Research article

$ \ast $-Ricci tensor on $ (\kappa, \mu) $-contact manifolds

  • Received: 30 December 2021 Revised: 07 March 2022 Accepted: 10 March 2022 Published: 13 April 2022
  • MSC : 53C21, 53D10, 53D15

  • We introduce the notion of semi-symmetric $ \ast $-Ricci tensor and illustrate that a non-Sasakian $ (\kappa, \mu) $-contact manifold is $ \ast $-Ricci semi-symmetric or has parallel $ \ast $-Ricci operator if and only if it is $ \ast $-Ricci flat. Then we find that among the non-Sasakian $ (\kappa, \mu) $-contact manifolds with the same Boeckx invariant $ I_M $, only one is $ \ast $-Ricci flat, so we can think of it as the representative of such class. We also give two methods to construct $ \ast $-Ricci flat $ (\kappa, \mu) $-contact manifolds.

    Citation: Rongsheng Ma, Donghe Pei. $ \ast $-Ricci tensor on $ (\kappa, \mu) $-contact manifolds[J]. AIMS Mathematics, 2022, 7(7): 11519-11528. doi: 10.3934/math.2022642

    Related Papers:

  • We introduce the notion of semi-symmetric $ \ast $-Ricci tensor and illustrate that a non-Sasakian $ (\kappa, \mu) $-contact manifold is $ \ast $-Ricci semi-symmetric or has parallel $ \ast $-Ricci operator if and only if it is $ \ast $-Ricci flat. Then we find that among the non-Sasakian $ (\kappa, \mu) $-contact manifolds with the same Boeckx invariant $ I_M $, only one is $ \ast $-Ricci flat, so we can think of it as the representative of such class. We also give two methods to construct $ \ast $-Ricci flat $ (\kappa, \mu) $-contact manifolds.



    加载中


    [1] R. Ma, D. Pei, Some curvature properties on Lorentzian generalized Sasakian-space-forms, Adv. Math. Phys., 2019 (2019). https://doi.org/10.1155/2019/5136758 doi: 10.1155/2019/5136758
    [2] D. E. Blair, T. Koufogiorgos, B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189–214. https://doi.org/10.1007/BF02761646 doi: 10.1007/BF02761646
    [3] D. Perrone, Contact metric manifolds whose characteristic vector field is a harmonic vector field, Differ. Geom. Appl., 20 (2004), 367–378. https://doi.org/10.1016/j.difgeo.2003.12.007 doi: 10.1016/j.difgeo.2003.12.007
    [4] T. Koufogiorgos, C. Tsichlias, On the existence of a new class of contact metric manifolds, Canad. Math. Bull., 43 (2000), 440–447. https://doi.org/10.4153/CMB-2000-052-6 doi: 10.4153/CMB-2000-052-6
    [5] E. Boeckx, A class of locally $\phi$-symmetric contact metric spaces, Arch. Math., 72 (1999), 466–472. https://doi.org/10.1007/s000130050357 doi: 10.1007/s000130050357
    [6] E. Boeckx, A full classification of contact metric $(k, \mu)$-spaces, Illinois J. Math., 44 (2000), 212–219. http://projecteuclid.org/euclid.ijm/1255984960
    [7] E. Loiudice, A. Lotta, On the classification of contact metric $(k, \mu)$-spaces via tangent hyperquadric bundles, Math. Nachr., 291 (2018), 1851–1858. https://doi.org/10.1002/mana.201600442 doi: 10.1002/mana.201600442
    [8] D. S. Patra, A. Ghosh, On Einstein-type contact metric manifolds, J. Geom. Phys., 169 (2021), 10. https://doi.org/10.1016/j.geomphys.2021.104342 doi: 10.1016/j.geomphys.2021.104342
    [9] S. Tachibana, On almost-analytic vectors in certain almost-Hermitian manifolds, Tohoku Math. J., 11 (1959), 351–363. https://doi.org/10.2748/tmj/1178244533 doi: 10.2748/tmj/1178244533
    [10] S. Tachibana, On almost-analytic vectors in almost-Kählerian manifolds, Tohoku Math., 11 (1959) 247–265. https://doi.org/10.2748/tmj/1178244584 doi: 10.2748/tmj/1178244584
    [11] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci $\ast$-tensor, Tokyo J. Math., 25 (2002), 473–483. https://doi.org/10.3836/tjm/1244208866 doi: 10.3836/tjm/1244208866
    [12] G. Kaimakamis, K. Panagiotidou, $*$-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys., 86 (2014), 408–413.
    [13] X. Dai, Y. Zhao, U. Chand De, $*$-Ricci soliton on $(\kappa, \mu)'$-almost Kenmotsu manifolds, Open Math., 17 (2019), 874–882. https://doi.org/10.1515/math-2019-0056
    [14] K. Mandal, S. Makhal, $*$-Ricci solitons on three-dimensional normal almost contact metric manifolds, Lobachevskii J. Math., 40 (2019), 189–194. https://doi.org/10.1134/s1995080219020100 doi: 10.1134/s1995080219020100
    [15] Y. L. Li, A. H. Alkhaldi, A. Ali, L. I. Pișcoran, On the topology of warped product pointwise semi-slant submanifolds with positive curvature, Mathematics, 9 (2021), 3156. https://doi.org/10.3390/math9243156 doi: 10.3390/math9243156
    [16] Y. L. Li, A. Ali, R. Ali, A general inequality for CR-warped products in generalized Sasakian space form and its applications, Adv. Math. Phys., 2021 (2021), 5777554. https://doi.org/10.1155/2021/5777554 doi: 10.1155/2021/5777554
    [17] Y. L. Li, S. Dey, S. Pahan, A. Ali, Geometry of conformal $\eta$-Ricci solitons and conformal $\eta$-Ricci almost solitons on paracontact geometry, Open Math., 20 (2022), 1–20. https://doi.org/10.1515/math-2022-0443 doi: 10.1515/math-2022-0443
    [18] Venkatesha, D. M. Naik, H. A. Kumara, $*$-Ricci solitons and gradient almost $*$-Ricci solitons on Kenmotsu manifolds, Math. Slovaca., 69 (2019), 1447–1458. https://doi.org/10.1515/ms-2017-0321 doi: 10.1515/ms-2017-0321
    [19] P. Majhi, U. C. De, Y. J. Suh, $*$-Ricci solitons and Sasakian 3-manifolds, Publ. Math. Debrecen, 93 (2018), 241–252. https://doi.org/10.5486/pmd.2018.8245 doi: 10.5486/pmd.2018.8245
    [20] A. Ghosh, D. S. Patra, $*$-Ricci soliton within the frame-work of Sasakian and $(\kappa, \mu)$-contact manifold, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850120. https://doi.org/10.1142/S0219887818501207 doi: 10.1142/S0219887818501207
    [21] R. Ma, D. Pei, Reeb flow invariant $*$-Ricci operators on trans-Sasakian three-manifolds, Math. Slovaca, 71 (2021), 749–756. https://doi.org/10.1515/ms-2021-0017 doi: 10.1515/ms-2021-0017
    [22] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math., 12 (1968), 700–717.
    [23] Y. Wang, H. Wu, Invariant vector fields on contact metric manifolds under D-homothetic deformation, AIMS Math., 5 (2020), 7711–7718. https://doi.org/10.3934/math.2020493 doi: 10.3934/math.2020493
    [24] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 2 Eds., Birkhäuser Boston, Inc., Boston, MA, 2010. https://doi.org/10.1007/978-0-8176-4959-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1914) PDF downloads(163) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog