In this study, we give the notion of a piecewise modified Atangana-Baleanu-Caputo (mABC) fractional derivative and apply it to a tuberculosis model. This novel operator is a combination of classical derivative and the recently developed modified Atangana-Baleanu operator in the Caputo's sense. For this combination, we have considered the splitting of an interval $ [0, t_2] $ for $ t_2\in\mathbb{R}^+ $, such that, the classical derivative is applied in the first portion $ [0, t_1] $ while the second differential operator is applied in the interval $ [t_1, t_2] $. As a result, we obtained the piecewise mABC operator. Its corresponding integral is also given accordingly. This new operator is then applied to a tuberculosis model for the study of crossover behavior. The existence and stability of solutions are investigated for the nonlinear piecewise modified ABC tuberculosis model. A numerical scheme for the simulations is presented with the help of Lagrange's interpolation polynomial is then applied to the available data.
Citation: Hasib Khan, Jehad Alzabut, J.F. Gómez-Aguilar, Praveen Agarwal. Piecewise mABC fractional derivative with an application[J]. AIMS Mathematics, 2023, 8(10): 24345-24366. doi: 10.3934/math.20231241
In this study, we give the notion of a piecewise modified Atangana-Baleanu-Caputo (mABC) fractional derivative and apply it to a tuberculosis model. This novel operator is a combination of classical derivative and the recently developed modified Atangana-Baleanu operator in the Caputo's sense. For this combination, we have considered the splitting of an interval $ [0, t_2] $ for $ t_2\in\mathbb{R}^+ $, such that, the classical derivative is applied in the first portion $ [0, t_1] $ while the second differential operator is applied in the interval $ [t_1, t_2] $. As a result, we obtained the piecewise mABC operator. Its corresponding integral is also given accordingly. This new operator is then applied to a tuberculosis model for the study of crossover behavior. The existence and stability of solutions are investigated for the nonlinear piecewise modified ABC tuberculosis model. A numerical scheme for the simulations is presented with the help of Lagrange's interpolation polynomial is then applied to the available data.
[1] | H. Khan, J. Alzabut, O. Tunc, M. K. Kaabar, A fractal-fractional COVID-19 model with a negative impact of quarantine on the diabetic patients, Result Control Optim., (2023) 100199. https://doi.org/10.1016/j.rico.2023.100199 doi: 10.1016/j.rico.2023.100199 |
[2] | A. Khan, K. Shah, T. Abdeljawad, M. Sher, On Fractional Order Sine-Gordon Equation Involving Nonsingular Derivative, Fractals, 2022 Dec 5. https://doi.org/10.1142/S0218348X23400078 |
[3] | K. Shah, A. Ali, S. Zeb, A. Khan, M. A. Alqudah, T. Abdeljawad. Study of fractional order dynamics of nonlinear mathematical model, Alexand. Engineer. J., 61 (2022), 11211–11224. https://doi.org/10.1016/j.aej.2022.04.039 doi: 10.1016/j.aej.2022.04.039 |
[4] | Z. A. Khan, A. Khan, T. Abdeljawad, H. Khan. Computational analysis of fractional order imperfect testing infection disease model, Fractals, 30 (2022), 1–7. https://doi.org/10.1142/S0218348X22401697 doi: 10.1142/S0218348X22401697 |
[5] | P. Bedi, A. Khan, A. Kumar, T. Abdeljawad, Computational Study Of Fractional-Order Vector Borne Diseases Model, Fractals, 30 (2022). https://doi.org/10.1142/S0218348X22401491 doi: 10.1142/S0218348X22401491 |
[6] | I. Ullah, S. Ahmad, Q. Al-Mdallal, Z. A. Khan, H. Khan, A. Khan, Stability analysis of a dynamical model of tuberculosis with incomplete treatment, Adv. Differ. Equ., 2020 (2020), 1–4. https://10.1186/s13662-020-02950-0 doi: 10.1186/s13662-020-02950-0 |
[7] | H. Khan, K. Alam, H, Gulzar, S. Etemad, S. Rezapour, A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations, Math. Comput. Simul., 198 (2022), 455–473. https://doi.org/10.1016/j.matcom.2022.03.009 doi: 10.1016/j.matcom.2022.03.009 |
