxdt. |
Gathering all the above estimations by using (3.8), we obtain
∫TSα(t)Λ(E(t))dt≤cΛ(E(S))+c∫TSα2(t)Λ(E)E∫L0(|ut|2+|uf1(ut)|)dxdt+c∫TSα2(t)Λ(E)E∫L0(|vt|2+|vf2(vt)|)dxdt+c∫TSα2(t)Λ(E)E∫L0(|wt|2+|wf3(wt)|)dxdt. | (4.21) |
This completes the proof of the estimate (4.15).
In order to finalize the proof of our result, we let
Λ(s)=2ε0sF′i(ε20s), Ψi(s)=Fi(s2), |
where F∗i and Ψ∗i denote the dual functions of the convex functions Fi and Ψi, respectively, in the sense of Young (see Arnold [22], pp. 64).
Lemma 4.3. Suppose Fi(i=1,2,3) are nonlinear, then the following estimates
F∗i(Λ(s)s)≤Λ(s)s(F′i)−1(Λ(s)s) | (4.22) |
and
Ψ∗i(Λ(s)√s)≤ε0Λ(√s), | (4.23) |
hold.
Proof. We prove for i=1, and the remaining are similar. Since F∗1 and Ψ∗1 are the dual functions of the convex functions F1 and Ψ1, respectively, then
F∗1(s)=s(F′1)−1(s)−F1[(F′1)−1(s)]≤s(F′1)−1(s) | (4.24) |
and
Ψ∗1(s)=s(Ψ′1)−1(s)−Ψ1[(Ψ′1)−1(s)]≤s(Ψ′1)−1(s). | (4.25) |
Using (4.24) and the definition of Λ, we obtain (4.22).
For the proof of (4.23), we use (4.25) and the definitions of Ψ1 and Λ to obtain
Λ(s)√s(Ψ′1)−1(Λ(s)√s)≤2ε0√sF′1(ε20s)(Ψ′1)−1(2ε0√sF′1(ε20s))=2ε0√sF′1(ε20s)(Ψ′1)−1(Ψ′1(ε0√s))=2ε20sF′1(ε20s)=ε0Λ(√s). | (4.26) |
Now, we state and prove our main decay results.
Theorem 4.4. Let (u0,u1)×(z0,z1)∈[H20(0,L)×L2(0,L)]2. Assume that (H1) and (H2) hold, then there exist positive constants k and c such that, for t large, the solution of the system (1.1)–(1.3) satisfies
E(t)≤ke−c∫t0α(s)ds,if Fi is linear, | (4.27) |
E(t)≤ψ−1(h(˜α(t))+ψ(E(0))),∀t≥0,if Fi are nonlinear, | (4.28) |
where ˜α(t)=∫t0α(t)dt, ψ(t)=∫1t1χ(s)ds, χ(t)=cΛ(t), and
{h(t)=0,0≤t≤E(0)χ(E(0)),h−1(t)=t+ψ−1(t+ψ(E(0)))χ(ψ−1(t+ψ(E(0)))),t>0. |
Proof. To establish (4.27), we use (4.1), and Lemma 3.1 for γ(t)=∫t0α(s)ds. Consequently, the result follows.
