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1. Introduction

TB (Tuberculosis) is one of the communicable diseases caused by bacteria in the respiratory
systems of humans. According to the World Health Organization (WHO), almost 10 million
individuals were diagnosed with tuberculosis in 2017 and 1.5 million others died from TB
worldwide [1]. Experts are concerned that a global growth in the number of TB patients will endanger
a significant proportion of individuals [2]. The lungs, the cerebellum, the endocrine system, the
peripheral nerve mechanism, the vertebral column, and other tissues and organs may indeed be
disrupted by this microorganism. Tuberculosis infection has been found in multiple cultures
throughout history, including Mesopotamia, Persia, and Greece (see [3]). At this moment, one-third
of the globe’s infections are caused by tuberculosis, and the number of contagious people is growing
at a pace of one every second [4]. In 2015, the aforesaid ailment was among the ten leading
contributors of mortality globally, with around 10.4 million people affected. That year, 1.8 million
people died from contagious illnesses, including 0.4 million people infected with hepatitis and
tuberculosis . Major states (Bangladesh, Burma, Ghana, Burma, Ethiopia, and Namibia) accounted
for 60 percent of tuberculosis infection worldwide [5]. Author [6] reported that tuberculosis and
hepatitis are the leading factors of mortality globally, especially in Sub-Saharan Africa. Additionally,
the HIV/AIDS outbreak poses a severe challenge to several governments around the globe. It is
conclusive proof that vaccinations such as Bacillus Calmatte-Guerine (BCG) prevent kids globally
from severe illness acquisition [7]. As a response, contemporary medication has lately been employed
to discover and cure underlying tuberculosis in order to minimize the bacteria’s tendency to
transmission from collapsing, because only representatives of the contagious category may
disseminate the infection to people.

Numerous processes and strategies are indeed being tried throughout the globe to address the source
and prevent such maladies in the community. One of the most effective techniques is mathematical
simulation, which enables us to comprehend the mechanisms of illness spread and propose methods
for controlling illnesses in communities. The specified zone was formally established in 1927. Up to
this point, a set of hypotheses have already been designed and examined (see [8–12]). In this approach,
the following five frameworks for tuberculosis were developed in [13]:

dM(ϱ)
dϱ = θζ − (η + µ)M(ϱ),

dN(ϱ)
dϱ = (1 − θ)ζ + ηM(ϱ) − βN(ϱ)P(ϱ) − ζN(ϱ),

dO(ϱ)
dϱ = βN(ϱ)P(ϱ) − (ϖ + φ + µ)O(ϱ),

dP(ϱ)
dϱ = φO(ϱ) − (ϕ + µ + ψ)P(ϱ),

dQ(ϱ)
dϱ = ϖO(ϱ) + ϕP(ϱ) − µQ(ϱ).

(1.1)

The total population N(ϱ) = M(ϱ) + N(ϱ) + O(ϱ) + P(ϱ) + Q(ϱ) has been classified into five groups
according to the above-mentioned framework: Immunization group M, susceptibility group N, infected
latent group O, infectious group P, and recovered group Q. The following are the characteristics of
the system under evaluation: The signified indicates the immunological component at conception ζ, η
reflects the proportion of farrowing off the medication, the genetic mortality value is designated by the
sign µ, β denotes the tuberculosis peristaltic speed, the therapeutic efficacy of contagious predisposition
is designated by ϖ, φ is the proportion of collapse of innate tuberculosis into extremely contagious
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tuberculosis, ϕ the effective remedy of contagious tuberculosis people, and the damage arising from
the illness is represented by ψ.

In most cases, classical calculus does not adequately investigate the complexities of real-life
scenarios in science and technology. Fractional calculus has received a lot of emphasis in recent
generations in an attempt to address this weakness. We certainly recognize that scientists are
progressively using fractional calculus for numerical techniques [14–26]. As a result, we explore the
system in (1.1) using generalized Caputo fractional derivative as described in the following:

( C℘Dϑ
0+M
)
(ϱ) = θζ − (η + µ)M(ϱ),( C℘Dϑ

0+N
)
(ϱ) = (1 − θ)ζ + ηM(ϱ) − βN(ϱ)P(ϱ) − ζN(ϱ),( C℘Dϑ

0+O
)
(ϱ) = βN(ϱ)P(ϱ) − (ϖ + φ + µ)O(ϱ),

( C℘Dϑ
0+P
)
(ϱ) = φO(ϱ) − (ϕ + µ + ψ)P(ϱ),( C℘Dϑ

0+Q
)
(ϱ) = ϖO(ϱ) + ϕP(ϱ) − µQ(ϱ).

(1.2)

Model (1.2) is investigated under biologically viable initial settings:(
M(0),N(0),O(0),P(0),Q(0)

)ϱ
=
(
M0,N0,O0,P0,Q0

)ϱ
.

We investigate the system 1.1 proposed by [13] under the generalized Caputo fractional
derivative [27] in light of the above-mentioned debate. The major goal of this study is to use
well-known fixed point formalism like Banach’s and Leray-Schauder nonlinear alternatives to
investigate the existence and uniqueness of the fractional tuberculosis model described in (1.2).
Furthermore, the stability analysis of the system is explored from the perspective of various stabilities,
such as Ulam’s, Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias, and generalized
Ulam-Hyers-Rassias stable. Also, a novel algorithm approach with the aid of ℘-LADM to generate
approximate fractional tuberculosis model solutions for different fractional derivative orders. Several
observations on the suggested algorithm’s convergence and stability are addressed. Additionally,
experimental challenges are studied to demonstrate the suggested algorithm’s efficacy, convenience,
and characteristics.

The rest of this paper is organized as follows. In Section 2, we accomplish the description and
formulation of the model. Section 3 deals with the disease-free and endemic equilibrium points and
the corresponding global stability analysis. In Section 4, we establish the existence and uniqueness of
the solution to the model via generalized Caputo fractional derivative operator. In the last section, we
consider the analytical results of the fractional model by incorporating the modified Laplace Adomian
decomposition into the model. Moreover, in this section, we perform a numerical simulation to verify
the effect of the designed strategy for different values of fractional order and different compartments of
the model.

2. Preliminaries

This part states certain formulae, concepts, and essential findings for generalized Caputo fractional
derivative and related formulas that will be relevant throughout the study. For further information,
see [28, 29].
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Definition 2.1. ( [27]) For ϑ, ℘ > 0, then the generalized fractional integral of the mapping f1 is
denoted by ℘Iϑa+1

and expressed as

( ℘Iϑa+1 f1)(ϱ) =
1
Γ(ϑ)

ϱ∫
a1

(
ϱ℘ − s℘

℘

)ϑ−1

f1(s)
ds

s1−℘ , ϱ > a1 ≥ 0, (2.1)

and Γ(z) =
+∞∫
0

exp(−s)sz−1ds is the Euler-Gamma function.

Definition 2.2. ( [27]) For ϑ ∈ (0, 1], ℘ > 0, then the generalized fractional derivative of a continuous
mapping f1 : [0,+∞] 7→ R is denoted by ℘Dϑ

a+1
is expressed as

( ℘Dϑ
a+1

f1)(ϱ) =
1

Γ(1 − ϑ)

ϱ∫
a1

(
ϱ℘ − s℘

℘

)−ϑ
f1(s)

ds
s1−℘ , ϱ > a1 ≥ 0. (2.2)

Definition 2.3. ( [27]) For ϑ ∈ (0, 1], ℘ > 0, then the generalized Caputo fractional derivative of the
continuous mapping f1 : [0,+∞] 7→ R is denoted by C℘Dϑ

a+1
and expressed as

( C℘Dϑ
a+1

f1)(ϱ) =
1

Γ(n − ϑ)

ϱ∫
a1

(
ϱ℘ − s℘

℘

)−ϑ
(ϕn f1)(s)

ds
s1−℘ , (2.3)

where ϱ > a1 ≥ 0 and ϕ = ϱ1−ϕ d
dϱ .