[8] | Z. Toossi, Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease, J. Infect. Dis., 188 (2003), 1146–1155. https://doi:10.1086/378676 doi: 10.1086/378676 |
[9] | M. Zamir, F. Nadeem, T. Abdeljawad, Z. Hammouch, Threshold condition and non pharmaceutical interventions's control strategies for elimination of COVID-19, Results Phys., 20 (2021), 103698. https://doi.org/10.1016/j.rinp.2020.103698 doi: 10.1016/j.rinp.2020.103698 |
[10] | H. Khan, J. F. Gómez-Aguilar, A. Alkhazzan, A. Khan, A fractional order HIV‐TB coinfection model with nonsingular Mittag-Leffler Law, Math. Methods Appl. Sci., 43 (2020), 3786–3806. https://doi.org/10.1002/mma.6155 doi: 10.1002/mma.6155 |
[11] | S. Ramkissoon, H. G. Mwambi, A. P. Matthews, Modelling HIV and MTB co-infection including combined treatment strategies, PLoS One, 7 (2012), e49492. https://doi:10.1371/journal.pone.0049492 doi: 10.1371/journal.pone.0049492 |
[12] | D. Kirschner, Dynamics of Co-infection with M. tuberculosis and HIV-1, Theor. Popul. Biol., 55 (1999), 94–109. https://doi:10.1006/tpbi.1998.1382 doi: 10.1006/tpbi.1998.1382 |
[13] | Y. Zhao, M. Li, S. Yuan, Analysis of Transmission and Control of Tuberculosis in Mainland China, 2005-2016, Based on the Age-Structure Mathematical Model, Int. J. Env. Res. Pub. He., 14 (2017), 1192. https://doi:10.3390/ijerph14101192 doi: 10.3390/ijerph14101192 |
[14] | H. Khan, J. Alzabut, D. Baleanu, G. Alobaidi, M. U. Rehman, Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application, AIMS Math., 8 (2023), 6609–6625. https://doi:10.3934/math.2023334 doi: 10.3934/math.2023334 |
[15] | A. Palanisamy, J. Alzabut, V. Muthulakshmi, S. S. Santra, K. Nonlaopon, Oscillation results for a fractional partial differential system with damping and forcing terms, AIMS Math., 8 (2023), 4261–4279. https://doi:10.3934/math.2023212 doi: 10.3934/math.2023212 |
[16] | J. F. Gomez-Aguilar, M. G. Lopez-Lopez, V. M. Alvarado-Martínez, D. Baleanu, H. Khan, Chaos in a cancer model via fractional derivatives with exponential decay and Mittag-Leffler law, Entropy, 19 (2017), 681. https://doi.org/10.3390/e19120681 doi: 10.3390/e19120681 |
[17] | M. Subramanian, M. Manigandan, C. Tunc, T. N. Gopal, J. Alzabut, On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order, J. Taibah Univ. Sci., 16 (2022), 1–23. https://doi.org/10.1080/16583655.2021.2010984 doi: 10.1080/16583655.2021.2010984 |
[18] | K. Shah, A. Ali, S. Zeb, A. Khan, M. A. Alqudah, T. Abdeljawad, Study of fractional order dynamics of nonlinear mathematical model, Alex. Engineer. J., 61 (2022), 11211–1124. https://doi.org/10.1016/j.aej.2022.04.039 doi: 10.1016/j.aej.2022.04.039 |
[19] | S. Ali, A. Khan, K. Shah, M. A. Alqudah, T. Abdeljawad, On computational analysis of highly nonlinear model addressing real world applications, Results Phys., 36 (2022), 105431. https://doi.org/10.1016/j.rinp.2022.105431 doi: 10.1016/j.rinp.2022.105431 |
[20] | P. Bedi, A. Khan, A. Kumar, T. Abdeljawad, Computational study of fractional-order vector borne diseases model, Fractals, 30 (2022), 1–2. https://doi.org/10.1142/S0218348X22401491 doi: 10.1142/S0218348X22401491 |
[21] | R. W. Ibrahim, D. Baleanu, Analytic studies of a class of Langevin differential equations dominated by a class of Julia fractal functions, Kragujevac J. Math., 48 (2024), 577–590. https://doi:10.3390/fractalfract5020050 doi: 10.3390/fractalfract5020050 |
[22] | M. A. Abdelkawy, E. M. Soluma, I. Al-Dayel, D. Baleanu, Spectral solutions for a class of nonlinear wave equations with Riesz fractional based on Legendre collocation technique, J. Comput. Appl. Math., 423 (2023), 114970. https://doi.org/10.1016/j.cam.2022.114970 doi: 10.1016/j.cam.2022.114970 |
[23] | A. Shah, H. Khan, MD la Sen, J. Alzabut, S. Etemad, C. T. Deressa, et al., On Non-Symmetric Fractal-Fractional Modeling for Ice Smoking: Mathematical Analysis of Solutions, Symmetry, 15 (2022), 7. https://doi.org/10.3390/sym15010087 doi: 10.3390/sym15010087 |