For the proof of (4.28), we re-estimate the terms of (4.15) as follows:
We consider the following partition of the domain (0,L):
Ω1={x∈(0,L):|ut|≥ε1},Ω2={x∈(0,L):|ut|≤ε1}. |
So,
∫TSα(t)Λ(E)E∫Ω1(|ut|2+|uf1(ut)|)dxdt=∫TSα(t)Λ(E)E∫Ω1|ut|2dxdt+∫TSα(t)Λ(E)E∫Ω1|uf1(ut)|dxdt:=I1+I2. |
Using the definition of Ω1, condition (H1), and (3.9), we have
I1≤c∫TSα(t)Λ(E)E∫Ω1utf1(ut)dxdt≤c∫TSΛ(E)E(−E′(t))dt≤cΛ(E(S)). | (4.29) |
After applying Young's inequality, and the condition (H1), we obtain
I2≤ε∫TSα(t)Λ2(E)Edt+c(ε)∫TSα(t)∫Ω1|f1(ut)|2dt. | (4.30) |
The definition of Ω1, the condition (H1), (3.8), (3.9), and (4.30) lead to
I2≤ε∫TSα(t)Λ2(E)Edt+c(ε)∫TSα(t)∫Ω1utf1(ut)dxdt≤ε∫TSα(t)Λ2(E)Edt+c(ε)E(S). | (4.31) |
Using the definition of Λ, and the convexity of F1, (4.31) becomes
I2≤ε∫TSα(t)Λ2(E)Edt+cεE(S)=2εε0∫TSα(t)Λ(E)F′1(ε20E(t))dt+cεE(S)≤2εε0∫TSα(t)Λ(E)F′1(ε20E(0))dt+cεE(S)≤2cεε0∫TSα(t)Λ(E)dt+cεE(S). | (4.32) |
Using Young's inequality, Jensen's inequality, condition (H1), and (3.8), we get
∫TSα(t)Λ(E)E∫Ω2(|ut|2+|uf1(ut)|)dxdt≤∫TSα(t)Λ(E)E∫Ω2F−11(utf1(ut))dxdt+∫TSα(t)Λ(E)E‖ | (4.33) |
We apply the generalized Young inequality
\begin{equation*} AB\le F^*(A)+F(B) \end{equation*} |
to the first term of (4.33) with A = \frac{\Lambda(E)}{E} and B = F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right) to get
\begin{equation} \begin{aligned} \frac{\Lambda(E)}{E}F_1^{-1}\left(\frac{1}{L}\int_0^L u_tf_1(u_t)dx\right)\le F_1^*\left(\frac{\Lambda(E)}{E}\right)+ \frac{1}{L}\int_0^L u_t f_1(u_t)dx. \end{aligned} \end{equation} | (4.34) |
We then apply it to the second term of (4.33) with A = \frac{\Lambda(E)}{E} \sqrt{E} and
B = \sqrt{L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right)} to obtain
\begin{equation} \begin{aligned} \frac{\Lambda(E)}{E} \sqrt{E}\; \sqrt{L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right)}\le F_1^*\left( \frac{\Lambda(E)}{E} \sqrt{E} \right) +L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right). \end{aligned} \end{equation} | (4.35) |
Combining (4.33)–(4.35), using (4.22), and (4.23), we arrive at
\begin{equation} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\; \int_{\Omega_2}\left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\\ &\le c \int_{S}^{T} \alpha(t) \left( F_1^*\left(\frac{\Lambda(E)}{E} \sqrt{E}\right)+F_1^*\left( \frac{\Lambda(E)}{E}\right)\right)dt+c\int_{S}^{T}\alpha(t)\int_{\Omega}u_t f_1(u_t)dxdt\\ &\le c \int_{S}^{T} \alpha(t) \left(\varepsilon_0+\frac{(F_1^{\prime})^{-1}\left(\frac{\Lambda(E)}{E}\right)}{E}\right)\Lambda(E)dt+cE(S). \end{aligned} \end{equation} | (4.36) |
Using the fact that s \to (F_1^{\prime})^{-1}(s) is nondecreasing, we deduce that, for 0 < \varepsilon_0\le \sqrt{E(0)} ,
\begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_{\Omega_2}\left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\le c\varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt+cE(S). \end{aligned} \end{equation*} |
Therefore, combining (4.15), (4.29), and (4.32), we find that
\begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*} |
and similarly,
\begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert v_t\vert^2+\vert v f_2(v_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert w_t\vert^2+\vert w f_3(w_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*} |
Combining all the above estimations with choosing \varepsilon and \varepsilon_0 small enough, we arrive at
\begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) \Lambda(E(t))dt\le c \left( 1+\frac{\Lambda(E(S))}{E(S)}\right)E(S). \end{aligned} \end{equation*} |
Using the facts that E is nonincreasing and s \to \frac{\Lambda(s)}{s} is nondecareasing, we can deduce that
\begin{equation*} \int_{S}^{+\infty}\alpha(t) \Lambda(E(t))dt \le cE(S). \end{equation*} |
Now, let \tilde{E} = E\circ \tilde{\alpha}^{-1} , where \tilde{\alpha}(t) = \int_{0}^{t}\alpha(s)ds , then we deduce from this inequality that
\begin{equation*} \begin{aligned} \int_{S}^{\infty} \Lambda(\tilde{E}(t))dt& = \int_{S}^{\infty} \Lambda(E(\tilde{\alpha}^{-1}(t)))dt\\ & = \int_{\tilde{\alpha}^{-1}(S)}^{\infty} \alpha(\eta)\Lambda(E(\eta))d\eta\\ &\le cE\left(\tilde{\alpha}^{-1}(S) \right)\\ &\le c \tilde{E}(S). \end{aligned} \end{equation*} |
Using Lemma 3.1 for \tilde{E} and \chi(s) = c \Lambda(s) , we deduce from (3.1) the following estimate
\begin{equation*} \tilde{E}(t)\le \psi^{-1}\left(h(t)+\psi\left(E(0)\right)\right) \end{equation*} |
which, using the definition of \tilde{E} and the change of variables, gives (4.28).
