We propose a new mathematical framework of generalized fractional-order to investigate the tuberculosis model with treatment. Under the generalized Caputo fractional derivative notion, the system comprises a network of five nonlinear differential equations. Besides that, the equilibrium points, stability and basic reproductive number are calculated. The concerned derivative involves a power-law kernel and, very recently, it has been adapted for various applied problems. The existence findings for the fractional-order tuberculosis model are validated using the Banach and Leray-Schauder nonlinear alternative fixed point postulates. For the developed framework, we have generated various forms of Ulam's stability outcomes. To investigate the estimated response and nonlinear behaviour of the system under investigation, the efficient mathematical formulation known as the ℘-Laplace Adomian decomposition technique algorithm was implemented. It is important to mention that, with the exception of numerous contemporary discussions, spatial coherence was considered throughout the fractionalization procedure of the classical model. Simulation and comparison analysis yield more versatile outcomes than the existing techniques.
Citation: Saima Rashid, Yolanda Guerrero Sánchez, Jagdev Singh, Khadijah M Abualnaja. Novel analysis of nonlinear dynamics of a fractional model for tuberculosis disease via the generalized Caputo fractional derivative operator (case study of Nigeria)[J]. AIMS Mathematics, 2022, 7(6): 10096-10121. doi: 10.3934/math.2022562
[1] | Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846 |
[2] | Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kamele Nassiri Pirbazari, Stanford Shateyi . A pseudo-spectral approach for optimal control problems of variable-order fractional integro-differential equations. AIMS Mathematics, 2024, 9(9): 23692-23710. doi: 10.3934/math.20241151 |
[3] | Bin Fan . Efficient numerical method for multi-term time-fractional diffusion equations with Caputo-Fabrizio derivatives. AIMS Mathematics, 2024, 9(3): 7293-7320. doi: 10.3934/math.2024354 |
[4] | Amjid Ali, Teruya Minamoto, Rasool Shah, Kamsing Nonlaopon . A novel numerical method for solution of fractional partial differential equations involving the ψ-Caputo fractional derivative. AIMS Mathematics, 2023, 8(1): 2137-2153. doi: 10.3934/math.2023110 |
[5] | Imran Talib, Md. Nur Alam, Dumitru Baleanu, Danish Zaidi, Ammarah Marriyam . A new integral operational matrix with applications to multi-order fractional differential equations. AIMS Mathematics, 2021, 6(8): 8742-8771. doi: 10.3934/math.2021508 |
[6] | Jeong-Kweon Seo, Byeong-Chun Shin . Reduced-order modeling using the frequency-domain method for parabolic partial differential equations. AIMS Mathematics, 2023, 8(7): 15255-15268. doi: 10.3934/math.2023779 |
[7] | Xiaojun Zhou, Yue Dai . A spectral collocation method for the coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2022, 7(4): 5670-5689. doi: 10.3934/math.2022314 |
[8] | Khalid K. Ali, Mohamed A. Abd El Salam, Mohamed S. Mohamed . Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations. AIMS Mathematics, 2022, 7(5): 7759-7780. doi: 10.3934/math.2022436 |
[9] | A. S. Mohamed . Fibonacci collocation pseudo-spectral method of variable-order space-fractional diffusion equations with error analysis. AIMS Mathematics, 2022, 7(8): 14323-14337. doi: 10.3934/math.2022789 |
[10] | Samia Bushnaq, Kamal Shah, Sana Tahir, Khursheed J. Ansari, Muhammad Sarwar, Thabet Abdeljawad . Computation of numerical solutions to variable order fractional differential equations by using non-orthogonal basis. AIMS Mathematics, 2022, 7(6): 10917-10938. doi: 10.3934/math.2022610 |
We propose a new mathematical framework of generalized fractional-order to investigate the tuberculosis model with treatment. Under the generalized Caputo fractional derivative notion, the system comprises a network of five nonlinear differential equations. Besides that, the equilibrium points, stability and basic reproductive number are calculated. The concerned derivative involves a power-law kernel and, very recently, it has been adapted for various applied problems. The existence findings for the fractional-order tuberculosis model are validated using the Banach and Leray-Schauder nonlinear alternative fixed point postulates. For the developed framework, we have generated various forms of Ulam's stability outcomes. To investigate the estimated response and nonlinear behaviour of the system under investigation, the efficient mathematical formulation known as the ℘-Laplace Adomian decomposition technique algorithm was implemented. It is important to mention that, with the exception of numerous contemporary discussions, spatial coherence was considered throughout the fractionalization procedure of the classical model. Simulation and comparison analysis yield more versatile outcomes than the existing techniques.
Concurrent with the development of classic calculus theory, quantum calculus (calculus without limit) have received a great deal of attention in the last three decades. Quantum calculus have been found in many problems such as particle physics, quantum mechanics, and calculus of variations. In this paper, we study on the development of Hahn calculus, which is a type of quantum calculus. Hahn difference operator was first introduced by Hahn [1] in 1949 in the form of
Dq,ωf(t):=f(qt+ω)−f(t)t(q−1)+ω,t≠ω0:=ω1−q. |
This operator has been further employed in many research works such as the studies of the right inverse and its properties of Hahn difference operator [2,3], Hahn quantum variational calculus [4,5,6], the initial value problems [7,8,9], and the boundary value problems [10,11]. The approximation problems and constructing families of orthogonal polynomials [12,13,14], Hahn difference operator is an important tool used to study in these areas.
Based on the iadea of Hahn, in 2017, Brikshavana and Sitthiwirattham [15] introduced a general case of order of Hahn's operator, the so-called fractional Hahn difference operators. This operator has been used in the study of existencne and uniqueness of solution of boundary value problems for fractional Hahn difference equations (see [16,17,18,19]).
The symmetric Hahn difference operator ˜Dq,ω is another opertor related to Hahn's operator. It was introduced by Artur et al. in 2013 [20] where
˜Dq,ωf(t):=f(qt+ω)−f(q−1(t−ω))(q−q−1)t+(1+q−1)ωfort≠ω0. |
Recently, Patanarapeelert and Sitthiwirattham [21] introduced the fractional symmetric Hahn integral, Riemann-Liouville and Caputo fractional symmetric Hahn difference operators and their properties. To present the advantage of this newest knowledge, in this paper, we devote our attention to study the solutions of boundary value problem for fractional symmetric Hahn difference equation.
Our problem is a nonlocal fractional symmetric Hanh integral boundary value problem for fractional symmetric Hahn integrodifference equation of the form
˜Dαq,ωu(t)=F(t,u(t),˜Dβq,ωu(t),˜Ψγq,ωu(t),),t∈ITq,ω,u(ω0)=λ1˜Iθ1q,ωg(η1)u(η1),u(T)=λ2˜Iθ2q,ωg(η2)u(η2),η1,η2∈ITq,ω−{ω0,T}, | (1.1) |
where ITq,ω:={qkT+ω[k]q:k∈N0}∪{ω0}; α∈(1,2];β,γ,θ1,θ2∈(0,1]; ω>0;q∈(0,1); λ1,λ2∈R+; F∈C(ITq,ω×R3,R) and g1,g2∈C(ITq,ω,R+) are given functions; and for φ∈C(ITq,ω×ITq,ω,[0,∞)), we define
˜Ψγq,ωu(t):=(˜Iγq,ωφu)(t)=q(α2)˜Γq,ω(γ)∫tω0~(t−s)γ−1_q,ωφ(t,σα−1q,ω(s))u(σα−1q,ω(s))˜dq,ωs. |
In the next section, we give some definitions and lemmas related to fractional symmetric Hahn calculus. In section 3, we analyze the existence and uniqueness of a solution of problem (1.1) by using the Banach fixed point theorem. Moreover, we show the existence of at least one solution of problem (1.1) by using the Schuader's fixed point theorem. Finally, we present an example to illustrate our results in the last section.
