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1. Introduction

Paracontact geometry equipped with the nullity distribution contributes a crucial part in the
development of modern paracontact geometry. The pioneering work of Kaneyuki and Williams [1]
opened the door to the study of paracontact geometry for researchers. The para-Kähler manifolds
with its applications in pseudo-Riemannian geometry and mathematical physics have motivated
researchers to concentrate on paracontact geometry. In [2], Zamkovoy presented a systematic research
of paracontact metric manifolds (PMMs). The geometrical and physical properties of PMMs have
been studied by many researchers. Calvaruso et al. [3] have investigated paracontact metric structures
on the unit tangent bundle. The properties of bi-paracontact structure and Legendre foliations have
been explored in [4]. Blaga [5] has studied the properties of Lorentzian para-Sasakian manifolds
endowed with η-Ricci solitons. Three-dimensional paracontact metric manifolds have studied in [6–9].
Cappelletti-Montano et al. [10] introduced the notion of paracontact (κ, µ)-spaces and obtained their
various properties, where κ and µ are real constants. After that, the properties of paracontact metric
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(κ, µ)-spaces have been studied in [11–14]. The classification of paracontact metric (κ, µ)-spaces with
non-trivial examples were given in [15, 16].

Let M2n+1 be a (2n + 1)-dimensional PMM, and g is a pseudo-Riemannian metric of M2n+1. If the
set of all pseudo-Riemannian metrics of unit volume on M2n+1 is represented by G, then we have

Lg(g∗) + g(g∗, S g) + 4g(trgg∗) = div(div(g∗)),

where g∗ represents the (0, 2)-type symmetric bilinear tensor, 4g is the negative Laplacian of the
pseudo-Riemannian metric g, S g is the Ricci tensor corresponding to g and ′div′ and ′tr′ are used
for divergence and trace, respectively. Here, Lg is the linearized scalar curvature operator. Let L∗g
represent the formal L2-adjoint of Lg. Then, the aforementioned equation assumes the form

L∗g(λ) = Hessgλ − (4gλ)g − λS g, (1.1)

where Hessgλ is the Hessian of the smooth function λ corresponding to g and is defined by the relation
Hessgλ(U1,U2) = g(∇U1 Dλ,U2), ∀ U1,U2 ∈ X(M2n+1). Here, D denotes the gradient operator and
X(M2n+1) the collection of all smooth vector fields of M2n+1. In the present paper, we represent
L∗g(λ) = 0 as the Fischer-Marsden equation (briefly, by FME). The doublet (g, λ) satisfying the
equation L∗g(λ) = 0, for λ , 0, is known as the non-trivial solution of the FME. Bourguignon [17],
Fischer and Marsden [18] considered a Riemannian manifold satisfying the FME and proved that the
scalar curvature of the manifold is constant. In 2000, Corvino [19] showed that a complete Riemannian
manifold with the warped product metric g∗ = g − λ2dt2 is Einstein if and only if the doublet (g, λ) is
a non-trivial solution of the FME. Recently, Al-Dayal et al. [20] have considered a semi-Riemannian
manifold satisfying the Fischer-Marsden equation and proved that the manifold under consideration is a
quasi-Einstein manifold. In 1974, Fischer and Marsden [18] conjectured that, if a compact Riemannian
n-manifold concedes (g, λ) with λ , 0, we attain an Einstein manifold. The first counter example
of the Fischer-Marsden conjecture (in short, FMC) was given by Kobayashi [21]. In [22], Cernea
and Guan established that a closed homogeneous Riemannian manifold (M, g) satisfying the equation
L∗g(λ) = 0 is locally isometric to E × S m, where E and S m denote the Einstein manifold and the
Euclidean sphere, respectively. Recently, Patra and Ghosh [23] proved that if a K-contact (or a (κ, µ)-
contact) metric manifold has L∗g(λ) = 0, the manifold is Einstein (or locally isometric to the sphere
S 2n+1). Prakasha et al. [24] considered a (2n+1)-dimensional (κ, µ)′-almost Kenmotsu manifold (M, g)
admits (g, λ , 0) and proved that (M, g) is locally isometric to Hn+1(α) × f R

n or Bn+1(α′) × f ′ R
n.