Remark 4.1. The stability result (4.28) is a decay result. Indeed,
\begin{equation*} \begin{aligned} h^{-1}(t)& = t+\frac{\psi^{-1}\left(t+\psi(E(0))\right)}{\chi\left(\psi^{-1}(t+\psi(E(0)))\right)}\\ & = t+\frac{c}{2\varepsilon_0 c F^{\prime}\left(\varepsilon_0^2 \psi^{-1}(t+r) \right)}\\ &\ge t+\frac{c}{2\varepsilon_0 c F^{\prime}\left(\varepsilon_0^2 \psi^{-1}(r) \right)}\\ &\ge t+\tilde{c}, \end{aligned} \end{equation*} |
where F = \min \{ F_i \} and i = 1, 2, 3. Hence, \lim_{t\to\infty}h^{-1}(t) = \infty , which implies that \lim_{t \to\infty}h(t) = \infty . Using the convexity of F , we have
\begin{equation*} \begin{aligned} \psi(t)& = \int_{t}^{1}\frac{1}{\chi(s)}ds = \int_{t}^{1}\frac{c}{2\varepsilon_0 sF^{\prime}\left(\varepsilon_0^2s\right)}\ge \int_{t}^{1}\frac{c}{sF^{\prime}\left(\varepsilon_0^2\right)}\ge c \left[\ln{\vert s\vert}\right]_{t}^{1} = -c\ln{t}, \end{aligned} \end{equation*} |
where F = \min \{ F_i \} and i = 1, 2, 3. Therefore, \lim_{t\to 0^+}\psi(t) = \infty , which leads to \lim_{t\to \infty}\psi^{-1}(t) = 0 .
Example 1. Let f_i(s) = s^m , (i = 1, 2, 3) , where m\ge 1 , then the function F ( F = \min \{ F_i \} ) is defined in the neighborhood of zero by
F(s) = c s^{\frac{m+1}{2}} |
which gives, near zero,
\chi(s) = \frac{c(m+1)}{2} s^{\frac{m+1}{2}}. |
So,
\begin{equation*} \psi(t) = c \int_{t}^{1}\frac{2}{(m+1)s^{\frac{m+1}{2}}}ds = \left\{ \begin{array}{ll} \frac{c}{t^{\frac{m-1}{2}}}, & if ~~~ {m > 1 ;} \\ \\ -c\ln{t}, & if ~~~ {m = 1 , } \end{array} \right. \end{equation*} |
then in the neighborhood of \infty ,
\begin{equation*} \psi^{-1}(t) = \left\{ \begin{array}{ll} c t^{-\frac{2}{m-1}}, & if ~~~ {m > 1 ;} \\ c e^{-t}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*} |
Using the fact that h(t) = t as t goes to infinity, we obtain from (4.27) and (4.28):
\begin{equation*} E(t)\le \left\{ \begin{array}{ll} c \left(\int_{0}^{t}\alpha(s)ds\right)^{-\frac{2}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{-{\int_{0}^{t}\alpha(s)ds}}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*} |
Example 2. Let f_i(s) = s^m \sqrt{-\ln{s}} , (i = 1, 2, 3) , where m\ge 1 , then the function F is defined in the neighborhood of zero by
F(s) = c s^{\frac{m+1}{2}} \sqrt{-\ln{\sqrt{s}}}, |
which gives, near zero,
\chi(s) = cs^{\frac{m+1}{2}}\left(-\ln{\sqrt{s}}\right)^{-\frac{1}{2}}\left(\frac{m+1}{2}\left(-\ln{\sqrt{s}}\right)-\frac{1}{4}\right). |
Therefore,
\begin{equation*} \begin{aligned} \psi(t) = &c \int_{t}^{1}\frac{1}{ s^{\frac{m+1}{2}}\left(-\ln{\sqrt{s}}\right)^{-\frac{1}{2}}\left(\frac{m+1}{2}\left(-\ln{\sqrt{s}}\right)-\frac{1}{4}\right)}ds\\ = &c\int_{1}^{\frac{1}{\sqrt{t}}}\frac{\tau^{m-2}}{(\ln{\tau})^{-\frac{1}{2}} \left(\frac{m+1}{2}\ln{\tau}-\frac{1}{4} \right)}d\tau\\ = &\left\{ \begin{array}{ll} \frac{c}{t^{\frac{m-1}{2}}\sqrt{-\ln{t} }}, & if ~~~ {m > 1 ;} \\ \\ c\sqrt{-\ln{t}}, & if ~~~ {m = 1 , } \end{array} \right. \end{aligned} \end{equation*} |
then in the neighborhood of \infty ,
\begin{equation*} \psi^{-1}(t) = \left\{ \begin{array}{ll} c t^{-\frac{2}{m-1}}\left( \ln{t} \right)^{-\frac{1}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{-t^2}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*} |
Using the fact that h(t) = t as t goes to infinity, we obtain
\begin{equation*} E(t)\le \left\{ \begin{array}{ll} c \left(\int_{0}^{t}\alpha(s)ds\right)^{-\frac{2}{m-1}} \left(\ln{\left(\int_{0}^{t}\alpha(s)ds\right)}\right)^{-\frac{1}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{- \left(\int_{0}^{t}\alpha(s)ds\right)^2}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*} |
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia. The support provided by the Interdisciplinary Research Center for Construction & Building Materials (IRC-CBM) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. INCB2402, is also greatly acknowledged.
The authors declare that there is no conflict of interest.
[1] |
E. T. Degens, R. P. Von Herzen, H. K. Wong, W. G. Deuser, H. W. Jannasch, Lake Kivu: Structure, chemistry and biology of an east African rift lake, Geol. Rundsch., 62 (1973), 245−277. https://doi.org/10.1007/BF01826830 doi: 10.1007/BF01826830
![]() |
[2] | R. Sumithra, Exact solution of triple diffusive Marangoni convection in a composite layer, Inter. J. Eng. Res. Tech., 1 (2012), 1−13. |
[3] |
I. S. Shivakumara, S. B. Naveen Kumar, Linear and weakly nonlinear triple diffusive convection in a couple stress fluid layer, Int. J. Heat Mass Tran., 68 (2014), 542−553. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.051 doi: 10.1016/j.ijheatmasstransfer.2013.09.051
![]() |
[4] |
G. C. Rana, R. Chand, V. Sharma, A. Sharda, On the onset of triple-diffusive convection in a layer of nanofluid, J. Comput. Appl. Mech., 47 (2016), 67−77. https://doi.org/10.22059/JCAMECH.2016.59256 doi: 10.22059/JCAMECH.2016.59256
![]() |
[5] |
K. R. Raghunatha, I. S. Shivakumara, B. M. Shankar, Weakly nonlinear stability analysis of triple diffusive convection in a Maxwell fluid saturated porous layer, Appl. Math. Mech., 39 (2018), 153−168. https://doi.org/10.1007/s10483-018-2298-6 doi: 10.1007/s10483-018-2298-6
![]() |
[6] |
P. M. Patil, Monisha Roy, S. Roy, E. Momoniat, Triple diffusive mixed convection along a vertically moving surface, Int. J. Heat Mass Tran., 117 (2018), 287−295. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.106 doi: 10.1016/j.ijheatmasstransfer.2017.09.106
![]() |
[7] |
P. M. Patil, M. Roy, A. Shashikant, S. Roy, E. Momoniat, Triple diffusive mixed convection from an exponentially decreasing mainstream velocity, Int. J. Heat Mass Tran., 124 (2018), 298−306. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.052 doi: 10.1016/j.ijheatmasstransfer.2018.03.052
![]() |
[8] | G. Melathil, S. Pranesh, S. Tarannum, Effects of magnetic field and internal heat generation on triple diffusive convection in an Oldroyd-B liquid, Int. J. Res. Advent Tech., 7 (2019), 154−163. |
[9] |
M. Archana, B. J. Gireesha, B. C. Prasannakumara, Triple diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a horizontal plate, Arch. Thermodyn., 40 (2019), 49–69. https://doi.org/10.24425/ather.2019.128289 doi: 10.24425/ather.2019.128289
![]() |
[10] |