In this section, we provide some notations, definitions, and lemmas related to the fractional symmetric Hahn difference calculus as follows [20,21,22,23].
For 0<q<1, ω>0, ω0=ω1−q and [k]q=1−qk1−q, we define
~[k]q:={1−q2k1−q2=[k]q2,k∈N1, k=0, |
~[k]q!:={~[k]q~[k−1]q⋅⋅⋅~[1]q=k∏i=11−q2i1−q2,k∈N1, k=0. |
The q,ω-forward jump operator is defined by
σkq,ω(t):=qkt+ω[k]q, |
and the q,ω-backward jump operator is defined by
ρkq,ω(t):=t−ω[k]qqk, |
where k∈N.
Let n∈N0:={0,1,2,...}, and a,b∈R. We define the power functions as follows:
● The q-analogue of the power function
(a−b)0_q:=1,(a−b)n_q:=n−1∏i=0(a−bqi). |
● The q-symmetric analogue of the power function
~(a−b)0_q:=1,~(a−b)n_q:=n−1∏i=0(a−bq2i+1). |
● The q,ω-symmetric analogue of the power function
~(a−b)0_q,ω:=1,~(a−b)n_q,ω:=n−1∏i=0[a−σ2i+1q,ω(b)]. |
Generally, for α∈R, we have
(a−b)α_q=aα∞∏i=01−(ba)qi1−(ba)qα+i,a≠0, |
~(a−b)α_q=aα∞∏i=01−(ba)q2i+11−(ba)q2(α+i)+1,a≠0, |
~(a−b))α_q,ω=~((a−ω0)−(b−ω0))α_q=(a−ω0)α∞∏i=01−(b−ω0a−ω0)q2i+11−(b−ω0a−ω0)q2(α+i)+1,a≠ω0. |
Particularly, we have aα_q=˜aα_q=aα and ~(a−ω0)α_q,ω=(a−ω0)α if b=0. If a=b, we define (0)α_q=~(0)α_q=~(ω0)α_q,ω=0 for α>0.
The q-symmetric gamma and q-symmetric beta functions are defined as
˜Γq(x):={(1−q2)x−1_q(1−q2)x−1=~(1−q)x−1_q(1−q2)x−1,x∈R∖{0,−1,−2,...}~[x−1]q!,x∈N˜Bq(x,y):=∫10(q−1s)x−1~(1−s)y−1_q˜dqs=˜Γq(x)˜Γq(y)˜Γq(x+y), |
respectively.
Lemma 2.1. [21] For m,n∈N0 and α∈R,
(a) ~(x−σnq,ω(x))α_q,ω=(x−ω0)k~(1−qn)α_q,
(b) ~(σmq,ω(x))−σnq,ω(x))α_q,ω=qmα(x−ω0)α~(1−qn−m)α_q.
Definition 2.1. [20] For q∈(0,1), ω>0, and f is a function defined on ITq,ω⊆R, the symmetric Hahn difference of f is defined by
˜Dq,ωf(t):=f(σq,ω(t))−f(ρq,ω(t))σq,ω(t)−ρq,ω(t)t∈ITq,ω−{ω0},˜Dq,ωf(ω0)=f′(ω0) where f is differentiable at ω0. |
˜Dq,ωf is called q,ω-symmetric derivative of f, and f is q,ω-symmetric differentiable on ITq,ω.
In addition, we define
˜D0q,ωf(x)=f(x) and ˜DNq,ωf(x)=˜Dq,ω˜DN−1q,ωf(x) where N∈N. |
Remarks If f and g are q,ω-symmetric differentiable on ITq,ω,
(a) ˜Dq,ω[f(t)+g(t)]=˜Dq,ωf(t)+˜Dq,ωg(t),
(b) ˜Dq,ω[f(t)g(t)]=f(ρq,ω(t))˜Dq,ωg(t)+g(σq,ω(t))˜Dq,ωf(t),
(c) ˜Dq,ω[f(t)g(t)]=g(ρq,ω(t))˜Dq,ωf(t)−f(ρq,ω(t))˜Dq,ωg(t)g(ρq,ω(t))g(σq,ω(t)), g(ρq,ω(t))g(σq,ω(t))≠0,
(d) ˜Dq,ω[C]=0 where C is constant.
Definition 2.2. [20] Let I be any closed interval of R containing a,b and ω0 and f:I→R be a given function. The symmetric Hahn integral of f from a to b is defind by
∫baf(t)˜dq,ωt:=∫bω0f(t)˜dq,ωt−∫aω0f(t)˜dq,ωt, |
where
˜Iq,ωf(t)=∫xω0f(t)˜dq,ωt:=(1−q2)(x−ω0)∞∑k=0q2kf(σ2k+1q,ω(x)),x∈I. |
Providing that the above series converges at x=a and x=b, f is symmetric Hahn integrable on [a,b]. In addition, f is symmetric Hahn integrable on I if it is symmetric Hahn integrable on [a,b] for all a,b∈I.
In addition,
˜I0q,ωf(x)=f(x),˜INq,ωf(x)=˜Iq,ω˜IN−1q,ωf(x)whereN∈N, |
˜Dq,ω˜Iq,ωf(x)=f(x),and˜Iq,ω˜Dq,ωf(x)=f(x)−f(ω0). |
Remarks [20] Let a,b∈ITq,ω and f,g be symmetric Hahn integrable on ITq,ω. Then,
(a) ∫aaf(t)˜dq,ωt=0,
(b) ∫baf(t)˜dq,ωt=−∫abf(t)˜dq,ωt,
(c) ∫baf(t)˜dq,ωt=∫bcf(t)˜dq,ωt+∫caf(t)˜dq,ωt,c∈ITq,ω,a<c<b,
(d) ∫ba[αf(t)+βg(t)]˜dq,ωt=α∫baf(t)˜dq,ωt+β∫bag(t)˜dq,ωt,α,β∈R,
(e) ∫ba[f(ρq,ω(t))˜Dq,ωg(t)]˜dq,ωt=[f(t)g(t)]ba−∫ba[g(σq,ω(t))˜Dq,ωf(t)]˜dq,ωt.
Lemma 2. [20] [Fundamental theorem of symmetric Hahn calculus]
Let f:I→R be continuous at ω0. Then,
F(x):=∫xω0f(t)˜dq,ωt,x∈I |
is continuous at ω0 and ˜Dq,ωF(x) exists for every x∈σq,ω(I):={qt+ω:t∈I} where
˜Dq,ωF(x)=f(x). |
In addition,
∫ba˜Dq,ωf(t)˜dq,ωt=f(b)−f(a) for all a,b∈I. |
Lemma 2.3. [21] Let 0<q<1, ω>0 and f:I→R be continuous at ω0. Then,
∫tω0∫rω0f(s)˜dq,ωs˜dq,ωr=q∫tω0∫tqs+ωf(qs+ω)˜dq,ωr˜dq,ωs. |
Definition 2.3. [21] Let α,ω>0,0<q<1, and f be a function defined on ITq,ω. The fractional symmetric Hahn integral is defined by
˜Iαq,ωf(t):=q(α2)˜Γq(α)∫tω0~(t−s)α−1_q,ωf(σα−1q,ω(s))˜dq,ωs=(1−q2)q(α2)(t−ω0)˜Γq(α)∞∑k=0q2k(t−σ2k+1q,ω(t))α−1_q,ωf(σ2k+αq,ω(t))=(1−q2)q(α2)(t−ω0)α˜Γq(α)∞∑k=0q2k~(1−q2k+1)α−1_qf(σ2k+αq,ω(t)) |
and ˜I0q,ωf)(t)=f(t).