Definition 2.4. ( [30]) The ℘-Laplace transform of a continuous mapping f : [0,+∞] 7→ R is
described as

L℘
{
f1(ϱ)
}
(s) =

∞∫
0

exp
(
− s

ϱ℘

℘

)
f1(ϱ)dϱ, ℜ(s) > 0. (2.4)

The ℘-Laplace transform form of the generalized Caputo fractional derivative of a continuous
mapping f1 is presented by [30]:

L℘
{
( C℘Dϑ

a+1
f1)(ϱ)

}
= sϑL℘

{
f1(ϱ)
}
−

n−1∑
κ=0

sϑ−κ−1( ℘Iϑϕn f1
)
(0). (2.5)

Now we present a significant result, which is known as the Banach fixed point theorem, and it will be
useful for our next results.

Throughout this investigation, we symbolize Banach space by Bs and fixed point by ( fp).

Lemma 2.5. ( [31]) Assume that a Bs of χ, and also, there be a nonempty subset ∆ which is closed in
χ. If there be a contraction map Υ : ∆ 7→ ∆, then, Υ has a fp in ∆.

Our next result is the well-known Leray-Schauder nonlinear alternative (LSNA), see [32].
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Lemma 2.6. ( [32]) Assume that a Bs of χ and C̃ ⊆ χ assume to be closed and convex. Also, suppose
that an open subset of C̃ is Ṽ and 0 ∈ Ṽ . Let there be a continuous compact map ∆ : V 7→ C̃, then
either
(i) ∆ has fp in V
or
(ii) there is a ∈ ∂V (the frontier of Ṽ in C̃) and ν ∈ (0, 1) with x1 = ν∆x1.

3. TB-model under generalized Caputo fractional derivative sense

Here, we investigate the TB-model infection via the generalized Caputo fractional derivative [27]
and the interpretation of all variables is explained in the preceding sections.

( C℘Dϑ
0+M
)
(ϱ) = Λ1(ϱ,M,N,O,P,Q),( C℘Dϑ

0+N
)
(ϱ) = Λ2(ϱ,M,N,O,P,Q),( C℘Dϑ

0+O
)
(ϱ) = Λ3(ϱ,M,N,O,P,Q),

( C℘Dϑ
0+P
)
(ϱ) = Λ4(ϱ,M,N,O,P,Q),( C℘Dϑ

0+Q(ϱ) = Λ5(ϱ,M,N,O,P,Q),

(3.1)

where C℘Dϑ
0+(.) signifies the generalized Caputo fractional derivative of order ϑ with ϑ ∈ (0, 1] and

℘ > 0. In the preceding setup, we streamline the paradigm (1.2) for ease of explanation.
Also, the nonlinear mappings Λ1 − Λ5 are presented by

Λ1(ϱ,M,N,O,P,Q) = θζ − (η + µ)M(ϱ),
Λ2(ϱ,M,N,O,P,Q) = (1 − θ)ζ + ηM(ϱ) − βN(ϱ)P(ϱ) − ζN(ϱ),
Λ3(ϱ,M,N,O,P,Q) = βN(ϱ)P(ϱ) − (ϖ + φ + µ)O(ϱ),
Λ4(ϱ,M,N,O,P,Q) = φO(ϱ) − (ϕ + µ + ψ)P(ϱ),
Λ5(ϱ,M,N,O,P,Q) = ϖO(ϱ) + ϕP(ϱ) − µQ(ϱ),

(3.2)

having initial conditions
(
M(0),N(0),O(0),P(0),Q(0)

)ϱ
=
(
M0,N0,O0,P0,Q0

)ϱ
.

3.1. Equilibrium points and stability analysis

Next we state the epidemiologically feasible (positivity and boundedness) region of this
investigation in Theorem 3.1 and illustrate that the region is positively invariant and bounded.

Theorem 3.1. The epidemiologically feasible region of TB model (1.2) is presented by

Ψ =:
{(

M,N,O,P,Q
)
∈ R5

+ : 0 ≤M + N +O + P +Q ≤ N ≤
θζ

η + µ

}
. (3.3)

The existence and uniqueness of the solution of model (1.2) are now proved, and it remains to show
that the set Ψ defined in (3.3) is positively invariant. The following lemma will be used for the proof
of Theorem 3.1.
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Lemma 3.2. (Generalized mean value theorem) ( [33]) Suppose g1(x) ∈ C[a,b] and let C℘Dϑ
0+G(x) ∈

C[a,b], when 0 < ϑ ≤ 1. Then we have G(x) = G(a) + 1
Γ(ϑ)

C℘Dϑ
0+G(ξ)

( x℘−a℘
℘

)ϑ
, ℘ > 0, when 0 ≤ ξ ≤

x, ∀ x ∈ (a,b].

Clearly, by utilizing by Lemma (3.2), if G(x) ∈ [0,b], C℘Dϑ
0+G(x) ∈ (0,b] and C℘Dϑ

0+G(x) ≥
0, ∀x ∈ (0,b] when ϑ ∈ (0, 1], then the function G(x) is n non-decreasing and if C℘Dϑ

0+G(x) ≤ 0, ∀x ∈
(0,b], then the mapping G(x) is non-increasing ∀x ∈ [0,b].

To show that Ψ is positively invariant, by means of Lemma 3.2, we have

( C℘Dϑ
0+M
)∣∣∣

M=0 = θζ,( C℘Dϑ
0+N
)∣∣∣

N=0 = (1 − θ)ζ + ηM(ϱ),( C℘Dϑ
0+O
)∣∣∣

O=0 = βN(ϱ)P(ϱ),( C℘Dϑ
0+P
)∣∣∣

P=0 = φO(ϱ),( C℘Dϑ
0+Q
)∣∣∣

Q=0 = ϖO(ϱ) + ϕP(ϱ).

(3.4)

It follows from (3.4) that each of the solution (1.2) is non-negative and remains in R5
+, and so the set Ψ

described in (3.3) is positively invariant for the system (1.2).
Ultimately, to construct the boundedness of the solution of the fractional model (1.2), taking into

consideration that all the parameters are positive,we continue by adding all equations of the model that
presents

C℘Dϑ
0+N(ϱ) = ζ − µN(ϱ) − ζN − µ(O +Q + P) − ψP ≤ ζ − µN(ϱ). (3.5)

Applying Laplace transform leads to

L℘

(
C℘Dϑ

0+N(ϱ) + µN(ϱ)
)
≤ L℘

(
ζ
)

s℘L℘(N) − s℘−1N(0) ≤
ζ

s

L℘(N) ≤
( ζ
s℘+1 +

1
s
N(0)

)
. (3.6)

Applying the inverse transform, the solution is presented by

N(ϱ) = ζ −

ϱ∫
a1

(
ϱ℘ − s℘

℘

)−ϑ
(ϕn f1)(s)

ds
s1−℘ +N(0)

(
ϱ℘ − s℘

℘

)−ϑ
, (3.7)

it is not difficult to observe thatN(ϱ) 7→ ζ as ϱ 7→ ∞. Hence (3.3) is the biologically feasible region of
system (1.2).