[24] | H. Khan, J. Alzabut, A. Shah, S. Etemad, S. Rezapour, C. Park, A study on the fractal-fractional tobacco smoking model, AIMS Math., 7 (2022), 13887–13909. https://doi:10.3934/math.2022767 doi: 10.3934/math.2022767 |
[25] | J. Alzabut, S. R. Grace, J. M. Jonnalagadda, E. Thandapani, Bounded Non-oscillatory Solutions of Nabla Forced Fractional Difference Equations with Positive and Negative Terms, Qual. Theor. Dyn. Syst., 22 (2023), 1–6. https://doi:10.1007/s12346-022-00729-0 doi: 10.1007/s12346-022-00729-0 |
[26] | J. Alzabut, S. R. Grace, S. S. Santra, G. N. Chhatria, Asymptotic and Oscillatory Behaviour of Third Order Non-linear Differential Equations with Canonical Operator and Mixed Neutral Terms, Qual. Theor. Dyn. Syst., 22 (2023), 1–7. https://doi:10.1007/s12346-022-00715-6 doi: 10.1007/s12346-022-00715-6 |
[27] | T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. https://doi:10.1016/j.aml.2019.106072 doi: 10.1016/j.aml.2019.106072 |
[28] | S. Rosa, D. F. Torres, Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection, Chaos Soliton Fract., 117 (2018), 142–149. https://doi.org/10.1016/j.chaos.2018.10.021 doi: 10.1016/j.chaos.2018.10.021 |
[29] | A. Tanvi, R. Aggarwal, Y.A. Raj, A fractional order TB co-infection model in the presence of exogenous reinfection and recurrent TB, Nonlinear Dyn., 104 (2021), 4701–4725. https://doi:10.1007/s11071-021-06518-9 doi: 10.1007/s11071-021-06518-9 |
[30] | A. Atangana, S. I. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638 |
[31] | S. Ahmad, M. F. Yassen, M. M. Alam, S. Alkhati, F. Jarad, M. B. Riaz, A numerical study of dengue internal transmission model with fractional piecewise derivative, Results Phys., 39 (2022), 105798. https://doi.org/10.1016/j.rinp.2022.105798 doi: 10.1016/j.rinp.2022.105798 |
[32] | M. H. Heydari, M. Razzaghi, D. Baleanu, A numerical method based on the piecewise Jacobi functions for distributed-order fractional Schrödinger equation, Commun Nonlinear Sci. Numer. Simul., 116 (2023), 106873. https://doi.org/10.1016/j.cnsns.2022.106873 doi: 10.1016/j.cnsns.2022.106873 |
[33] | S. A. M. Abdelmohsen, M. F. Yassen, S. Ahmad, A. M. M. Abdelbacki, J. Khan, Theoretical and numerical study of the rumours spreading model in the framework of piecewise derivative, Eur. Phys. J. Plus, 137 (2022), 738. https://doi.org/10.1140/epjp/s13360-022-02921-2 doi: 10.1140/epjp/s13360-022-02921-2 |
[34] | C. Xu, Z. Liu, Y. Pang, A. Akgul, D. Baleanu, Dynamics of HIV-TB coinfection model using classical and Caputo piecewise operator: A dynamic approach with real data from South-East Asia, European and American regions. Chaos, Soliton. Fract., 165 (2022), 112879. https://doi.org/10.1016/j.chaos.2022.112879 doi: 10.1016/j.chaos.2022.112879 |
[35] | R. S. Kareem, Numerical methods for fractional differential equations, Int. J. Comput. Sci. Net., 14 (2014), 42. |
[36] | S. Nakamura, Applied numerical methods in C. Prentice-Hall, Inc. 1993. |
[37] | M. Al-Refai, D. Baleanu, On an Extension of the Operator with Mittag-Leffler Kernel, Fractals, 2022. https://doi.org/10.1142/S0218348X22401296 doi: 10.1142/S0218348X22401296 |
[38] | M. Al-Refai, Proper inverse operators of fractional derivatives with nonsingular kernels, Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 1-1. https://doi.org/10.1007/s12215-021-00638-2 doi: 10.1007/s12215-021-00638-2 |
[39] | D. Baleanu, B. Shiri, B Shiri, Nonlinear higher order fractional terminal value problems, AIMS Math., 7 (2022), 7489–7506. https://doi.org/10.3934/math.2022420 doi: 10.3934/math.2022420 |
[40] | B. Shiri, D. Baleanu, A general fractional pollution model for lakes, Commun. Appl. Math. Comput., 4 (2022), 1–26. https://doi.org/10.1007/s42967-021-00135-4 doi: 10.1007/s42967-021-00135-4 |
[41] | D. Baleanu, B. Shiri, Generalized fractional differential equations for past dynamic, AIMS Math., 7 (2022), 14394–14418. https://doi.org/10.3934/math.2022793 doi: 10.3934/math.2022793 |
[42] | https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021 |