I. A. Badruddin, Azeem, T. M. Yunus Khan, M. A. Ali Baig, Heat transfer in porous media: A mini review, Mater. Today, 24 (2020), 1318−1321. https://doi.org/10.1016/j.matpr.2020.04.447 doi: 10.1016/j.matpr.2020.04.447
![]() |
[11] |
S. U. Khan, H. Vaidya, W. Chammam, S. A. Musmar, K. V. Prasad, I. Tlili, Triple diffusive unsteady flow of Eyring-Powell nanofluid over a periodically accelerated surface with variable thermal features, Front. Phys., 8 (2020), 246. https://doi.org/10.3389/fphy.2020.00246 doi: 10.3389/fphy.2020.00246
![]() |
[12] |
S. Shankar, S. B. Ramakrishna, N. Gullapalli, N. Samuel, Triple diffusive MHD Casson fluid flow over a vertical wall with convective boundary conditions, Biointerface Res. Appl. Chem., 11 (2021), 13765−13778. https://doi.org/10.33263/BRIAC116.1376513778 doi: 10.33263/BRIAC116.1376513778
![]() |
[13] |
Y. X. Li, U. F. Alqsair, K. Ramesh, S. U. Khan, M. I. Khan, Nonlinear heat source/sink and activation energy assessment in double diffusion flow of micropolar (non-Newtonian) nanofluid with convective conditions, Arab J. Sci. Eng., 47 (2022), 859–866. https://doi.org/10.1007/s13369-021-05692-7 doi: 10.1007/s13369-021-05692-7
![]() |
[14] |
M. Sohail, U. Nazir, E. R. El-Zahar, H. Alrabaiah, P. Kumam, A. A. A. Mousa, et al., A study of triple-mass diffusion species and energy transfer in Carreau–Yasuda material influenced by activation energy and heat source, Sci. Rep., 12 (2022), 10219. https://doi.org/10.1038/s41598-022-13890-y doi: 10.1038/s41598-022-13890-y
![]() |
[15] |
B. K. Sharma, R. Gandhi, Combined effects of Joule heating and non-uniform heat source/sink on unsteady MHD mixed convective flow over a vertical stretching surface embedded in a Darcy-Forchheimer porous medium, Propul. Power Res., 11 (2022), 276−292. https://doi.org/10.1016/j.jppr.2022.06.001 doi: 10.1016/j.jppr.2022.06.001
![]() |
[16] |
S. Noor Arshika, S. Tarannum, S. Pranesh, Heat and mass transfer of triple diffusive convection in viscoelastic liquids under internal heat source modulations, Heat Tran., 51 (2022), 239−256. https://doi.org/10.1002/htj.22305 doi: 10.1002/htj.22305
![]() |
[17] |
V. Nagendramma, P. Durgaprasad, N. Sivakumar, B. M. Rao, C. S. K. Raju, N. A. Shah, S. J. Yook, Dynamics of triple diffusive free convective MHD fluid flow: Lie group transformation, Mathematics, 10 (2022), 2456. https://doi.org/10.3390/math10142456 doi: 10.3390/math10142456
![]() |
[18] |
J. V. Ramana Reddy, K. Anantha Kumar, V. Sugunamma, N. Sandeep, Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study, Alex. Eng. J., 57 (2018), 1829−1838. https://doi.org/10.1016/j.aej.2017.03.008 doi: 10.1016/j.aej.2017.03.008
![]() |
[19] |
B. J. Gireesha, K. Ganesh Kumar, G. K. Ramesh, B. C. Prasannakumara, Nonlinear convective heat and mass transfer of Oldroyd-B nanofluid over a stretching sheet in the presence of uniform heat source/sink, Results Phys., 9 (2018), 1555−1563. https://doi.org/10.1016/j.rinp.2018.04.006 doi: 10.1016/j.rinp.2018.04.006
![]() |
[20] |