Definition 2.4. [21] For α,ω>0,0<q<1 and f defined on ITq,ω, the fractional symmetric Hahn difference operator of Riemann-Liouville type of order α is defined by
˜Dαq,ωf(t):=˜DNq,ω˜IN−αq,ωf(t)=q(−α2)˜Γq(−α)∫tω0~(t−s)−α−1_q,ωf(σ−α−1q,ω(s))˜dq,ωs,˜D0q,ωf(t)=f(t) |
where N−1<α<N,N∈N.
Lemma 2.4. [21] Let α,ω>0,0<q<1 and f:ITq,ω→R. Then,
˜Iαq,ω˜Dαq,ωf(t)=f(t)+C1(t−ω0)α−1+C2(t−ω0)α−2+...+CN(t−ω0)α−N |
for some Ci∈R,i=1,2,...,N and N−1<α<N for N∈N.
Lemma 2.5. [24] (Arzelá-Ascoli theorem) A set of function in C[a,b] with the sup norm, is relatively compact if and only if it is uniformly bounded and equicontinuous on [a,b].
Lemma 2.6. [24] If a set is closed and relatively compact then it is compact.
Lemma 2.7. [25] (Schauder's fixed point theorem) Let (D,d) be a complete metric space, U be a closed convex subset of D, and T:D→D be the map such that the set Tu:u∈U is relatively compact in D. Then the operator T has at least one fixed point u∗∈U: Tu∗=u∗.
In this section, we formulate some lemmas that will be used as a tool for our calculations as follows.
Lemma 2.8. Let q∈(0,1),ω>0 and n>0. Then,
∫tω0˜dq,ωs=t−ω0 and ∫tω0(s−ω0)n˜dq,ωs=qn~[n+1]q(t−ω0)n+1. |
Proof. Using the definition of symmetric Hahn integral, we have
∫tω0˜dq,ωs=(1−q2)(t−ω0)∞∑k=0q2k=(1−q2)(t−ω0)[11−q2]=t−ω0, |
and
∫tω0(s−ω0)n˜dq,ωs=(1−q2)(t−ω0)∞∑k=0q2k(σ2k+1q,ω(t)−ω0)n=qn(1−q2)(t−ω0)n+1∞∑k=0q(n+1)2k=qn(1−q2)(t−ω0)n+1[11−q2(n+1)]=qn~[n+1]q(t−ω0)n+1. |
The proof is complete.
Lemma 2.9. Let α,β>0,q∈(0,1) and ω>0. Then,
(i)∫tω0~(t−s)α−1_q,ω˜dq,ωs=(t−ω0)α~[α]q,(ii)∫tω0~(t−s)α−1_q,ω(σα−1q,ω(s)−ω0)β˜dq,ωs=qαβ(t−ω0)α+βBq(β+1,α),(iii)∫tω0∫σα−1q,ω(s)ω0~(t−s)α−1_q,ω~(σα−1q,ω(s)−r)β−1_q,ω˜dq,ωr˜dp,ωs=qαβ~[β]q(t−ω0)α+βBq(β+1,α). |
Proof. From the definition of q,ω-symmetric analogue of the power function, Lemma 2.1 and Definition 2.2, we obtain
(i)∫tω0~(t−s)α−1_q,ω˜dq,ωs=(1−q2)(t−ω0)∞∑k=0q2k~(t−σ2k+1q,ω(t))α−1_q,ω=(1−q2)(t−ω0)α∞∑k=0q2k~(1−q2k+1)α−1_q=(1−q2)(t−ω0)α∞∑k=0q2k[∞∏i=01−q2k+2i+21−q2k+2i+2α]=(t−ω0)α~[α]q,(ii)∫tω0~(t−s)α−1_q,ω(σα−1q,ω(s)−ω0)β˜dq,ωs=(1−q2)(t−ω0)∞∑k=0q2k~(t−σ2k+1q,ω(t))α−1_q,ω(qα−1(σ2k+1q,ω(t)−ω0))β=qαβ(1−q2)(t−ω0)α+β∞∑k=0q2k~(1−q2k+1)α−1_q(q−1q2k+1)β=qαβ(t−ω0)α+β∫1ω0~(1−s)α−1_q,ω(q−1s)β˜dq,ωs=qαβ(t−ω0)α+β˜Bq(β+1,α). |
Using (ⅰ) and (ⅱ), we have
∫tω0∫σα−1q,ω(s)ω0~(t−s)α−1_q,ω~(σα−1q,ω(s)−r)β−1_q,ω˜dq,ωr˜dp,ωs=∫tω0~(t−s)α−1_q,ω[∫σα−1q,ω(s)ω0~(σα−1q,ω(s)−r)β−1_q,ω˜dq,ωr]˜dp,ωs=1~[β]q∫tω0~(t−s)α−1_q,ω(σα−1q,ω(s)−ω0)β˜dp,ωs=qαβ~[β]q(t−ω0)α+β˜Bq(β+1,α). |
The following lemma present a solution of a linear variant form of the problem (1.1).