In [25–27], Chaubey et al. studied the properties of Kenmotsu manifolds, generalized Sasakian-space-
forms and cosymplectic manifolds satisfying the Fischer-Marsden conjecture. Deshmukh et al. [28]
explored the Fischer-Marsden conjecture in Riemannian manifolds. Very recently, Suh et al. [29–31]
and Venkatesha et al. [32] have explored the properties of FMC on the hypersurfaces of space-forms.

The above studies inspire us to characterize N(κ)-paracontact metric manifolds (in brief, NKPMMs)
satisfying the FME, that is, L∗g(λ) = 0. Following an overview in Section 1, in Section 2 we gather
the basic known results and definitions of PMMs. Section 3 deals with the study of three-dimensional
NKPMMs satisfying the Fischer-Marsden equation and prove that the manifold under consideration is
Einstein. In Section 4, we characterize an NKPMM satisfying the equation L∗g(λ) = 0 for n > 1. It
is proved that either there does not exist an Einstein NKPMM with κ > −1, or the manifold M2n+1 is
locally isometric to the product of a hyperbolic space Hn(−4) and a Euclidean space En+1.
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2. Paracontact metric manifolds

Let M2n+1 be a (2n + 1)-dimensional differentiable manifold of class C∞. Then, a triplet (φ, ξ, η)
defined on M2n+1 and satisfying the relations

φ2(U1) + η(U1)ξ = U1, η(ξ) = 1, ∀ U1 ∈ X(M2n+1), (2.1)

where φ is a tensor field of type (1, 1), η a tensor field of type (0, 1) and the Reeb vector field ξ, is
known as an almost paracontact structure on M2n+1. The manifold M2n+1 equipped with the structure
(φ, ξ, η) is called an almost paracontact manifold. It is noticed that the structure tensor φ induces an
almost paracomplex structure J on the horizontal distributionD = ker(η), that is, the eigensubbundles
D+ and D− have equal dimension n corresponding to the eigenvalues +1 and −1 of J, respectively. If
M2n+1 admits a pseudo-Riemannian metric g of type (0, 2) such that the relations

g(U1, ξ) = η(U1), g(φU1, φU2) + g(U1,U2) = η(U1)η(U2), (2.2)

hold for all U1, U2 ∈ X(M2n+1), then (M2n+1, g) is known as an almost PMM. From (2.1) and (2.2), it
follows that the following relations

rank φ = 2n, φξ = 0, η ◦ φ = 0, g(φU1,U2) + g(U1, φU2) = 0, (2.3)

hold for all U1, U2 ∈ X(M2n+1). An almost PMM M2n+1 with g(U1, φU2) = dη(U1,U2) becomes a
PMM. Here d represents the exterior derivative operator.

An almost paracontact metric structure with [φ, φ] − 2dη ⊗ ξ = 0 is said to be normal, where [φ, φ]
represents the Nijenhuis tensor corresponding to the structure tensor φ. In [2], Zamkovoy proved
that an almost PMM M2n+1 possesses at least a (locally) φ-basis, that is, the set {E1, E2, E3, ..., En,

φE1, φE2, φE3, ..., φEn, ξ} represents a (locally) pseudo-orthonormal basis of the vector fields, where
E1, E2, E3, ..., En, ξ and φE1, φE2, φE3, ..., φEn are space-like and time-like vector fields, respectively.
In M2n+1, the φ-basis is determined by a (locally) pseudo-orthonormal basis of ker(η). If possible, we
suppose that e3 is time-like and {e2, e3} a pseudo-orthonormal basis of ker(η). Then, from Eq (2.2) we
conclude that φe2 ∈ ker(η) is time-like and orthonormal to e2. Thus φe2 = ±e3 and hence we consider
{e2,±e3, ξ} to be a φ-basis on M3. For more details, we refer to [7]. On a PMM M2n+1, a symmetric
and trace-free (1, 1)-type tensor h, defined by h = 1