3.2. The disease-free equilibrium point

The disease-free equilibrium of system (1.2) is given by N0 =
(
θζ

η+µ
, (η+µ)(1−θ)ζ+etaθζ

µ(η+µ) , 0, 0, 0
)

as the
disease free equilibrium state

M∗ =
θζ

η + µ
, N∗ =

(ϖ + φ + µ)(ϕ + µ + ψ)
βφ

,
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O∗ =
(ϕ + µ + ψ)

(
ζβφ(µ + η) − βφµθζ − µ(µ + η)(ϖ + φ + µ)(ϕ + µ + ψ)

)
βφ(µ + η)

(
µ(ϕ + µ + ψ) +ϖ(µ + ψ) +ϖ(ϕ + µ + ψ) + φϕ

) ,

P∗ =
(
ζβφ(µ + η) − βφµθζ − µ(µ + η)(ϖ + ψ + µ)(ϕ + µ + ψ)

)
φ

βφ(µ + η)
(
µ(ϕ + µ + ψ) +ϖ(µ + ψ) +ϖ(ϕ + µ + ψ) + φϕ

) ,
Q∗ =

(
ϖ(ϕ + µ + ψ) + φϕ

)(
ζβφ(µ + η) − βφµθζ − µ(µ + η)(ϖ + φ + µ)(ψ + µ + ϕ)

)
µβφ(µ + η)

(
µ(ϕ + µ + ψ) +ϖ(µ + ψ) +ϖ(ϕ + µ + ψ) + φϕ

)
(3.8)

as the endemic equilibrium state.

3.3. The basic reproductive number R0

In order to evaluate the basic reproduction number, we consider only the infectious classes of the
model. LetV = (L,I)t, with the aid of the proposed system, we write

dV
dϱ
= F −V =

[
βLI

0

]
−

[
(ϖ + φ + µ)L

−φL + (ϕ + µ +ϖ)I

]
.

The Jacobian matrices of F andV are given by

J =

[
0 βI0

0 0

]
and V =

[
ϖ + φ + µ 0
−φ (ϕ + µ +ϖ)I

]
.

The inverse matrix of V is given by

V−1 =

 1
ϖ+φ+µ

0
ϖ 1

ϕ+µ+ϖ

 .
Hence, the next generation matrix JV−1 is calculated a

JV−1 =

 βI0ϖ

(ϖ+φ+µ)(ϖ+φ+ψ)
βI0

ϖ+φ+µ

0 0

 . (3.9)

The spectral radius of the next generation matrix (3.9) gives the threshold quantity R0 [34]. Thus

R0 =
βϖ(η + µ − µθ)ϖ

(η + µ)(ϖ + φ + µ)(ϖ + ψ + φ)
.

This quantity plays the key role in stability analysis and in finding conditions for the said purpose.

Theorem 3.3. For R0, the system (1.2) has a unique equilibrium pointN∗ = (M∗,N∗,O∗,P∗,Q∗) given
by (3.8). The global stability of the endemic equilibrium point is proved in Theorem 3.4 by utilizing the
Lyapunov function method.

Theorem 3.4. If R0 > 1, then the endemic equilibrium point N∗ of system (1.2) is globally
asymptotically stable in the region Ψ.
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Proof. Define a Lyapunov function candidate by

℧(M,N,O,P,Q) =
1
2

(
(M −M∗) + (N − N∗) + (O −O∗) + (P − p∗) + (Q −Q∗)

)2
. (3.10)

Then ℧(M,N,O,P,Q) ≥ 0 and ℧(M∗,N∗,O∗,P∗,Q∗) = 0. Also,
d℧
dϱ =

[
(M,N,O,P,Q) − (M∗,N∗,O∗,P∗,Q∗)

]dN
dϱ .

Since M∗,N∗,O∗,P∗,Q∗ = ζ

δ
and dN

dϱ = ζ − µN(ϱ) − ζN − µ(O +Q + P) − ψP, we have

d℧
dϱ
= (ζ − µN)(ζ − µN(ϱ) − ζN − µ(O +Q + P) − ψP) ≤ 0.

Note that at the endemic equilibrium point, we have N ≤ ζ/δ. Hence, it follows that d℧
dϱ ≤ 0 and

d℧
dϱ = 0 if and only if M = M∗, N = N∗, O = O∗, P = P∗, Q = Q∗. Therefore the largest closed and
bounded invariant set in

{
M,N,O,P,Q ∈ Ψ

}
is the set

{
N∗ : N∗ = (M∗,N∗,O∗,P∗,Q∗)

}
. By LaSalle’s

invariance principle the unique equilibrium point N∗ is globally asymptotically stable when R0 > 1 in
the region Ψ. □

3.4. Local stability analysis

In this section, we analyze the local stability of the abstaining-free equilibrium and the abstaining
equilibrium.

Theorem 3.5. The abstaining-free equilibrium N0 is locally asymptotically stable if R0 < 1, whereas
N0 is unstable if R0 > 1.

Proof. The Jacobian matrix at N0 is given by

J =


−(η + µ) 0 0 0 0

η −(βN + ζ) 0 −βN 0
0 βP −(ϖ + φ + µ) βN 0
0 0 φ −(ϕ + µ + ψ) 0
0 0 ϖ ϕ −µ


. (3.11)

It follows thatJ are
det(J − λI) = 0.

det


−(η + µ + λ) 0 0 0 0

η −(βN + ζ + λ) 0 −βN 0
0 βP −(ϖ + φ + µ + λ) βN 0
0 0 φ −(ϕ + µ + ψ + λ) 0
0 0 ϖ ϕ −(µ + λ)


= 0. (3.12)

At the disease free equilibrium state N0 =
(
θζ

η+µ
, (η+µ)(1−θ)ζ+etaθζ

µ(η+µ) , 0, 0, 0
)
. Hence, evaluating the

determinant and plugging 0 for P in (3.12) yields:

(η + µ + λ)(µ + λ)
{
− (ϖ + φ + µ + λ)(ϕ + µ + ψ + λ) + βNφ

}
= 0.

AIMS Mathematics Volume 7, Issue 6, 10096–10121.
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Therefore, eigenvalues of the characteristic equation of λ1 = λ2 = −µ and λ3 = −(η + µ)(R0 − 1).
Therefore, all the eigenvalues of the characteristic equation are negative if R0 < 1. Thus, |Arg(λi)| =
π > (ϑπ/2) for i = 1, 2, 3. Hence, the equilibrium point N0 is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

Now, we study the local stability of the abstaining equilibrium N∗.
The Jacobian matrix at N∗is given by

JN∗ =


−(η + µ) 0 0 0 0

η −βP∗ − ζ 0 βN∗ 0
0 βN∗ −(ϖ + φ + µ) βN∗ 0
0 0 φ −(ϕ + µ + ψ) 0
0 0 ϖ ϕ −µ


. (3.13)

Its characteristic equation is

λ3 + c1λ
2 + c2λ + c3 = 0, (3.14)

c1 = (η + µ), c2 = (β + ζ)(ϖ + φ + µ)(R0 − 1), c3 = (η + µ)(ϕ + µ + ψ)(R0 − 1),
c1c2 − c3 =

(
(η + µ)(β + ζ)(ϖ + φ + µ) − (η + µ)(ϕ + µ + ψ)

)
(R0 − 1). (3.15)

If R0 > 1, then c1 > 0, c2 > 0, c3 > 0, c1c2 > c3. So, the Routh-Hurwitz conditions are satisfied. Let
D(U) denote the discriminant of the polynomial U(λ) given by (3.14), then

D(U) = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2 c3 0
0 1 c1 c2 c3

3 2c1 c2 0 0
0 3 2c1 c2 0
0 0 3 2c1 c2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 4c3

1c3 − c2
1c2

2 − 18c1c2c3 + 4c3
2 + 27c2

3. (3.16)

□

From [35], we have the following theorem.