Lemma 2.10. Let Λ≠0;ω>0;q∈(0,1); α∈(1,2];θ1,θ2∈(0,1]; λ1,λ2∈R+; h∈C(ITq,ω,R) and g1,g2∈C(ITq,ω,R+) be given functions. Then the linear variant form
˜Dαq,ωu(t)=h(t),t∈ITq,ω,u(ω0)=λ1˜Iθ1q,ωg(η1)u(η1),u(T)=λ2˜Iθ2q,ωg(η2)u(η2),η1,η2∈ITq,ω−{ω0,T}, | (2.1) |
has the unique solution which is
u(t)=q(α2)˜Γq(α)∫tω0~(t−s)α−1_q,ωh(σα−1q,ω(s))˜dq,ωs+(t−ω0)α−1Λ{B2Φ1[h]+A2Φ2[h]}−(t−ω0)α−2A2{(1+A1B2Λ)Φ1[h]+A1A2ΛΦ2[h]} | (2.2) |
where the functionals Φ1[h],Φ2[h] are defined by
Φ1[h]:=λ1q(θ12)+(α2)˜Γq(θ1)˜Γq(α)∫η1ω0∫σθ1−1q,ω(s)ω0~(η1−s)θ1−1_q,ω~(σθ1−1q,ω(s)−r)α−1_q,ωg1(σθ1−1q,ω(s))×h(σα−1q,ω(r))˜dq,ωr˜dq,ωs, | (2.3) |
Φ2[h]:=λ2q(θ22)+(α2)˜Γq(θ2)˜Γq(α)∫η2ω0∫σθ2−1q,ω(s)ω0~(η2−s)θ2−1_q,ω~(σθ2−1q,ω(s)−r)α−1_q,ωg2(σθ2−1q,ω(s))×h(σα−1q,ω(r))˜dq,ωr˜dq,ωs−q(α2)˜Γq(α)∫Tω0~(T−s)α−1_q,ωh(σα−1q,ω(s))˜dq,ωs, | (2.4) |
and the constants A1,A2,B1,B2 and Λ are defined by
A1:=λ1q(θ12)˜Γq(θ1)∫η1ω0~(η1−s)θ1−1_q,ωg1(σθ1−1q,ω(s))(σθ1−1q,ω(s)−ω0)α−1˜dq,ωs, | (2.5) |
A2:=λ1q(θ12)˜Γq(θ1)∫η1ω0~(η1−s)θ1−1_q,ωg1(σθ1−1q,ω(s))(σθ1−1q,ω(s)−ω0)α−2˜dq,ωs, | (2.6) |
B1:=(T−ω0)α−1−λ2q(θ22)˜Γq(θ2)∫η2ω0~(η2−s)θ2−1_q,ωg2(σθ2−1q,ω(s))(σθ2−1q,ω(s)−ω0)α−1˜dq,ωs, | (2.7) |
B2:=(T−ω0)α−2−λ2q(θ22)˜Γq(θ2)∫η2ω0~(η2−s)θ2−1_q,ωg2(σθ2−1q,ω(s))(σθ2−1q,ω(s)−ω0)α−2˜dq,ωs, | (2.8) |
Λ:=A2B1−A1B2. | (2.9) |
Proof. Taking fractional symmetric Hahn integral of order α for (2.1), we obtain
u(t)=C1(t−ω0)α−1+C2(t−ω0)α−2+q(α2)˜Γq(α)∫tω0~(t−s)α−1_q,ωh(σα−1q,ω(s))˜dq,ωs. | (2.10) |
Taking fractional symmetric Hahn integral of order θi,i=1,2 for (2.10), we get
Iθiq,ωu(t)=q(θi2)˜Γq(θi)∫tω0~(t−s)θi−1_q,ω[C1(σθi−1q,ω(s)−ω0)α−1+C2(σθi−1q,ω(s)−ω0)α−2]˜dq,ωs+q(θi2)+(α2)˜Γq(θi)˜Γq(α)∫tω0∫σθi−1q,ω(s)ω0~(t−s)θi−1_q,ω~(σθi−1q,ω(s)−r)α−1_q,ωh(σα−1q,ω(r))˜dq,ωr˜dq,ωs. | (2.11) |
After substituting i=1 into (2.11) and employing the first condition of (2.1), we have
A1C1+A2C2=−Φ1[h]. | (2.12) |
Taking i=2 into (2.11) and employing the second condition of (2.1), we have
B1C1+B2C2=Φ2[h], | (2.13) |
where Φ1[h],Φ2[h],A1,A2,B1 and B2 are defined as (2.3)−(2.8), respectively.
Solving the system of Eqs (2.12)−(2.13), we have
C1=B2Φ1[h]+A2Φ2[h]ΛandC2=−1A2{(1+A1B2Λ)Φ1[h]+A1A2ΛΦ2[h]}, |
where Λ is defined as (2.9). Substituting the constants C1 and C2 into (2.10), we obtain (2.2).
In this section, we prove the existence and uniqueness of solution of the problem (1.1). Furthermore, we show the existence of at least one solution of problem (1.1).
In this section, we consider the existence and uniqueness result for the problem (1.1). Let C=C(ITq,ω,R) be a Banach space of all function u with the norm defined by
‖u‖C=maxt∈ITq,ω{|u(t)|,|˜Dβq,ωu(t)|}, |
where α∈(1,2];β,γ,θ1,θ2∈(0,1]; ω>0;q∈(0,1); λ1,λ2∈R+. We define an operator F:C→C as
(Fu)(t):=q(α2)˜Γq(α)∫tω0~(t−s)α−1_q,ω×F(σα−1q,ω(s),u(σα−1q,ω(s)),˜Dβq,ωu(σα−1q,ω(s)),˜Ψγq,ωu(σα−1q,ω(s)))˜dq,ωs+(t−ω0)α−1Λ{B2Φ1[f(u)]+A2Φ2[f(u)]}−(t−ω0)α−2A2{(1+A1B2Λ)Φ1[f(u)]+A1A2ΛΦ2[f(u)]} | (3.1) |
where the functionals Φ1[F(u)],Φ2[F(u)] are given by
Φ1[F(u)]:=λ1q(θ12)+(α2)˜Γq(θ1)˜Γq(α)∫η1ω0∫σθ1−1q,ω(s)ω0~(η1−s)θ1−1_q,ω~(σθ1−1q,ω(s)−r)α−1_q,ωg1(σθ1−1q,ω(s))×F(σα−1q,ω(r),u(σα−1q,ω(r)),˜Dβq,ωu(σα−1q,ω(r)),˜Ψγq,ωu(σα−1q,ω(r)))˜dq,ωr˜dq,ωs, | (3.2) |
Φ2[F(u)]:=λ2q(θ22)+(α2)˜Γq(θ2)˜Γq(α)∫η2ω0∫σθ2−1q,ω(s)ω0~(η2−s)θ2−1_q,ω~(σθ2−1q,ω(s)−r)α−1_q,ωg2(σθ2−1q,ω(s))×F(σα−1q,ω(r),u(σα−1q,ω(r)),˜Dβq,ωu(σα−1q,ω(r)),˜Ψγq,ωu(σα−1q,ω(r)))˜dq,ωr˜dq,ωs−q(α2)˜Γq(α)∫Tω0~(T−s)α−1_q,ω×F(σα−1q,ω(r),u(σα−1q,ω(r)),˜Dβq,ωu(σα−1q,ω(r)),˜Ψγq,ωu(σα−1q,ω(r)))˜dq,ωs, | (3.3) |
and the constants A1,A2,B1,B2 and Λ are defined by (2.5)-(2.9), respectively.
We find that the problem (1.1) has solution if and only if the operator F has fixed point.
Theorem 3.1. Assume that F:ITq,ω×R3→R, and g1,g2:ITq,ω→R+ are continuous, and φ:ITq,ω×ITq,ω→[0,∞) is continuous with φ0=max{φ(t,s):(t,s)∈ITq,ω×ITq,ω}. Suppose that the following conditions hold:
(H1) There exist constants ℓ1,ℓ2,ℓ3>0 such that for each t∈ITq,ω and u,v∈R,
|F(t,u,˜Dβq,ωu,˜Ψγq,ωu)−F(t,v,˜Dβq,ωv,˜Ψγq,ωv)|≤ℓ1|u−v|+ℓ2|˜Dβq,ωu−˜Dβq,ωv|+ℓ3|˜Ψγq,ωu−˜Ψγq,ωv|. |
(H2) There exist constants gi,Gi>0 where i=1,2 such that for each t∈ITq,ω,
0<gi<gi(t)<Gi. |
(H3) Θ<1,
where
Ω1:=λ1G1q(θ12)+(α2)+θ1+α˜Γq(θ1+α+1)(η1−ω0)θ1+α | (3.4) |
Ω2:=λ2G2q(θ22)+(α2)+θ2+α˜Γq(θ2+α+1)(η2−ω0)θ2+α+q(α2)˜Γq(α+1)(T−ω0)α | (3.5) |
¯A1:=λ1G1q(θ12)+θ1(α−1)˜Γq(α)˜Γq(θ1+α)(η1−ω0)θ1+α−1>A1 | (3.6) |
¯A2:=λ1G1q(θ12)+θ1(α−2)˜Γq(α−1)˜Γq(θ1+α−1)(η1−ω0)θ1+α−2>A2 | (3.7) |
A∗2:=λ1g1q(θ12)+θ1(α−2)˜Γq(α−1)˜Γq(θ1+α−1)(η1−ω0)θ1+α−2<A2 | (3.8) |
¯B1:=(T−ω0)α−1+λ2G2q(θ22)+θ2(α−1)˜Γq(α)˜Γq(θ2+α)(η2−ω0)θ2+α−1>B1 | (3.9) |
¯B2:=(T−ω0)α−2+λ2G2q(θ22)+θ2(α−2)˜Γq(α−1)˜Γq(θ2+α−1)(η2−ω0)θ2+α−2>B2 | (3.10) |
Λ∗:=g1g2|¯A2¯B1−¯A1¯B2|<|Λ| | (3.11) |
and
Θ:=(ℓ1+ℓ2+ℓ3φ0(T+ω0)γ˜Γq(γ+1)){(T−ω0)α−1Λ∗[¯B2Ω1+¯A2Ω2]+(t−ω0)α−2A∗2[(1+¯A1¯B2Λ∗)Ω1+¯A1¯A2Λ∗Ω2]+q(α2)(T−ω0)α˜Γq(α+1)}. | (3.12) |
Then the problem (1.1) has a unique solution in ITq,ω.