2Lξφ, satisfies

hξ = 0, φh + hφ = 0, trh = 0, trhφ = 0, (2.4)

∇U1ξ = −φU1 + φhU1, (2.5)

for all U1 ∈ X(M2n+1), where ∇ and trh denote the Levi-Civita connection and the trace of the operator
h, respectively. An almost paracontact metric structure is said to be a K-paracontact structure if ξ is
Killing, that is, h = 0. An almost PMM is said to be a para-Sasakian manifold if and only if

(∇U1φ)(U2) = −g(U1,U2)ξ + η(U2)U1,

for all U1, U2 ∈ X(M2n+1). A normal PMM is para-Sasakian and satisfies

R(U1,U2)ξ = η(U1)U2 − η(U2)U1, ∀ U1, U2 ∈ X(M2n+1).

The converse is not true. Here R denotes the curvature tensor corresponding to ∇.
Next, we consider that the Reeb vector field ξ of a (2n + 1)-dimensional PMM M2n+1 belongs to the

(κ, µ)-nullity distribution.
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Definition 2.1. A PMM M2n+1 is said to be a paracontact (κ, µ)-manifold if

R(U1,U2)ξ = κ{η(U2)U1 − η(U1)U2} + µ{η(U2)hU1 − η(U1)hU2},

for all U1, U2 ∈ X(M2n+1), where κ and µ are real constants [12].

As a particular case, the paracontact metric (κ, µ)-manifold with µ = 0 reduces to an NKPMM.
Hence, the above equation becomes

R(U1,U2)ξ = κ{η(U2)U1 − η(U1)U2}. (2.6)

In light of Eqs (2.2), (2.5) and (2.6), we have

S (U1, ξ) = 2nκη(U1), (2.7)

R(ξ,U1)U2 = κ{g(U1,U2)ξ − η(U2)U1}, (2.8)

(∇U1η)(U2) = g(φU2,U1) − g(φhU2,U1),

where S denotes the Ricci tensor of M2n+1. For dim M = 3, the NKPMM M3 satisfies the following
relations

QU1 =

( r
2
− κ

)
U1 +

(
3κ −

r
2

)
η(U1)ξ, (2.9)

S (U1, ξ) = 2κη(U1), (2.10)

for each U1, U2 ∈ X(M2n+1), where the Ricci operator associated with the Ricci tensor S is Q, that is,
S (·, ·) = g(Q·, ·) and r denotes the scalar curvature of M2n+1 [9].

3. Three-dimensional NKPMM satisfying the Fischer-Marsden conjecture

This section deals with the study of the Fischer-Marsden conjecture within the framework of a
three-dimensional NKPMM. In this section, we represent M3 as a three-dimensional NKPMM. We
recall the following results.

Lemma 3.1. A three-dimensional paracontact metric (κ, µ)-manifold is Einsteinian if and only if κ =

µ = 0 (see Corollary 4.14, [10]).

De et al. [33] showed that the following results hold on a three-dimensional NKPMM.

Lemma 3.2. i) If and only if the manifold is an Einstein manifold, an M3 is Ricci semisymmetric.
ii) If and only if the manifold has constant curvature κ, an M3 is Ricci semisymmetric.
iii) An M3 is Riccisymmetric if and only if the manifold is of constant curvature κ.

Before proving our main results, we prove the following propositions.