Theorem 3.6. We assume that R0 > 1:
(1) IfD(U) > 0 and 0 < ϑ < 1 along with ℘ = 1, then N∗ is locally asymptotically stable.
(2) IfD(U) > 0 and ϑ < 2/3 along with ℘ = 1, then N∗ is locally asymptotically stable.

4. Existence and uniqueness consequences

This portion explores the existence and uniqueness of elucidations to the provided framework (1.2)
considering the fixed point theorems approach.

Surmising that G = C([0,Q],R) represents the Bs containing continuous mappings from [0,Q] to R
represented by the norm as∣∣∣Ω∣∣∣ = sup

ϱ∈[0,Q]
|Ω(ϱ)|, where |Ω(ϱ)| = |M| + |N| + |O| + |P| + |Q|,
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and M,N,O,P,Q ∈ G. By the virtue of (2.5), the system (1.2) can be expressed as the initial value
problem (IVP) 

( C℘Dϑ
0+Ω
)
(ϱ) = Λ(ϱ,Ω(ϱ)),

Ω(0) = Ω0 ≥ 0,
(4.1)

which is analogous to the integral equation of Volterra type

Ω(ϱ) = Ω0 +
1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1

Λ(s,Ω(s))
ds

s1−℘ , (4.2)

where Ω(ϱ) =
(
M(ϱ),N(ϱ),O(ϱ),P(ϱ),Q(ϱ)

)Q for ȷ = 1, ..., 5.
Utilizing the fact of (4.2), an operator Θ : G 7→ G stated by

(
ΘΩ
)
(ϱ) = Ω0 +

1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1

Λ(s,Ω(s))
ds

s1−℘ . (4.3)

It is worth mentioning that the model (4.1), which is analogous to the problem (1.2), has elucidations
only, if and only if the map Θ contains fp.

Theorem 4.1. Surmise that there be a continuous mapping Λ : [0,Q] 7→ R such that there exists a
constant LΛ > 0, then∣∣∣∣Λ(ϱ,Ω1(ϱ)) − Λ(ϱ,Ω2(ϱ))

∣∣∣∣ ≤ LΛ∣∣∣Ω1(ϱ) −Ω2(ϱ)
∣∣∣, Ω1,Ω1 ∈ G, and ∀ ϱ ∈ [0,Q]. (4.4)

If

LΛQ
℘ϑ < ℘ϑΓ(ϑ + 1), (4.5)

then the model (4.1) has a fixed point on [0,Q]. Finally, the model (1.2) has a unique solution on [0,Q].

Proof. Now, we convert the problem (4.1) into fp problem, Ω = ΘΩ, where Θ is illustrated in (4.3).
Implementing the Banach contraction principle, we illustrate thatΘ has a unique fp. To do this, suppose
sup
ϱ∈[0,Q]

|Λ(ϱ, 0)| = Υ1 < ∞. Choosing Gr1 =
{
Ω ∈ G : ∥Ω∥ ≤ r1

}
having

r1 ≥
∥Ω0∥℘

ϑΓ(ϑ + 1) + Υ1Q
℘ϑ

℘ϑΓ(ϑ + 1) − LΛQ℘ϑ
. (4.6)

It is noting that Gr1 is a bounded, closed and convex subset of G. Also, proving that ΥGr1 ⊂ Gr1 . For
any Ω ∈ Gr, we have
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∥∥∥(ΘΩ)(ϱ)
∥∥∥ ≤

∥∥∥Ω0

∥∥∥ + 1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1∣∣∣Λ(s,Ω(s))
∣∣∣ ds
s1−℘

≤
∥∥∥Ω0

∥∥∥ + 1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1[∣∣∣Λ(s,Ω(s)) − Λ(s, 0)
∣∣∣ + ∣∣∣Λ(s, 0)

∣∣∣] ds
s1−℘

≤
∥∥∥Ω0

∥∥∥ + 1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1(
LΛr1 + Υ1

) ds
s1−℘

≤
∥∥∥Ω0

∥∥∥ + Q℘ϑ

℘ϑΓ(ϑ + 1)
(
LΛr1 + Υ1

)
≤ r1,

which implies that ΥGr1 ⊂ Gr1 .

Furthermore we prove that Υ : Gr1 7→ G is a contraction mapping. For any Ω1,Ω2 ∈ G and every
ϱ ∈ [0,Q], we have

∣∣∣(ΘΩ1)(ϱ) − (ΘΩ1)(ϱ)
∣∣∣ ≤

1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1[∣∣∣Λ(s,Ω1(s)) − Λ(s,Ω2(s))
∣∣∣∣∣∣] ds

s1−℘

≤
LΛ
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1∣∣∣Ω1(s) −Ω2(s)
∣∣∣∣∣∣] ds

s1−℘

≤
LΛQ

℘ϑ

℘ϑΓ(ϑ + 1)

∥∥∥Ω1 −Ω2

∥∥∥. (4.7)

It follows that ∥∥∥ΘΩ1 − ΘΩ2

∥∥∥ ≤ [ LΛQ℘ϑ
℘ϑΓ(ϑ + 1)

]∥∥∥Ω1 −Ω2

∥∥∥.
As LΛQ℘ϑ/℘ϑΓ(ϑ + 1) < 1, then operator Υ is contraction mapping. Utilizing the fact of Lemma 2.5,
the operator Υ has a fp. As a consequence, the problem (4.1) has a fixed solution on [0,Q]. Therefore,
according to above analysis, we conclude that the model (1.2) has a unique solution on [0,Q.] This
completes the proof. □

Our next result based on the Leray-Schauder nonlinear alternative (Lemma 2.6) is demonstrated as
a new existence theorem.

Theorem 4.2. Suppose that:
(A1) ∃ a mapping q̃ ∈ C([0,Q,R+]) and a decreasing mapping H : [0,+∞) 7→ [0,+∞) satisfying
sub-homogeneous assumption (i.e., H(θΩ) ≤ θH(Ω), ∀θ ≥ 1 and Ω ∈ R) such that∣∣∣Λ(ϱ,Ω(ϱ))

∣∣∣ ≤ q̃(ϱ)H(Ω(ϱ)), ∀ (ϱ,Ω) ∈ [0,Q] × R, (4.8)

where q̃0 = sup
Ω∈[0,Q]

{
q̃(ϱ)
}
.

(A2) There exists a constant Υ2 > 0 such that

Υ2℘
ϑΓ(ϑ + 1)

∥Ω0∥℘ϑΓ(ϑ + 1) + q̃0H(Υ2)Q℘ϑ
> 1. (4.9)
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Then, the Eq (4.1) that is analogous to the system (1.2) one or more solution on [0,Q].