Proof. To show that F is contraction, we first consider
H|u−v|(t):=|F(t,u(t),˜Dβq,ωu(t),˜Ψγq,ωu(t))−F(t,v(t),˜Dβq,ωv(t),˜Ψγq,ωv(t))|, |
for each t∈ITq,ω and u,v∈C. We find that
|Φ1[F(u)]−Φ1[F(v)]|≤λ1G1q(θ12)+(α2)˜Γq(θ1)˜Γq(α)∫η1ω0∫σθ1−1q,ω(s)ω0~(η1−s)θ1−1_q,ω~(σθ1−1q,ω(s)−r)α−1_q,ωH|u−v|(r)˜dq,ωr˜dq,ωs≤(ℓ1|u−v|+ℓ2|˜Dβq,ωu−˜Dβq,ωv|+ℓ3|˜Ψγq,ωu−˜Ψγq,ωv|)×λ1G1q(θ12)+(α2)˜Γq(θ1)˜Γq(α)∫η1ω0∫σθ1−1q,ω(s)ω0~(η1−s)θ1−1_q,ω~(σθ1−1q,ω(s)−r)α−1_q,ω˜dq,ωr˜dq,ωs≤[(ℓ1+ℓ3φ0(T+ω0)γ˜Γq(γ+1))|u−v|+ℓ2|˜Dβq,ωu−˜Dβq,ωv|]Ω1≤‖u−v‖C(ℓ1+ℓ2+ℓ3φ0(T+ω0)γ˜Γq(γ+1))Ω1. |
Similary,
|Φ2[F(u)]−Φ2[F(v)]|≤‖u−v‖C(ℓ1+ℓ2+ℓ3φ0(T+ω0)γ˜Γq(γ+1))Ω2. |
In addition, we find that
|(Fu)(t)−(Fv)(t)|≤q(α2)˜Γq(α)∫tω0~(t−s)α−1_q,ωH|u−v|(s)˜dq,ωs+‖u−v‖C(ℓ1+ℓ2+ℓ3φ0(T+ω0)γ˜Γq(γ+1))(T−ω0)α−1|Λ|{B2Ω1+A2Ω2}+‖u−v‖C(ℓ1+ℓ2+ℓ3φ0(T+ω0)γ˜Γq(γ+1))(T−ω0)α−2A2{(1+A1B2|Λ|)Ω1+A1A2|Λ|Ω2}≤‖u−v‖C(ℓ1+ℓ2+ℓ3φ0(T+ω0)γ˜Γq(γ+1)){q(α2)(T−ω0)α˜Γq(α+1)+(T−ω0)α−1Λ∗[¯B2Ω1+¯A2Ω2]+(t−ω0)α−2A∗2[(1+¯A1¯B2Λ∗)Ω1+¯A1¯A2Λ∗Ω2]}=‖u−v‖CΘ. | (3.13) |
Taking fractional symmetric Hahn difference of order γ for (3.1), we obtain
(˜Dβq,ωFu)(t)=q(−β2)+(α2)˜Γq(−β)˜Γq(α)∫tω0∫σ−β−1q,ω(s)ω0~(t−s)−β−1_q,ω~(σ−β−1q,ω(s)−r)α−1_q,ω×F(σα−1q,ω(r),u(σα−1q,ω(r)),˜Dβq,ωu(σα−1q,ω(r)),˜Ψγq,ωu(σα−1q,ω(r)))˜dq,ωr˜dq,ωs+[B2Φ1[f(u)]+A2Φ2[f(u)]Λ]q(−β2)˜Γq(−β)∫tω0~(t−s)−β−1_q,ω(σ−β−1q,ω(s)−ω0)α−1˜dq,ωs−1A2[(1+A1B2Λ)Φ1[f(u)]+A1A2ΛΦ2[f(u)]]×q(−β2)˜Γq(−β)∫tω0~(t−s)−β−1_q,ω(σ−β−1q,ω(s)−ω0)α−2˜dq,ωs. | (3.14) |
Similary, we have
|(˜Dβq,ωFu)(t)−(˜Dβq,ωFv)(t)|<‖u−v‖CΘ. | (3.15) |
From (3.13) and (3.15), we get
‖Fu−Fv‖C≤‖u−v‖CΘ. |
Using (H3) we can conclude that F is a contraction. Based on Banach fixed point theorem, F has a fixed point which is a unique solution of problem (1.1) on ITq,ω.
In this section, we particularly study the existence of at least one solution of (1.1) by using the Schauder's fixed point theorem as follows
Theorem 3.2. Suppose that (H1) and (H3) defined in Theorem 3.1 hold. Then, problem (1.1) has at least one solution on ITq,ω.
Proof. The proof is established as the following structures.
Step Ⅰ. Verify F map bounded sets into bounded sets in BR. Let BR={u∈C(ITq,ω):‖u‖C≤R}, maxt∈ITq,ω|F(t,0,0,0)|=M and choose a constant
R≥M{(T−ω0)α−1Λ∗[¯B2Ω1+¯A2Ω2]+(t−ω0)α−2A∗2[(1+¯A1¯B2Λ∗)Ω1+¯A1¯A2Λ∗Ω2]+q(α2)(T−ω0)α˜Γq(α+1)}1−Θ. | (3.16) |
Denote that
|K(t,u,0)|=|F(t,u(t),˜Dβq,ωu(t),˜Ψγq,ωu(t))−F(t,0,0,0)|+|F(t,0,0,0)|. |
We find that
|Φ1[F(u)]|≤λ1G1q(θ12)+(α2)˜Γq(θ1)˜Γq(α)∫η1ω0∫σθ1−1q,ω(s)ω0~(η1−s)θ1−1_q,ω~(σθ1−1q,ω(s)−r)α−1_q,ω|K(t,u,0)|˜dq,ωr˜dq,ωs≤[(ℓ1|u|+ℓ2|˜Dβq,ωu|+ℓ3|˜Ψγq,ωu|)+M]Ω1≤[(ℓ1+ℓ2+ℓ3φ0(T+ω0)γ˜Γq(γ+1))‖u−v‖C+M]Ω1≤[(ℓ1+ℓ2+ℓ3φ0(T+ω0)γ˜Γq(γ+1))R+M]Ω1, | (3.17) |
where t∈ITq,ω and u∈BR.