Proposition 3.1. If a PMM M2n+1 satisfies the FMC, then we have

R(U1,U2)Dλ = (U1λ)QU2 − (U2λ)QU1 + λ{(∇U1 Q)(U2) − (∇U2 Q)(U1)} + (U1 f )U2 − (U2 f )U1, (3.1)

for all vector fields U1 and U2 of M2n+1, where f = − rλ
2n .
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Proof. Assume that there is a non-trivial solution (g, λ) to the equationL∗g(λ) = 0. Then, from Eq (1.1),
we have

−(4gλ)g + Hessgλ − λS g = 0,

where 4gλ = − rλ
2n . Thus, the FME can be written as

∇U1 Dλ = λQU1 + fU1, U1 ∈ X(M2n+1), f = −
rλ
2n
. (3.2)

Equation (3.2)’s covariant derivative along the vector field U2 results in

∇U2∇U1 Dλ = (U2λ)QU1 + λ{(∇U2 Q)(U1) + Q(∇U2U1)} + (U2 f )U1 + f∇U2U1. (3.3)

Interchanging U1 and U2 in (3.3) and using the obtained equation, (3.2) and (3.3) in R(U1,U2)Dλ =

[∇U1 ,∇U2]Dλ − ∇[U1,U2]Dλ, we immediately get the required result. �

Proposition 3.2. On M3, we have

(∇ξQ)(U2) − (∇U2 Q)(ξ) =
dr(ξ)

2
(U2 − η(U2)ξ) −

r − 6κ
2

(φU2 − φhU2). (3.4)

Proof. From Eq (2.10), we have Qξ = 2κξ, where κ is a real constant. Taking the covariant derivative
of this equation along the vector field U2, and using Eqs (2.3), (2.5) and (2.9), we obtain

(∇U2 Q)(ξ) =
r − 6κ

2
(φU2 − φhU2). (3.5)

Differentiating Eq (2.9) once more along the Reeb vector field ξ, we have

(∇ξQ)(U2) + Q(∇ξU2) =
dr(ξ)

2
(U2 − η(U2)ξ) +

( r
2
− κ

)
∇ξU2

+

(
3κ −

r
2

)
{(∇ξη)(U2) + η(∇ξU2)ξ + η(U2)∇ξξ}.

In light of Eqs (2.2)–(2.5), (2.9) and (2.10), the above equation becomes

(∇ξQ)(U2) =
dr(ξ)

2
(U2 − η(U2)ξ). (3.6)

Thus, in view of (3.5) and (3.6), we get the statement of Proposition 3.2. �

From Eq (3.5), we have
(div Q)(ξ) = 0 =⇒ dr(ξ) = 0, (3.7)

where div Q denotes the divergence of Ricci operator Q. This equation shows that the scalar curvature
r is locally constant along the vector field ξ.

Now, we are going to prove the main result of this section. Changing U1 by ξ in (3.1), we obtain

R(ξ,U2)Dλ = (ξλ)QU2 − (U2λ)Qξ + λ{(∇ξQ)(U2) − (∇U2 Q)(ξ)} + (ξ f )U2 − (U2 f )ξ. (3.8)

Taking the inner product of (3.8) with U1 and then calling Eqs (2.2), (2.3), (2.10) and (3.4), we obtain

g(R(ξ,U2)Dλ,U1) = (ξλ)S (U2,U1) − 2κ(U2λ)η(U1) − (U2 f )η(U1)

+λ{
dr(ξ)

2
[g(U1,U2) − η(U1)η(U2)] −

r − 6κ
2

[g(φU2,U1)

−g(φhU2,U1)]} + (ξ f )g(U2,U1). (3.9)
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In view of Eqs (2.1) and (2.8), we get

g(R(ξ,U2)D λ,U1) = κ{(U2λ)η(U1) − (ξλ)g(U2,U1)}. (3.10)

This result also holds well for the (2n + 1)-dimensional NKPMM. Eq (3.9) along with Eq (3.10) gives

(ξλ)S (U2,U1) − 2κ(U2λ)η(U1) + λ{
dr(ξ)

2
[g(U1,U2) − η(U1)η(U2)]

−
r − 6κ

2
[g(φU2,U1) − g(φhU2,U1)]} − (U2 f )η(U1)

+(ξ f )g(U2,U1) − κ{(U2λ)η(U1) − (ξλ)g(U2,U1)} = 0. (3.11)