Proof. By means of the map Θ proposed in (4.3). Initially, we prove that the operator Θmaps bounded
set into bounded sets in G. For a positive constant r2 > 0, assume that Gr2 =

{
Ω ∈ G : ∥Ω∥ ≤ r2

}
be a

bounded ball in G. Under the hypothesis (A1), for ϱ ∈ [0,Q], we have

∣∣∣(ΘΩ)(ϱ)| ≤
∥∥∥Ω0

∥∥∥ + 1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1

Λ(s,Ω(s))
ds

s1−℘

≤
∥∥∥Ω0

∥∥∥ + 1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1∣∣∣Λ(s,Ω(s))
∣∣∣ ds
s1−℘

≤
∥∥∥Ω0

∥∥∥ + q̃0H(∥Ω∥)Q℘ϑ

℘ϑΓ(ϑ + 1)
,

which yields ∥∥∥(ΘΩ)
∥∥∥ ≤ ∥∥∥Ω0

∥∥∥ + q̃0H(r2)Q℘ϑ

℘ϑΓ(ϑ + 1)
.

Furthermore, we illustrate that the operator Θ maps bounded sets into equi-continuous sets of G.
Surmise that l1, l2 ∈ [0,Q] having l1 < l2 and Ω ∈ Gr2 . Then we find∣∣∣(ΘΩ)(l2) −

(
ΘΩ
)
(l1)
∣∣∣

≤

∣∣∣∣∣ 1
Γ(ϑ)

l2∫
0

( l℘2 − s℘

℘

)ϑ−1

Λ(s,Ω(s))
ds

s1−℘ −
1
Γ(ϑ)

l1∫
0

( l℘1 − s℘

℘

)ϑ−1

Λ(s,Ω(s))
ds

s1−℘

∣∣∣∣∣
≤

q̃0H(∥Ω∥)
℘ϑΓ(ϑ + 1)

(∣∣∣∣l℘ϑ2 − l℘ϑ1

∣∣∣∣ + 2
∣∣∣∣l℘2 − l℘1

∣∣∣∣ϑ). (4.10)

It is clear that Ω ∈ Gr2 , the right hand side of the inequality (4.10) approaches to zero as l2 7→ l1. Thus,
in view of the Arzelá-Ascoli theorem , θ : G 7→ G is completely continuous.

As a result, we illustrate that the boundedness of the collection of findings toΩ = κθΩ for κ ∈ (0, 1).
Now, assume that there be a solution Ω. So, for ϱ ∈ [0,Q], and subsequent technique analogous to the
previous case, we attain

|Ω(ϱ)| = |κ(θΩ)(ϱ)| ≤ ∥Ω0∥ +
q̃0H(∥Ω∥)Q℘ϑ

℘ϑΓ(ϑ + 1)
. (4.11)

Implementing the norm of the aforesaid inequality, for Ω ∈ [0,Q], it follows that

℘ϑΓ(ϑ + 1)∥Ω∥
∥Ω0∥℘ϑΓ(ϑ + 1) + q̃0H(∥Ω∥)Q℘ϑ

≤ 1. (4.12)

Using the fact of (A2), there exists a constant Υ2 > 0 such that K :=
{
Ω ∈ G : ∥ΩΥ2|

}
. Observe that,

the mapping Θ : K̄ 7→ C is continuous as well as completely continuous. So, the appropriate selection
of K̄, no as such Ω ∈ K exist Ω = κΘΩ for κ ∈ (0, 1). Thus, by Leray-Schauder nonlinear alternative
(Lemma 2.6), it is concluded that the map Θ has a fp as Ω ∈ K̄ that proves that the system (1.2) has a
unique solution on [0,Q]. This completes the proof. □
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5. Stability analysis

Here, we shall establish certain adequate assumptions in this article for the system (1.2) to fulfill the
requirements of multiple types of stability. The accompanying definitions are required prior to stating
Ulam stability theorem.

Surmise that there be a positive real number ϵ > 0 and a continuous mapping ΦΛ : [0,Q] 7→ R+.
We have the subsequent variants∣∣∣∣ C℘Dϑ

0+y(ϱ) − Λ(ϱ, y(ϱ))
∣∣∣∣ ≤ ϵ, ∀ϱ ∈ [0,Q], (5.1)

∣∣∣∣ C℘Dϑ
0+y(ϱ) − Λ(ϱ, y(ϱ))

∣∣∣∣ ≤ ϵΦΛ(ϱ), ∀ϱ ∈ [0,Q], (5.2)

∣∣∣∣ C℘Dϑ
0+y(ϱ) − Λ(ϱ, y(ϱ))

∣∣∣∣ ≤ ΦΛ(ϱ), ∀ϱ ∈ [0,Q], (5.3)

where ϵ = max(ϵ ȷ)ϱ for ȷ = 1, ..., 5.

Definition 5.1. ( [36]) We say that the Eq (4.1) is Ulam-Hyers stable if there exists a fixed CΛ such
that for every ϵ > 0 and for every elucidation y ∈ G of the variant (5.1) ∃ a elucidation Ω ∈ G of the
Eq (4.1) having ∣∣∣y(ϱ) −Ω(ϱ)

∣∣∣ ≤ CΛϵ, ϱ ∈ [0,Q], (5.4)

where CΛ = max(CΛ)ϱ for ȷ = 1, .., 5.

Definition 5.2. ( [36]) We say that the Eq (4.1) is generalized Ulam-Hyers stable if ∃ a mapping
ΦΛ ∈ C(R+,R+) having ΦΛ = 0 such that for every elucidation y ∈ G of variant (5.2) ∃ a elucidation
Ω ∈ G of the Eq (4.1) with ∣∣∣y(ϱ) −Ω(ϱ)

∣∣∣ ≤ ΦΛ(ϵ), ϱ ∈ [0,Q], (5.5)

where ΦΛ = max(ΦΛ ȷ
)ϱ for ȷ = 1, .., 5.

Definition 5.3. ( [36]) We say that the Eq (4.1) is Ulam-Hyers-Rassias stable in respective to ΦΛ ∈
C([0,Q],R+) if ∃ a real constant ΥΦΛ such that for every ϵ > 0 and for every elucidation y ∈ G of
variant (5.2) ∃ a elucidation Ω ∈ G of the Eq (4.1) with∣∣∣y(ϱ) −Ω(ϱ)

∣∣∣ ≤ ΥΦΛ ∈ ΦΛ(ϱ), ϱ ∈ [0,Q]. (5.6)

Definition 5.4. ( [36]) We say that the (4.1) is generalized Ulam-Hyers-Rassias stable in respective ΦΛ
if ∃ a real number ΥΦΛ > 0 such that for every elucidation y ∈ G of variant (5.3), ∃ a elucidation Ω ∈ G
of the Eq (4.1) with ∣∣∣y(ϱ) −Ω(ϱ)

∣∣∣ ≤ ΥΦΛΦΛ(ϱ), ϱ ∈ [0,Q]. (5.7)

Remark 1. Clearly, the aforesaid variants leads to the following conclusion that:
(i) Inequality (5.4) =⇒ Inequality (5.5);
(ii) Inequality (5.6) =⇒ Inequality (5.7);
(iii) Inequality (5.6) for ΦΛ(.) = 1 =⇒ Inequality (5.4).
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Remark 2. A mapping y ∈ G is a elucidation of the variant (5.1) if and only if ∃ a mapping ω ∈ G (be
influenced by y) such that the subsequent assumptions hold:
(a) |ω(ϱ)| ≤ ϵ, ω = max(ω ȷ)ϱ, ∀ ϱ ∈ [0,Q],
(b) C℘Dϑ0+y(ϱ) = Λ(ϱ, y(ϱ)) + ω(ϱ), ∀ϱ ∈ [0,Q].

Remark 3. A mapping y ∈ G is a elucidation of the variant (5.2) if and only if ∃ a mapping ν ∈ G (be
influenced by y) such that the subsequent assumptions hold:
(a) |ν(ϱ)| ≤ ϵΦΛ(ϱ), ν = max(ω ȷ)ϱ, ∀ ϱ ∈ [0,Q],
(b) C℘Dϑ0+y(ϱ) = Λ(ϱ, y(ϱ)) + ν(ϱ), ∀ϱ ∈ [0,Q].