Similary,
|Φ2[F(u)]|≤[(ℓ1+ℓ2+ℓ3φ0(T+ω0)γ˜Γq(γ+1))R+M]Ω2. | (3.18) |
Employing (3.17) and (3.18), we find that
|(Fu)(t)|≤[(ℓ1+ℓ2+ℓ3φ0(T+ω0)γ˜Γq(γ+1))R+M]{(T−ω0)α−1Λ∗[¯B2Ω1+¯A2Ω2]+(t−ω0)α−2A∗2[(1+¯A1¯B2Λ∗)Ω1+¯A1¯A2Λ∗Ω2]+q(α2)(T−ω0)α˜Γq(α+1)}≤R. | (3.19) |
Since
|(˜Dβq,ωFu)(t)|<R. | (3.20) |
Therefore, ‖Fu‖C≤R. Hence, F is uniformly bounded.
Step Ⅱ. That the operator F is continuous on BR since the continuity of F.
Step Ⅲ. Examine that F is equicontinuous on BR.
For any t1,t2∈ITq,ω with t1<t2, by Lemma 2.9 we have
|(Fu)(t2)−(Fu)(t1)|≤q(α2)‖F‖˜Γq(α+1)|(t2−ω0)α−(t1−ω0)α|+(¯B2Ω1+¯A2Ω2)‖F‖Λ∗|(t2−ω0)α−1−(t1−ω0)α−1|+‖F‖A∗2[(1+¯A1¯B2Λ∗)Ω1+¯A1¯A2Λ∗Ω2]|(t2−ω0)α−2−(t1−ω0)α−2| | (3.21) |
and
|(˜Dβq,ωFu)(t1)−(˜Dβq,ωFu)(t2)|≤q(α2)+(−β2)−αβ‖F‖˜Γq(α−β+1)|(t2−ω0)α−β−(t1−ω0)α−β|+q(−β2)−αβ˜Γq(α)‖F‖Λ∗˜Γq(α−β)(¯B2Ω1+¯A2Ω2)|(t2−ω0)α−β−1−(t1−ω0)α−β−1|+q(−β2)−αβ˜Γq(α−1)‖F‖A∗2˜Γq(α−β−1)[(1+¯A1¯B2Λ∗)Ω1+¯A1¯A2Λ∗Ω2]×|(t2−ω0)α−β−2−(t1−ω0)α−β−2|. | (3.22) |
Since the right-hand side of (3.22) tends to be zero when |t2−t1|→0, F is relatively compact on BR. Therefore, the set F(BR) is an equicontinuous set. From Steps I to III together with the Arzelá-Ascoli theorem, F:C→C is completely continuous. By Schauder's fixed point theorem, we can conclude that problem (1.1) has at least one solution.
Thoroughly, we provide the boundary value problem for fractional Hahn difference equation
˜D5312,23u(t)=1(100e2+t3)(1+|u(t)|)[e−3t(u2+2|u|)+e−(π+cos2πt)|˜D2512,23u(t)|+e−(1+sin2πt)|˜Ψ3412,23u(t)|]u(43)=2˜I3412,23ecos(156π)u(156)u(10)=3˜I1312,23e2sin(4732π)u(4732), | (4.1) |
where t∈I1012,23 and φ(t,s)=e−s(t+10)3.
We let α=53,β=25,γ=34,θ1=34,θ2=13,q=12,ω=23,ω0=ω1−q=43,T=10,η1=10(12)4+23[4]12=158,η2=10(12)6+23[6]12=4732,λ1=2,λ2=3,g1(t)=ecos(πt),g2(t)=e2sin(πt) and φ0=max{φ(t,s)}=271156e43.
For all t∈I1012,23 and u,v∈R, we have
|F(t,u,˜Dβq,ωu,˜Ψγq,ωu)−F(t,v,˜Dβq,ωv,˜Ψγq,ωv)|≤1e4(100e2+6427)|u−v|+1eπ(100e2+100e2+6427)|˜Dβq,ωu−˜Dβq,ωv|+1e(100e2+100e2+6427)|˜Ψγq,ωu−˜Ψγq,ωv|, |
and 1e<g1(t)<e,1e2<g2(t)<e2
Thus, (H_1) and (H_2) hold with \; \ell_1 = 0.0000247, \; \ell_2 = 0.0000583, \; \ell_3 = 0.000496\; and \; g_1 = \frac{1}{e}, \; g_2 = \frac{1}{e^2}, \; G_1 = e, \; G_2 = e^2 .
Since
\Omega_1 = 0.161, \; \; \; \Omega_2 = 21.708, \; \; \; \overline{\textbf{A}}_1 = 1.518, \; \; \; \overline{\textbf{A}}_2 = 6.717, \; \; \; \textbf{A}_2^* = 0.909, |
\overline{\textbf{B}}_1 = 3.241, \; \; \; \overline{\textbf{B}}_2 = 30.841\; \; and \; \; \Lambda^* = 1.247, |
therefore, (H_3) holds with
\Theta = 0.063 \lt 1. |
Hence, by Theorem 3.1 problem (4.1) has a unique solution.
The new problem containing two fractional symmetric Hahn difference operators and three fractional symmetric Hahn integral with different numbers of order was proposed. The new concepts of fractional symmetric Hanh calculus were used in the study of existence results of the govern problem. The Banach fixed point and Schauder's fixed point theorems were also employed in this study.
This research was funded by King Mongkut's University of Technology North Bangkok. Contract no.KMUTNB-61-KNOW-027. The last author of this research was supported by Suan Dusit University.
The authors declare no conflicts of interest regarding the publication of this paper.
[1] | Tackling the dual burden of TB and diabetes for patients and their families, World Health Organization, 2019. Available from: https://www.who.int/news/item/14-11-2019-dept-newstackling-the-dual-burden-of-tb-and-diabetes-for-patients-and-their-families. |
[2] |
S. E. Geerlings, A. I. M. Hoepelman, Immune dysfunction in patients with diabetes mellitus (DM), FEMS Immunol. Med. Mic., 26 (1999), 259–265. https://doi.org/10.1111/j.1574-695X.1999.tb01397.x doi: 10.1111/j.1574-695X.1999.tb01397.x
![]() |
[3] | D. Morse, D. R. Brothwell, P. J. Ucko, Tuberculosis in ancient Egypt, Am. Rev. Respir. Dis., 90 (1964), 524–541. |
[4] |
J. P. Aparicio, A. F. Capurro, C. Castillo-Chavez, Transmission and dynamics of tuberculosis on generalized households, J. Theor. Biol., 206 (2000), 327–341. https://doi.org/10.1006/jtbi.2000.2129 doi: 10.1006/jtbi.2000.2129
![]() |
[5] |
K. Floyd, P. Glaziou, A. Zumla, M. Raviglione, The global tuberculosis epidemic and progress in care, prevention, and research: An overview in year 3 of the end TB era, Lancet Respir. Med., 6 (2018), 299–314. https://doi.org/10.1016/S2213-2600(18)30057-2 doi: 10.1016/S2213-2600(18)30057-2
![]() |
[6] |
C. Dye, Global epidemiology of tuberculosis, Lancet, 367 (2006), 938–940. https://doi.org/10.1016/S0140-6736(06)68384-0 doi: 10.1016/S0140-6736(06)68384-0
![]() |
[7] |
G. A. Colditz, T. F. Brewer, C. S. Berkey, M. E. Wilson, E. Burdick, H. V. Fineberg, et al., Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature, JAMA, 271 (1994), 698–702. https://doi.org/10.1001/jama.1994.03510330076038 doi: 10.1001/jama.1994.03510330076038
![]() |
[8] |
O. A. Arqub, A. El-Ajou, Solution of the fractional epidemic model by homotopy analysis method, J. King Saud Univ. Sci., 25 (2013), 73–81. https://doi.org/10.1016/j.jksus.2012.01.003 doi: 10.1016/j.jksus.2012.01.003
![]() |
[9] |
M. Rafei, D. D. Ganji, H. Daniali, Solution of the epidemic model by homotopy perturbation method, Appl. Math. Comput., 187 (2007), 1056–1062. https://doi.org/10.1016/j.amc.2006.09.019 doi: 10.1016/j.amc.2006.09.019
![]() |
[10] |
S. Zhao, Z. Xu, Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744–752. https://doi.org/10.1093/ije/29.4.744 doi: 10.1093/ije/29.4.744
![]() |
[11] | F. Haq, K. Shah, A. Khan, M. Shahzad, G. Rahman, Numerical solution of fractional order epidemic model of a vector born disease by laplace adomian decomposition method, Punjab Univ. J. Math., 49 (2017), 13–22. |
[12] |
I. Ullah, S. Ahmad, Q. Al-Mdallal, Z. A. Khan, H. Khan, A. Khan, Stability analysis of a dynamical model of tuberculosis with incomplete treatment, Adv. Differ. Equ., 2020 (2020), 499. https://doi.org/10.1186/s13662-020-02950-0 doi: 10.1186/s13662-020-02950-0
![]() |