Let {ei, i = 1, 2, 3} be a local orthonormal basis on M3. Setting U1 = U2 = ei in (3.11) and summing
for i, i = 1, 2, 3, we conclude that

3∑
i=1

(ξλ)S (ei, ei) −
3∑

i=1

2κ(eiλ)η(ei) +

3∑
i=1

λ{
dr(ξ)

2
[g(ei, ei) − η(ei)η(ei)]

−
r − 6κ

2
[g(φei, ei) − g(φhei, ei)]} −

3∑
i=1

(ei f )η(ei)

+

3∑
i=1

(ξ f )g(ei, ei) −
3∑

i=1

κ{(eiλ)η(ei) − (ξλ)g(ei, ei)} = 0,

which becomes
r(ξλ) − 2κ(ξλ) + λdr(ξ) + 2(ξ f ) + 2κ(ξλ) = 0.

It is obvious that, on M3, 2 f = −rλ, and hence it gives us

2(ξ f ) + r(ξλ) = −(ξr)λ.

From Eqs (3.7) and (3.11), if (div Q)(ξ) = 0, then we have

(ξλ)S (U2,U1) − 2κ(U2λ)η(U1) −
λ

2
(r − 6κ){g(φU2,U1) − g(φhU2,U1)}

−(U2 f )η(U1) + (ξ f )g(U2,U1) + κ{(ξλ)g(U2,U1) − (U2λ)η(U1)} = 0. (3.12)

Setting U1 = ξ in (3.12) and using the Eqs (2.1)–(2.4) and (2.10), we get

3κ[(ξλ)η(U2) − (U2λ)] − [(U2 f ) − (ξ f )η(U2)] = 0.

By replacing U1 in Eq (3.12) with φU1 and then using Eq (2.3), we discover

(ξλ)S (U2, φU1) =
λ

2
(r − 6κ){g(φU2, φU1) − g(φhU2, φU1)} − [(ξ f ) + κ(ξλ)]g(U2, φU1). (3.13)

Interchanging U1 and U2 in (3.13), we get

(ξλ)S (U1, φU2) =
λ

2
(r − 6κ){g(φU1, φU2) − g(φhU1, φU2)} − [(ξ f ) + κ(ξλ)]g(U1, φU2). (3.14)
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Adding (3.13) and (3.14), we find

λ(r − 6κ)[g(φU1, φU2) − g(φhU1, φU2)] = 0.

Therefore, λ , 0 as we are interested in the Fischer-Marsden equation’s non-trivial solution. Now we
divide our study into two cases as:
Case I. We suppose that r , 6κ. Then, the above equation along with (2.5) reflects that ∇ξ = 0. This
result together with Eq (2.6) shows that R(U1,U2)ξ = 0, and hence we have µ = 0 and κ = 0. These
results and Lemma 3.1 infer that the three-dimensional NKPMM obeying the FME is Einstein.
Case II. Let us assume that r = 6κ. That is, the scalar curvature of the three-dimensional NKPMM
satisfying L∗g(λ) = 0 is constant. This shows that

(U2 f ) = −3κ(U2λ). (3.15)

In consequence of r = 6κ and (3.15), Eq (3.12) reduces to

(ξλ){S (U2,U1) − 2κg(U2,U1)} = 0. (3.16)

This shows that either S = 2κg or (ξλ) = 0. If possible, we consider that (ξλ) = 0, and hence
g(ξ,Dλ) = 0. Differentiating g(ξ,Dλ) = 0 covariantly along U1, we find

g(∇U1ξ,Dλ) + g(ξ,∇U1 Dλ) = 0.

The above equation along with Eqs (2.2), (2.5), (2.10) and (3.2) give

− g(φU1,Dλ) + g(φhU1,Dλ) + (2κλ + f )η(U1) = 0. (3.17)

Substituting U1 = ξ in (3.17) and using Eqs (2.3) and (2.4), we get

f = −2κλ. (3.18)

From Eqs (3.2) and (3.18), we conclude that r = 4κ, which contradicts our hypothesis. Hence, (ξλ) , 0,
and thus Eq (3.16) gives S = 2κg. By considering the above discussions and Lemma 3.1, we state:

Theorem 3.1. An M3 satisfying the Fischer-Marsden conjecture is Einstein.