We illustrate a vital purpose that can be employed to prove Ulam-Hyers and generalized Ulam-
Hyers stability.

Lemma 5.5. For 0 < ϑ ≤ 1 and ℘ > 0. Let there be a solution y ∈ G of the variant (5.1), then y is a
elucidation of the subsequent variant

∣∣∣∣∣y(ϱ) − y0 −
1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1

Λ(s, y(s))
ds

s1−℘

∣∣∣∣∣ ≤ Qϑ℘

℘ϑΓ(ϑ + 1)ϵ
. (5.8)

Proof. Assume that there be a solution y of the variant (5.1). Using the fact of Remark 2-(ii), we find C℘Dϑ0+y(ϱ) = Λ(ϱ, y(ϱ)) + ω(ϱ), ∀ϱ ∈ [0,Q],
y(0) = y0 ≥ 0.

(5.9)

Therefore, the elucidation of the Eq (5.9) can be expressed as

y(ϱ) = y0 +
1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1

Λ(s, y(s))
ds

s1−℘ +
1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1

ω(s)
ds

s1−℘ .

Employing Remark 2-(i), we have

∣∣∣∣∣y(ϱ) − y0 −
1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1

Λ(s, y(s))
ds

s1−℘

∣∣∣∣∣ ≤
1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1

|ω(s)|
ds

s1−℘

≤
Qϑ℘

℘ϑΓ(ϑ + 1)ϵ
. (5.10)

Hence, the variant (5.8) is proved. □

In our next result, we addressed the Ulam-Hyers stability and generalized Ulam-Hyers stability
results.

Theorem 5.6. Suppose for every Ω ∈ G and there be a continuous mapping Λ : [0,Q] × R 7→ R.
If (4.4) and (4.5) are fulfilled, then the Eq (4.1) which is analogous to the system (1.2) is Ulam-Hyers
and, finally, generalized Ulam-Hyers stable on [0,Q].

AIMS Mathematics Volume 7, Issue 6, 10096–10121.



10110

Proof. Consider ϵ > 0 and y ∈ G assumed to be a elucidation of the variant (5.1). Suppose Ω ∈ G be
the fixed solution of the Eq (4.1), C℘Dϑ

0+Ω(ϱ) = Λ(ϱ,Ω(ϱ)), ϱ ∈ [0,Q],
Ω(0) = Ω0.

Utilizing the fact of (4.1), Lemma 5.5 and by means of triangular inequality, we attain

∣∣∣y(ϱ) −Ω(ϱ)
∣∣∣ ≤

∣∣∣∣∣y(ϱ) −Ω0 −
1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1

Λ(s,Ω(s))
ds

s1−℘

∣∣∣∣∣
≤

∣∣∣∣∣y(ϱ) − y0 −
1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1

Λ(s, z(s))
ds

s1−℘

+
1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1∣∣∣Λ(s, z(s)) − Λ(s,Ω(s))
∣∣∣ ds
s1−℘

∣∣∣∣∣
≤

∣∣∣∣∣y(ϱ) − y0 −
1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1

Λ(s, z(s))
ds

s1−℘

∣∣∣∣∣
+
LΛ
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1∣∣∣y(ϱ) −Ω(ϱ)
∣∣∣ ds
s1−℘

≤
Q℘ϑ

℘ϑΓ(ϑ + 1)
ϵ +

LΛQ
℘ϑ

℘ϑΓ(ϑ + 1)

∣∣∣y(ϱ) −Ω(ϱ)
∣∣∣. (5.11)

In view of Definition 5.1, we have

CΛ =
Q℘ϑ

℘ϑΓ(ϑ + 1)
/
(
1 −

LΛQ
℘ϑ

℘ϑΓ(ϑ + 1)

)
. (5.12)

Thus, the system (1.2) is Ulam-Hyers stable. Now, by employing ΦΛ(ϵ) = CΛϵ such that ΦΛ(0) = 0
provides that the system (1.2) is generalized Ulam-Hyers stable. This completes the proof. □

To prove our next result, we consider the following hypothesis:
(A3) There exists an increasing mapping ΦΛ ∈ G and ∃ λΦΛ > 0, such that for fixed ϱ ∈ [0,Q], the
subsequent formulation holds:

℘Iϑ0+ΦΛ(ϱ) ≤ λΦΛΦΛ(ϱ). (5.13)

Further, we demonstrate a significant result that will be considered in our coming findings of the Ulam-
Hyers-Rassias and generalized Ulam-Hyers-Rassias stability consequences.

Lemma 5.7. For 0 < ϑ ≤ 1 and ℘ > 0 and there be a solution y ∈ G of the variant (5.2), then y is a
elucidation of the subsequent variant∣∣∣∣y(ϱ) − y0 −

℘Iϑ0+Λ(ϱ, y(ϱ))
∣∣∣∣ ≤ ϵλΦΛΦΛ(ϱ). (5.14)
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Proof. Suppose there be a solution y of the variant (5.2). In view of Remark 3-(ii), we find C℘Dϑ
0+y(ϱ) = Λ(ϱ, y(ϱ)) + ν(ϱ), ϱ ∈ [0,Q],

y(0) = y0.
(5.15)

Therefore, the solution of the problem (5.15) can be expressed as

y(ϱ) = y0 +
℘Iϑ0+Λ(ϱ, y(ϱ)) + ℘Iϑ0+ν(ϱ).

Employing Remark 3-(i), we have∣∣∣∣y(ϱ) − y0 −
℘Iϑ0+Λ(ϱ, y(ϱ))

∣∣∣∣ ≤ ℘Iϑ0+ |ν(ϱ)| ≤ ϵ ℘Iϑ0+ΦΛ(ϱ) ≤ ϵλΦΛΦΛ(ϱ).

Thus, the variant (5.14) is acquired. □

As a final outcome, we are able to establish Ulam-Hyers-Rassias and generalized Ulam-Hyers-
Rassias stability.

Theorem 5.8. Suppose that there be a continuous mappingΛ : [0,Q]×R 7→ R for eachΩ ∈ R. If (4.4),
(A2) and (4.5) are fulfilled, then the Eq (4.1) which is similar to the system (1.2) is Ulam-Hyers-Rassias
and, consequently, generalized Ulam-Hyers-Rassias stable on [0,Q].