[13] | A. I. Enagi, M. O. Ibrahim, N. I. Akinwande, M. Bawa, A. Wachin, A mathematical model of tuberculosis control incorporating vaccination, latency and infectious treatments (case study of Nigeria), Int. J. Math. Comput. Sci., 12 (2017), 97–106. |
[14] | F. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: Timefractional fishers equations, Fractals, 30 (2022), 22400051. |
[15] | S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical h-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110. |
[16] |
F. Jin, Z. S. Qian, Y. M. Chu, M. ur Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 2022. https://doi.org/10.11948/20210357 doi: 10.11948/20210357
![]() |
[17] |
Z. Y. He, A. Abbes, H. Jahanshahi, N. D. Alotaibi, Y. Wang, Fractionalorder discrete-time SIR epidemic model with vaccination: Chaos and complexity, Mathematics, 10 (2022), 165. https://doi.org/10.3390/math10020165 doi: 10.3390/math10020165
![]() |
[18] |
S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. M. Chu, On multistep methods for singular fractional q-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
![]() |
[19] | S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. |
[20] |
Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
![]() |
[21] |
K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on \psi-Hilfer derivative fractional impulsive integro-differential equations, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7954 doi: 10.1002/mma.7954
![]() |
[22] |
M. A. Iqbal, Y. Wang, M. M. Miah, M. S. Osman, Study on Date-Jimbo-Kashiwara-Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions, Fractal Fract., 6 (2022), 4. https://doi.org/10.3390/fractalfract6010004 doi: 10.3390/fractalfract6010004
![]() |
[23] |
T. H. Zhao, M. I. Khan, Y. M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7310 doi: 10.1002/mma.7310
![]() |
[24] |
Y. M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. I. Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Appl. Math. Comput., 419 (2021), 126883. https://doi.org/10.1016/j.amc.2021.126883 doi: 10.1016/j.amc.2021.126883
![]() |
[25] |
M. Nazeer, F. Hussain, M. I. Khan, A. ur-Rehman, E. R. ElZahar, Y. M. Chu, et al., Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420 (2021), 126868. https://doi.org/10.1016/j.amc.2021.126868 doi: 10.1016/j.amc.2021.126868
![]() |
[26] | T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176. |
[27] |
U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
![]() |
[28] | I. Podlubny, Fractional differential equations: Mathematics in science and engineering, Academic Press, New York 1999. |
[29] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland, Amsterdam, 2006. |
[30] | F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Res. Nonlinear Anal., 1 (2018), 88–98. |
[31] | K. Deimling, Nonlinear functional analysis, New York: Springer-Verlag, 1985. |
[32] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. |
[33] |
Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102
![]() |
[34] | X. Q. Zhao, The theory of basic reproduction ratios, In: Dynamical systems in population biology, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-56433-3_11 |
[35] |
E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems, Phys. Lett. A, 358 (2006), 1–4. https://doi.org/10.1016/j.physleta.2006.04.087 doi: 10.1016/j.physleta.2006.04.087
![]() |
[36] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107. |
[37] |
S. Rashid, K. T. Kubra, H. Jafari, S. U. Lehre, A semi-analytical approach for fractional order Boussinesq equation in a gradient unconfined aquifers, Math. Meth. Appl. Sci., 45 (2022), 1033–1062. https://doi.org/10.1002/mma.7833 DOI: 10.1002/mma.7833 doi: 10.1002/mma.7833
![]() |
[38] |
S. Ahmad, R. Ullah, D. Baleanu, Mathematical analysis of tuberculosis control model using nonsingular kernel type Caputo derivative, Adv. Diff. Equ., 2021 (2021), 26. https://doi.org/10.1186/s13662-020-03191-x doi: 10.1186/s13662-020-03191-x
![]() |
1. | Fang Wang, Lei Liu, Gennaro Infante, The Existence and Uniqueness of Solutions for Variable-Order Fractional Differential Equations with Antiperiodic Fractional Boundary Conditions, 2022, 2022, 2314-8888, 1, 10.1155/2022/7663192 | |
2. | Khalid K. Ali, Nuha Al-Harbi, Abdel-Haleem Abdel-Aty, Traveling wave solutions to (3 + 1) conformal time derivative generalized q-deformed Sinh-Gordon equation, 2023, 65, 11100168, 233, 10.1016/j.aej.2022.10.020 | |
3. | Atimad Harir, Said Melliani, Lalla Saadia Chadli, 2023, Chapter 7, 978-1-80356-566-8, 10.5772/intechopen.105904 | |
4. | Ervin K. Lenzi, Luiz R. Evangelista, Haroldo V. Ribeiro, Richard L. Magin, Schrödinger Equation with Geometric Constraints and Position-Dependent Mass: Linked Fractional Calculus Models, 2022, 4, 2624-960X, 296, 10.3390/quantum4030021 | |
5. | M. Adel, Dumitru Baleanu, Umme Sadiya, Mohammad Asif Arefin, M. Hafiz Uddin, Mahjoub A. Elamin, M.S. Osman, Inelastic soliton wave solutions with different geometrical structures to fractional order nonlinear evolution equations, 2022, 38, 22113797, 105661, 10.1016/j.rinp.2022.105661 | |
6. | Hong Yan Xu, Hong Li, Xin Ding, Entire and meromorphic solutions for systems of the differential difference equations, 2022, 55, 2391-4661, 676, 10.1515/dema-2022-0161 | |
7. | Mohammad Izadi, Şuayip Yüzbaşı, Waleed Adel, Accurate and efficient matrix techniques for solving the fractional Lotka–Volterra population model, 2022, 600, 03784371, 127558, 10.1016/j.physa.2022.127558 | |
8. | Gurpreet Singh, Inderdeep Singh, Semi-analytical solutions of three-dimensional (3D) coupled Burgers’ equations by new Laplace variational iteration method, 2022, 6, 26668181, 100438, 10.1016/j.padiff.2022.100438 | |
9. | Mamta Kapoor, Shehu transform on time-fractional Schrödinger equations – an analytical approach, 2022, 0, 1565-1339, 10.1515/ijnsns-2021-0423 | |
10. | Valiyollah Ghazanfari, Mohammad Mahdi Shadman, Numerical solution of a comprehensive form of convection–diffusion equation for binary isotopes in the gas centrifuge, 2022, 175, 03064549, 109220, 10.1016/j.anucene.2022.109220 | |