In light of Lemma 3.2 and Theorem 3.1, we can state the following:

Corollary 3.1. Let the Fischer-Marsden conjecture hold on an M3. Then, the following conditions are
equivalent:
(i) M3 is Einstein,
(ii) M3 is Ricci semisymmetric,
(iii) M3 is a space of constant curvature,
(iv) M3 is Ricci symmetric.
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4. The Fischer-Marsden conjecture on an NKPMM

The aim of this section is to study the properties of a (2n + 1)-dimensional NKPMM satisfying the
Fischer-Marsden conjecture. We will utilize the following result to support our main finding.

Lemma 4.1. [34] Let M2n+1 be a PMM and suppose that R(U1,U2)ξ = 0 for all vector fields U1,
U2. Then, locally, M2n+1 is the product of a flat (n + 1)-dimensional manifold and an n-dimensional
manifold of negative curvature equal to −4 for n > 1.

In [10], Cappelletti-Montano et al. characterized (2n + 1)-dimensional paracontact metric (κ, µ)-
manifolds and proved many interesting results. It is observed that the Ricci operator Q of a (2n + 1)-
dimensional NKPMM satisfies the following relation

Q = −2(n − 1)I + 2(n − 1)h + [2(n − 1) + 2κn]η ⊗ ξ, (4.1)

for κ , −1, where I is an identity operator on M2n+1. Throughout this section, we suppose that κ , −1.
The symmetric tensor field h also satisfies

(∇U1h)(U2) − (∇U2h)(U1) = −(1 + κ){2g(U1, φU2)ξ + η(U1)φU2

−η(U2)φU1} + η(U1)φhU2 − η(U2)φhU1, (4.2)

for all U1, U2 ∈ X(M2n+1). From (4.1), we have

(∇U1 Q)(U2) = 2(n − 1)(∇U1h)(U2) + [2(n − 1) + 2κn]{g(∇U1ξ,U2)ξ + η(U2)∇U1ξ},

which gives

(∇U1 Q)(U2) − (∇U2 Q)(U1) = 2(n − 1){(∇U1h)(U2) − (∇U2h)(U1)}
+[2(n − 1) + 2κn]{g(∇U1ξ,U2)ξ + η(U2)∇U1ξ

−g(∇U2ξ,U1)ξ − η(U1)∇U2ξ}. (4.3)

In consequence of Eqs (2.1)–(2.3), (2.5), (3.1), (4.2) and (4.3), we get

g(R(ξ,U2)Dλ,U1) = (ξλ)S (U2,U1) + 2λ(n − 1){g((∇ξh)(U2)
−(∇U2h)(ξ),U1)} + λ[2(n − 1) + 2κn]{g(∇ξξ,U2)η(U1)
+g(∇ξξ,U1)η(U2) − g(∇U2ξ, ξ)η(U1) − g(∇U2ξ,U1)}
+(ξ f )g(U2,U1) − (U2 f )η(U1) − 2nκ(U2λ)η(U1)

= (ξλ)S (U2,U1) − 2nκ(U2λ)η(U1) + (ξ f )g(U2,U1)
−(U2 f )η(U1) − 2(n − 1)λ{(1 + κ)g(φU2,U1)
−g(φhU2,U1)} − λ[2(n − 1) + 2nκ]g(∇U2ξ,U1). (4.4)

From Eqs (3.10) and (4.4), we have

(ξλ)S (U2,U1) − 2nκ(U2λ)η(U1) + (ξ f )g(U2,U1) − (U2 f )η(U1)
−2(n − 1)λ{(1 + κ)g(φU2,U1) − g(φhU2,U1)} + κ{(ξλ)g(U2,U1)
−(U2λ)η(U1)} + λ[2(n − 1) + 2nκ]{g(φU2,U1) − g(φhU2,U1)} = 0. (4.5)
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Contracting Eq (4.1), we obtain
r = 2n(κ − 2(n − 1)) (4.6)

and hence Eq (3.2) becomes
f = (2(n − 1) − κ)λ, κ , −1,

which infers
(U1 f ) = (2(n − 1) − κ)(U1λ). (4.7)