Proof. Surmise that ϵ > 0 and there be a elucidation y ∈ G of the variant (5.3). Also, assume that
Ω ∈ G be a fixed solution of (4.1). Employing (4.2) and Lemma 5.7, we have∣∣∣y(ϱ) −Ω(ϱ)

∣∣∣ ≤

∣∣∣∣y(ϱ) −Ω0 −
℘Iϑ0+Λ(ϱ,Ω(ϱ))

∣∣∣∣
≤

∣∣∣∣y(ϱ) − y0 −
℘Iϑ0+Λ(ϱ, z(ϱ))

∣∣∣∣ + 1
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1∣∣∣Λ(s, z(s)) − Λ(s,Ω(s))
∣∣∣ ds
s1−℘

≤

∣∣∣∣y(ϱ) − y0 −
℘Iϑ0+Λ(ϱ, z(ϱ))

∣∣∣∣ + LΛ
Γ(ϑ)

ϱ∫
0

(
ϱ℘ − s℘

℘

)ϑ−1∣∣∣z(s) −Ω(s)
∣∣∣ ds
s1−℘

≤ ϵλΦΛΦΛ(ϱ) +
LΛQ

℘ϑ

℘ϑΓ(ϑ + 1)

∣∣∣y(ϱ) −Ω(ϱ)
∣∣∣, (5.16)

which implies that
∣∣∣y(ϱ) −Ω(ϱ)

∣∣∣ ≤ ϵλΦΛΦΛ(ϱ)/
(
1 − LΛQ

℘ϑ

℘ϑΓ(ϑ+1)

)
. By choosing

ΥΦΛ = ϵλΦΛ/
(
1 −

LΛQ
℘ϑ

℘ϑΓ(ϑ + 1)

)
. (5.17)

Therefore, we attain the subsequent variant∣∣∣y(ϱ) −Ω(ϱ)
∣∣∣ ≤ ΥΦΛϵΦΛ(ϱ). (5.18)

Consequently, the model (1.2) is Ulam-Hyers-Rassias stable. Also, taking ϵ = 1, in (5.18), with
ΦΛ(0) = 0, then the framework (1.2) is generalized Ulam-Hyers-Rassias stable. This completes the
proof. □
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6. Configuration of generic algorithm for the TB model

In order to establish the series formulation of the proposed problem, we employ the modified
Laplace transform on both sides of (1.2). We develop the subsequent formulation as follows:

sϑL℘
[
M(ϱ)

]
− sϑ−1M(0) = L℘

[
θζ − (η + µ)M(ϱ)

]
,

sϑL℘
[
N(ϱ)
]
− sϑ−1N(0) = L℘

[
(1 − θ)ζ + ηM(ϱ) − βN(ϱ)P(ϱ) − ζN(ϱ)

]
,

sϑL℘
[
O(ϱ)
]
− sϑ−1O(0) = L℘

[
βN(ϱ)P(ϱ) − (ϖ + φ + µ)O(ϱ)

]
,

sϑL℘
[
P(ϱ)
]
− sϑ−1P(0) = L℘

[
φO(ϱ) − (ϕ + µ + ψ)P(ϱ)

]
,

sϑL℘
[
Q(ϱ)
]
− sϑ−1Q(0) = L℘

[
ϖO(ϱ) + ϕP(ϱ) − µQ(ϱ)

]
.

Employing the initial conditions and suitable arrangements yields

L℘
[
M(ϱ)

]
= M0

s +
1
sϑL℘
[
θζ − (η + µ)M(ϱ)

]
,

L℘
[
N(ϱ)
]
= N0

s +
1
sϑL℘
[
(1 − θ)ζ + ηM(ϱ) − βN(ϱ)P(ϱ) − ζN(ϱ)

]
,

L℘
[
O(ϱ)
]
= O0

s +
1
sϑL℘
[
βN(ϱ)P(ϱ) − (ϖ + φ + µ)O(ϱ)

]
,

L℘
[
P(ϱ)
]
= P0

s +
1
sϑL℘
[
φO(ϱ) − (ϕ + µ + ψ)P(ϱ)

]
,

L℘
[
Q(ϱ)
]
=

Q0
s +

1
sϑL℘
[
ϖO(ϱ) + ϕP(ϱ) − µQ(ϱ)

]
.

Let us surmise that the solution we calculate in an infinite series formulation is as follows:

M(ϱ) =
+∞∑
n=0

Mn(ϱ), N(ϱ) =
+∞∑
n=0

Nn(ϱ), O(ϱ) =
+∞∑
n=0

On(ϱ), P(ϱ) =
+∞∑
n=0

Pn(ϱ),

Q(ϱ) =
+∞∑
n=0

Qn(ϱ) (6.1)

and the non-linearity factor NP can be decomposed by the Adomian polynomial as follows:

N(ϱ)P(ϱ) =
+∞∑
n=0

Jn(ϱ), (6.2)

where

Jn =
1

Γ(n + 1)
dn

dλn

[( n∑
κ=0

λκNκ

)( n∑
κ=0

λκPκ

)]
λ=0
.

Some first few Adomian polynomials are expressed as

Jn =



N0(ϱ)P0(ϱ), n = 0,
N0(ϱ)P1(ϱ) + N1(ϱ)P0(ϱ), n = 1,
N0(ϱ)P2(ϱ) + N1(ϱ)P1(ϱ) + N2(ϱ)P1(ϱ), n = 2,
N0(ϱ)P3(ϱ) + N1(ϱ)P2(ϱ) + N2(ϱ)P1(ϱ) + N3(ϱ)P0(ϱ), n = 3,
...

N0(ϱ)Pn(ϱ) + N1(ϱ)P(n−1)(ϱ) + ... + N(n−1)(ϱ)P1(ϱ) + N(n)(ϱ)P0(ϱ), n = n.

(6.3)

AIMS Mathematics Volume 7, Issue 6, 10096–10121.



10113

By the virtue of (6.1)–(6.3), we have



L℘
[ +∞∑
κ=0

Mκ(ϱ)
]
= M0

s +
1
sϑL℘
[
θζ − (η + µ)

+∞∑
κ=0

Mκ(ϱ)
]
,

L℘
[ +∞∑
κ=0

Nκ(ϱ)
]
= N0

s +
1
sϑL℘
[
(1 − θ)ζ + η

+∞∑
κ=0

Mκ(ϱ) − β
+∞∑
κ=0
Jκ(ϱ) − ζ

+∞∑
κ=0

Nκ(ϱ)
]
,

L℘
[ +∞∑
κ=0

Oκ(ϱ)
]
= O0

s +
1
sϑL℘
[
β
+∞∑
κ=0
Jκ − (ϖ + φ + µ)

+∞∑
κ=0

Oκ(ϱ)
]
,

L℘
[ +∞∑
κ=0

Pκ(ϱ)
]
= P0

s +
1
sϑL℘
[
φ
+∞∑
κ=0

Oκ(ϱ) − (ϕ + µ + ψ)
+∞∑
κ=0

Pκ(ϱ)
]
,

L℘
[ +∞∑
κ=0

Qκ(ϱ)
]
=

Q0
s +

1
sϑL℘
[
ϖ
+∞∑
κ=0

Oκ(ϱ) + ϕ
+∞∑
κ=0

Pκ(ϱ) − µ
+∞∑
κ=0

Qκ(ϱ)
]
.

Now, equating terms on both sides and after employing the ℘-Laplace inverse transform, we get
Step I. For n = 0, we have



M0(ϱ) =M0 +
θζ

Γ(ϑ+1)

( ϱ℘
℘

)ϑ
,

N0(ϱ) = N0 + (1 − θ)ζ 1
Γ(ϑ+1)

( ϱ℘
℘

)ϑ
,

O0(ϱ) = O0,

P0(ϱ) = P0,

Q0(ϱ) = Q0.

Step II. For n = 1, we have



M1(ϱ) = 1
sϑL℘
[
− (η + µ)M0(ϱ)

]
,

N1(ϱ) = 1
sϑL℘
[
ηM0(ϱ) − βJ0(ϱ) − ζN0(ϱ)

]
,

O1(ϱ) = 1
sϑL℘
[
βJ0 − (ϖ + φ + µ)O0(ϱ)

]
,

P1(ϱ) = 1
sϑL℘
[
φO0(ϱ) − (ϕ + µ + ψ)P0(ϱ)

]
,

Q1(ϱ) = 1
sϑL℘
[
ϖO0(ϱ) + ϕP0(ϱ) − µQ0(ϱ)

]
.