N. Sandeep, C. Sulochana, Momentum and heat transfer behaviour of Jeffrey, Maxwell and Oldroyd-B nanofluids past a stretching surface with non-uniform heat source/sink, Ain Shams Eng. J., 9 (2018), 517−524. https://doi.org/10.1016/j.asej.2016.02.008 doi: 10.1016/j.asej.2016.02.008
![]() |
[21] |
K. E. Aslani, U. S. Mahabaleshwar, P. H. Sakanaka, I. E. Sarris, Effect of partial slip and radiation on liquid film fluid flow over an unsteady porous stretching sheet with viscous dissipation and heat source/sink, J. Porous Media, 24 (2021), 1−15. https://doi.org/10.1615/JPorMedia.2021035873 doi: 10.1615/JPorMedia.2021035873
![]() |
[22] |
R. J. Punith Gowda, R. Naveen Kumar, A. M. Jyothi, B. C. Prasannakumara, I. E. Sarris, Impact of binary chemical reaction and activation energy on heat and mass transfer of Marangoni driven boundary layer flow of a non-Newtonian nanofluid, Processes, 9 (2021), 702. https://doi.org/10.3390/pr9040702 doi: 10.3390/pr9040702
![]() |
[23] |
M. Ibrahim, T. Saeed, F. Riahi Bani, S. N. Sedeh, Y. M. Chu, D. Toghraie, Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular micro tube with twisted porous blocks under a uniform magnetic field, Powder Technol., 384 (2021), 522−541. https://doi.org/10.1016/j.powtec.2021.01.077 doi: 10.1016/j.powtec.2021.01.077
![]() |
[24] |
K. Sajjan, N. Ameer Ahammad, C. S. K. Raju, N. A. Shah, T. Botmart, Study of nonlinear thermal convection of ternary nanofluid within Darcy-Brinkman porous structure with time dependent heat source/sink, AIMS Mathematics, 8 (2023), 4237–4260. https://doi.org/ 10.3934/math.2023211 doi: 10.3934/math.2023211
![]() |
[25] |
T. Mahesh Kumar, N. A. Shah, V. Nagendramma, P. Durgaprasad, N. Sivakumar, B. Madhusudhana Rao, et al., Linear regression of triple diffusive and dual slip flow using Lie Group transformation with and without hydro-magnetic flow, AIMS Mathematics, 8 (2023), 5950–5979. https://doi.org/10.3934/math.2023300 doi: 10.3934/math.2023300
![]() |
[26] |
S. U. Mamatha, R. L. V. Renuka Devi, N. Ameer Ahammad, N. A. Shah, B. Madhusudhan Rao, C. S. K. Raju, et al., Multi-linear regression of triple diffusive convectively heated boundary layer flow with suction and injection: Lie group transformations, Int. J. Mod. Phys. B, 37 (2023), 2350007. https://doi.org/10.1142/S0217979223500078 doi: 10.1142/S0217979223500078
![]() |
[27] |
T. Liu, Reconstruction of a permeability field with the wavelet multiscale-homotopy method for a nonlinear convection-diffusion equation, Appl. Math. Comput., 275 (2016), 432–437. https://doi.org/10.1016/j.amc.2015.11.095 doi: 10.1016/j.amc.2015.11.095
![]() |
[28] |
T. Liu, Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method, Chaos Solitons Fractals, 158 (2022), 112007. https://doi.org/10.1016/j.chaos.2022.112007 doi: 10.1016/j.chaos.2022.112007
![]() |
[29] |
N. Manjunatha, R. Sumithra, Effects of non-uniform temperature gradients on triple diffusive surface tension driven magneto convection in a composite layer, Univer. J. Mech. Eng., 7 (2019), 398–410. https://doi.org/10.13189/ujme.2019.070611 doi: 10.13189/ujme.2019.070611
![]() |
[30] |