Using Eq (4.7) in (4.5), we obtain

(ξλ)S (U2,U1) + (2(n − 1) − κ){(ξλ)g(U2,U1) − (U2λ)η(U1)}
−2nκ(U2λ)η(U1) − 2(n − 1)λ{(1 + κ)g(φU2,U1) − g(φhU2,U1)}
+κ{(ξλ)g(U2,U1) − (U2λ)η(U1)} + λ[2(n − 1)
+2nκ]{g(φU2,U1) − g(φhU2,U1)} = 0. (4.8)

Setting U1 = ξ in (4.8) and using Eqs (2.1)–(2.4) and (2.7), we get

[nκ + (n − 1)]{(U2λ) − (ξλ)η(U2)} = 0.

This shows that either nκ + n − 1 = 0 or (U2λ) − (ξλ)η(U2) = 0.
Case I. We suppose that nκ + n − 1 = 0. Thus, κ = −1 + 1

n > −1 for n > 1.
Cappelletti-Montano et al. [10] investigated several results of (2n + 1)-dimensional paracontact

metric (κ, µ)-manifolds for κ > −1. They proved that a three-dimensional NKPMM with κ > −1 is
an η-Einstein manifold. They also showed that there is no paracontact (κ, µ)-manifold for κ > −1 and
n > 1 that can be Einstein.
Case II. If possible, we suppose that (U2λ) − (ξλ)η(U2) = 0 for n > 1 on M2n+1. Thus we have
Dλ = (ξλ)ξ. By covariantly differentiating this outcome along the vector field U1, we discover

∇U1 Dλ = U1(ξλ)ξ + (ξλ)∇U1ξ.

According to Eq (3.2), the previous equation has the following form:

λQU1 + fU1 = U1(ξλ)ξ + (ξλ)∇U1ξ. (4.9)

Taking a local frame field and contracting Eq (4.9), we get

λr + (2n + 1){2(n − 1) − κ}λ = ξ(ξλ). (4.10)

Again replacing U1 by ξ in Eq (3.2) and taking the inner product with ξ, we find

ξ(ξλ) = f + 2nκλ. (4.11)

Equations (4.10) and (4.11) along with Eqs (3.2) and (4.6) give us

2nκλ = 0.

By the hypothesis λ , 0, we have κ = 0 for n > 1 and, from Eq (2.6), we get R(U1,U2)ξ = 0. This result
along with the Lemma 4.1 tell us that M2n+1, n > 1, is locally isometric to the product of the Euclidean
space En+1 and a hyperbolic space Hn(−4) of constant curvature −4. Thus, we are in a position to state
the following:

Theorem 4.1. Let a (2n + 1)-dimensional N(k)-paracontact metric manifold M2n+1 with n > 1 satisfy
the equation L∗g(λ) = 0. Then, either M2n+1 is locally isometric to En+1 × Hn or there does not exist an
Einstein NKPMM with κ > −1 for M2n+1.

AIMS Mathematics Volume 9, Issue 1, 2232–2243.
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5. Conclusions

The notion of the Fischer-Marsden conjecture on Riemannian manifolds was introduced by
Fischer and Marsden [18], and it has been further extended by Bourguignon [17]. This conjecture
on some classes of almost contact metric manifolds has been explored by many researchers. In
this manuscript, we defined the Fischer-Marsden conjecture on semi-Riemannian manifolds, and in
particular, we studied the non-trivial solutions of the Fischer-Marsden equation on N(k)-paracontact
metric manifolds. This manuscript may open a door for researchers to explore the non-trivial solutions
of the Fischer-Marsden equation on the classes of semi-Riemannian manifolds.
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