11. | Mamta Kapoor, Nehad Ali Shah, Wajaree Weera, Analytical solution of time-fractional Schrödinger equations via Shehu Adomian Decomposition Method, 2022, 7, 2473-6988, 19562, 10.3934/math.20221074 | |
12. | Khalid Abdulaziz Alnowibet, Imran Khan, Karam M. Sallam, Ali Wagdy Mohamed, An efficient algorithm for data parallelism based on stochastic optimization, 2022, 61, 11100168, 12005, 10.1016/j.aej.2022.05.052 | |
13. | Shao-Wen Yao, Sidheswar Behera, Mustafa Inc, Hadi Rezazadeh, Jasvinder Pal Singh Virdi, W. Mahmoud, Omar Abu Arqub, M.S. Osman, Analytical solutions of conformable Drinfel’d–Sokolov–Wilson and Boiti Leon Pempinelli equations via sine–cosine method, 2022, 42, 22113797, 105990, 10.1016/j.rinp.2022.105990 | |
14. | Haifeng Wang, Yufeng Zhang, Application of Riemann–Hilbert method to an extended coupled nonlinear Schrödinger equations, 2023, 420, 03770427, 114812, 10.1016/j.cam.2022.114812 | |
15. | Gacem Ilhem, Mahiéddine Kouche, Bedr'eddine Ainseba, Stability analysis of a fractional‐order SEIR epidemic model with general incidence rate and time delay, 2023, 0170-4214, 10.1002/mma.9161 | |
16. | Asifa Tassaddiq, Sania Qureshi, Amanullah Soomro, Evren Hincal, Asif Ali Shaikh, A new continuous hybrid block method with one optimal intrastep point through interpolation and collocation, 2022, 2022, 2730-5422, 10.1186/s13663-022-00733-8 | |
17. | A.A. Elsadany, Sarbast Hussein, A. Al-khedhairi, Amr Elsonbaty, On dynamics of 4-D blinking chaotic system and voice encryption application, 2023, 70, 11100168, 701, 10.1016/j.aej.2023.03.024 | |
18. | Kezheng Zhang, Azzh Saad Alshehry, Noufe H. Aljahdaly, Rasool Shah, Nehad Ali Shah, Mohamed R. Ali, Efficient computational approaches for fractional-order Degasperis-Procesi and Camassa–Holm equations, 2023, 50, 22113797, 106549, 10.1016/j.rinp.2023.106549 | |
19. | Samia Bushnaq, Asif Ullah Hayat, Hassan Khan, Numerical simulation of time-dependent viscous fluid flow with upward and downward fluctuation of spinning disk, 2024, 42, 2175-1188, 1, 10.5269/bspm.63089 | |
20. | Ahmad El-Ajou, Rania Saadeh, Moawaih Akhu Dunia, Ahmad Qazza, Zeyad Al-Zhour, A new approach in handling one-dimensional time-fractional Schrödinger equations, 2024, 9, 2473-6988, 10536, 10.3934/math.2024515 | |
21. | Farman Ali Shah, Zareen A Khan, Fatima Azmi, Nabil Mlaiki, A hybrid collocation method for the approximation of 2D time fractional diffusion-wave equation, 2024, 9, 2473-6988, 27122, 10.3934/math.20241319 | |
22. | Nayereh Tanha, Behrouz Parsa Moghaddam, Mousa Ilie, Cutting-Edge Computational Approaches for Approximating Nonlocal Variable-Order Operators, 2024, 12, 2079-3197, 14, 10.3390/computation12010014 | |
23. | Boddu Muralee Bala Krushna, Mahammad Khuddush, On the solvability of boundary value problems for iterative fractional differential equations, 2024, 73, 0009-725X, 1139, 10.1007/s12215-023-00975-4 | |
24. | Allaoua Mehri, Hakima Bouhadjera, Mohammed S. Abdo, Hadeel Z. Alzumi, Wafa Shammakh, Finite element method for fractional order parabolic obstacle problem with nonlinear source term, 2024, 10, 26668181, 100721, 10.1016/j.padiff.2024.100721 | |
25. | M.H. Heydari, A cardinal approach for two-dimensional modified anomalous space–time fractional sub-diffusion equation, 2023, 49, 22113797, 106545, 10.1016/j.rinp.2023.106545 | |
26. | Sadam Hussain, Muhammad Sarwar, Nabil Mlaiki, Fatima Azmi, Existence and controllability of fractional semilinear mixed Volterra-Fredholm integro differential equation, 2023, 73, 11100168, 259, 10.1016/j.aej.2023.04.029 | |
27. | S Naveen, V Parthiban, Variable‐order Caputo derivative of LC and RC circuits system with numerical analysis, 2024, 0098-9886, 10.1002/cta.4240 | |
28. | Samia Bushnaq, Muhammad Sarwar, Hussam Alrabaiah, Existence theory and numerical simulations of variable order model of infectious disease, 2023, 19, 25900374, 100395, 10.1016/j.rinam.2023.100395 | |
29. | Xing Fang, Leijie Qiao, Fengyang Zhang, Fuming Sun, Explore deep network for a class of fractional partial differential equations, 2023, 172, 09600779, 113528, 10.1016/j.chaos.2023.113528 | |
30. | M. Abdelhakem, Dina Abdelhamied, M. El-kady, Y. H. Youssri, Enhanced shifted Tchebyshev operational matrix of derivatives: two spectral algorithms for solving even-order BVPs, 2023, 69, 1598-5865, 3893, 10.1007/s12190-023-01905-4 | |
31. | Murugesan Manigandan, Saravanan Shanmugam, Mohamed Rhaima, Elango Sekar, Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions, 2024, 8, 2504-3110, 441, 10.3390/fractalfract8080441 | |
32. | A N Nirmala, S Kumbinarasaiah, Nehad Ali Shah, Mansoor Alshehri, A new graph-theoretic approach for the study of the surface of a thin sheet of a viscous liquid model, 2023, 98, 0031-8949, 095248, 10.1088/1402-4896/acecb1 | |
33. | Obaid J. Algahtani, Theoretical and numerical analysis of nonlinear Boussinesq equation under fractal fractional derivative, 2023, 12, 2192-8029, 10.1515/nleng-2022-0338 | |
34. | Xiao Lan Liu, Hong Yan Xu, Yi Hui Xu, Nan Li, Results on solutions of several systems of the product type complex partial differential difference equations, 2024, 57, 2391-4661, 10.1515/dema-2023-0153 | |
35. | Meriem Boukhobza, Amar Debbouche, Lingeshwaran Shangerganesh, Delfim F.M. Torres, Modeling the dynamics of the Hepatitis B virus via a variable-order discrete system, 2024, 184, 09600779, 114987, 10.1016/j.chaos.2024.114987 | |
36. | Arzu Turan-Dincel, Sadiye Nergis Tural-Polat, Operational matrix method approach for fractional partial differential-equations, 2024, 99, 0031-8949, 125254, 10.1088/1402-4896/ad8f7a | |
37. | Mohamed S. Algolam, Osman Osman, Arshad Ali, Alaa Mustafa, Khaled Aldwoah, Amer Alsulami, Fixed Point and Stability Analysis of a Tripled System of Nonlinear Fractional Differential Equations with n-Nonlinear Terms, 2024, 8, 2504-3110, 697, 10.3390/fractalfract8120697 | |
38. | Hicham Saber, Arshad Ali, Khaled Aldwoah, Tariq Alraqad, Abdelkader Moumen, Amer Alsulami, Nidal Eljaneid, Exploring Impulsive and Delay Differential Systems Using Piecewise Fractional Derivatives, 2025, 9, 2504-3110, 105, 10.3390/fractalfract9020105 |