N. Manjunatha, R. Sumithra, Triple diffusive surface tension driven convection in a composite layer in the presence of vertical magnetic field, Int. J. Eng. Adv. Tech., 9 (2020), 1727–1734. https://doi.org/10.35940/ijeat.C5707.029320 doi: 10.35940/ijeat.C5707.029320
![]() |
[31] | N. Manjunatha, R. Sumithra, Effects of heat source/sink on Darcian-Bènard-Magneto-Marangoni convection in a composite layer subjected to non-uniform temperature gradients, TWMS J. Appl. Eng. Math., 12 (2022), 669–684. |
[32] |
N. Manjunatha, R. Sumithra, R. K. Vanishree, Influence of constant heat source/sink on non-Darcian-Bènard double diffusive Marangoni convection in a composite layer system, J. Appl. Math. Inform., 40 (2022), 99–115. https://doi.org/10.14317/jami.2022.099 doi: 10.14317/jami.2022.099
![]() |
[33] |
P. Rudolph, W. Wang, K. Tsukamoto, D. Wu, Transport phenomena of crystal growth-heat and mass transfer, AIP Conf. Proc. 1270 (2010), 107–132. https://doi.org/10.1063/1.3476222 doi: 10.1063/1.3476222
![]() |
[34] |
P. H. Roberts, Electrohydrodynamic convection, Q. J. Mech. Appl. Math., 22 (1969), 211–220. https://doi.org/10.1093/qjmam/22.2.211 doi: 10.1093/qjmam/22.2.211
![]() |
[35] |
M. I. Char, K. T. Chiang, Boundary effects on the Bènard-Marangoni instability under an electric field, Appl. Sci. Res., 52 (1994), 331–354. https://doi.org/10.1007/BF00936836 doi: 10.1007/BF00936836
![]() |
[36] |
J. A. Del Rio, S. Whitaker, Electrohydrodynamics in porous media, Transp. Porous Media, 440 (2001), 385–405. https://doi.org/10.1023/A:1010762226382 doi: 10.1023/A:1010762226382
![]() |
[37] |
M. I. Othman, Electrohydrodynamic instability of a rotating layer of a viscoelastic fluid heated from below, Z. Angew. Math. Phys., 55 (2004), 468–482. https://doi.org/10.1007/s00033-003-1156-2 doi: 10.1007/s00033-003-1156-2
![]() |
[38] |
I. S. Shivakumara, N. Rudraiah, C. E. Nanjundappa., Effect of non-uniform basic temperature gradient on Rayleigh-Bènard-Marangoni convection in ferrofluids, J. Magn. Magn. Mater., 248 (2002), 379–395. https://doi.org/10.1016/S0304-8853(02)00151-8 doi: 10.1016/S0304-8853(02)00151-8
![]() |
[39] | I. S. Shivakumara, S. Suma, K. B. Chavaraddi, Onset of surface tension driven convection in superposed layers of fluid and saturated porous medium, Arch. Mech., 58 (2006), 71–92. |
[40] |
I. S. Shivakumara, S. Suresh Kumar, N. Devaraju, Effect of non-uniform temperature gradients on the onset of convection in a couple-stress fluid-saturated porous medium, J. Appl. Fluid. Mech., 5 (2012), 49–55. https://doi.org/10.36884/jafm.5.01.11957 doi: 10.36884/jafm.5.01.11957
![]() |
[41] |
P. N. Kaloni, J. X. Lou, Convective instability of magnetic fluids, Phys. Rev. E, 70 (2004), 026313. https://doi.org/10.1103/PhysRevE.70.026313 doi: 10.1103/PhysRevE.70.026313
![]() |
[42] |
E. W. Sparrow, R. J. Goldstein, V. K. Jonson, Thermal instability in a horizontal fluid layer effect of boundary conditions and non-linear temperature profile, J. Fluid Mech., 18 (1964), 513–528. https://doi.org/10.1017/S0022112064000386 doi: 10.1017/S0022112064000386
![]() |
1. | Mohammed Abu Saleem, On soft covering spaces in soft topological spaces, 2024, 9, 2473-6988, 18134, 10.3934/math.2024885 |