Again, employing the inverse ℘-Laplace transform on both sides of the above system, we have



M1(ϱ) = −(η + µ)M0
1

Γ(ϑ+1)

( ϱ℘
℘

)ϑ
− (η + µ) θζ

Γ(2ϑ+1)

( ϱ℘
℘

)2ϑ
,

N1(ϱ) = (ηM0 − βP0N0 − ζN0)
(
ϱ℘

℘

)ϑ
Γ(ϑ+1) +

(
ηθζ − βζ(1 − θ)P0 − ζ

2(1 − θ)
) ( ϱ℘

℘

)2ϑ
Γ(2ϑ+1) ,

O1(ϱ) =
(
βP0N0 − (ϖ + φ + µ)O0

) ( ϱ℘
℘

)ϑ
Γ(ϑ+1) + βP0(1 − θ)ζ

(
ϱ℘

℘

)2ϑ
Γ(2ϑ+1) ,

P1(ϱ) =
(
φO0 − (ϕ + µ + ψ)P0

) ( ϱ℘
℘

)ϑ
Γ(ϑ+1) ,

Q1(ϱ) =
(
ϖO0 + ϕP0 − µQ0

) ( ϱ℘
℘

)ϑ
Γ(ϑ+1) .
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Step III. For n = 2, we have

M2(ϱ) = 1
sϑL℘
[
− (η + µ)M1(ϱ)

]
,

N2(ϱ) = 1
sϑL℘
[
ηM1(ϱ) − βJ1(ϱ) − ζN1(ϱ)

]
,

O2(ϱ) = 1
sϑL℘
[
βJ1 − (ϖ + φ + µ)O1(ϱ)

]
,

P2(ϱ) = 1
sϑL℘
[
φO1(ϱ) − (ϕ + µ + ψ)P1(ϱ)

]
,

Q2(ϱ) = 1
sϑL℘
[
ϖO1(ϱ) + ϕP1(ϱ) − µQ1(ϱ)

]
.

Further, employing the inverse ℘-Laplace transform on both sides of the above system, we have

M2(ϱ) = (η + µ)2M0
1

Γ(2ϑ+1)

( ϱ℘
℘

)2ϑ
+ (η + µ)2 θζ

Γ(3ϑ+1)

( ϱ℘
℘

)3ϑ
,

N2(ϱ) =
(
ηM0P0 − βP2

0N0 − ζN0P0 + N0
(
φO0 − (ϕ + µ + ψ)P0

)
− ηM0(η + µ)

−ζ
(
ηM0 − βP0N0 − ζN0

)) ( ϱ℘
℘

)2ϑ
Γ(2ϑ+1) +

(
ζ(1 − θ)

(
φO0 − (ϕ + µ + ψ)P0

)
−ηθζ(µ + η) − ζ2ηθ − βζ4(1 − θ)2P0

) ( ϱ℘
℘

)3ϑ
Γ(3ϑ+1) + P0

(
ηθζ − βζ(1 − θ)P0 − ζ

2(1 − θ)
) Γ(2ϑ+1)

(
ϱ℘

℘

)3ϑ
Γ2(ϑ+1)Γ(3ϑ+1) ,

O2(ϱ) =
(
N0
(
βφO0 − βP0(ϕ + µ + ψ)

)
+ β
(
ηP0M0 − βP2

0N0 − ζP0N0
)
− βP0N0(ϖ + φ + µ)

−O0(ϖ + φ + µ)2
) ( ϱ℘

℘

)2ϑ
Γ(2ϑ+1) + ζ(1 − θ)

(
βφO0 − βP0

) Γ(2ϑ+1)
(
ϱ℘

℘

)3ϑ
Γ2(ϑ+1)Γ(3ϑ+1)

+βP0

(
ηθζ − βζ(1 − θ)P0 − ζ

2(1 − θ) − P0ζ(1 − θ)(ϖ + φ + µ)
) ( ϱ℘

℘

)3ϑ
Γ(3ϑ+1) ,

P2(ϱ) =
(
φβP0N0 − φO0(ϖ + φ + µ) − (ϕ + µ + ψ)

(
φO0 − P0(µ + ϕ + ψ)

)) ( ϱ℘
℘

)2ϑ
Γ(2ϑ+1) + φβ(1 − θ)P0

(
ϱ℘

℘

)2ϑ
Γ(2ϑ+1) ,

Q2(ϱ) =
(
ϖβP0N0 −ϖ(ϖ + φ + µ)O0 + ϕ

(
φO0 − P0(ϕ + µ + ψ)

)
− µ
(
ϖO0 + ϕP0 − µQ0

)) ( ϱ℘
℘

)2ϑ
Γ(2ϑ+1)

+ϖβζ(1 − θ)P0

(
ϱ℘

℘

)3ϑ
Γ(3ϑ+1) .

Continuing in the same way, we can obtained the recursive terms n ≥ 3. Thus, we attain the desired
series solution as follows: 

M(ϱ) =M0(ϱ) +M1(ϱ) +M2(ϱ) + ... ,
N(ϱ) = N0(ϱ) + N1(ϱ) + N2(ϱ) + ... ,
O(ϱ) = O0(ϱ) +O1(ϱ) +O2(ϱ) + ... ,
P(ϱ) = P0(ϱ) + P1(ϱ) + P2(ϱ) + ... ,
Q(ϱ) = Q0(ϱ) +Q1(ϱ) +Q2(ϱ) + ... .

(6.4)

Theorem 6.1. Suppose there be a Banach space and T : χ 7→ χ be a contractive nonlinear operator
such that ∀ U, Ũ ∈ χ,

∥∥∥T (U)−T (Ũ)
∥∥∥
χ
≤ K
∥∥∥U−Ũ∥∥∥

χ
, K ∈ (0, 1). Applying the Banach contraction

principle, T has a unique fixed pointU such that TU = U, whereU = (u, v,w). Employing ℘-LADM,
the series presented in (6.4) can be expressed as

Un = TUn−1, Un−1 =

n−1∑
ȷ=1

U ȷ, ȷ = 1, 2, 3, ..., (6.5)

and suppose thatU0 = U0 ∈ Gr1(U), where Gr1(U) = u ∈ χ : ∥u −U∥χ < r1, then we have
(i) Un1 ∈ Gr1(U);
(ii) lim

n7→+∞
Un = U.
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Proof. The proof of the following theorem can be developed in an analogous manner as in [37]. □

7. Numerical experiments and explanation

In what follows, we provide simulation solutions as well as representations for the estimation
algorithm of the model under investigation in this section of the article. As a starting point, we use the
approximate values from Table 1. In view of these variables, we estimate the following series
solution:

Table 1. Table of parameterized settings considered in the problem (1.2) for simulations.

Population/parameters Explanation

N = 500 Overall Population
M0 = 90 Immunized Population
N0 = 400 Susceptible Population
O0 = 100 latently infected Population
P0 = 50 Infected Population
Q0 = 50 Recovered Population
ζ = 1 Consistent procurement

θ = 65/1000 Proportion immunized at birth
η = 256/10000 proportion of weaning off the inoculation
µ = 21/1000 Natural death rate

β = 9091/100000 TB contraction proportion
ϖ = 342/10000 Efficacious treatment of infectious proportion
φ = 124/1000 Proportion of latent TB into highly contagious TB

ϕ = 16709/1000000 Satisfactorily healed of contagious TB patients
ψ = 30/1000 Death consequence of TB transmission.



M(ϱ) = 90 − 4.194
(
ϱ℘

℘

)ϑ
Γ(ϑ+1) + 0.192411

(
ϱ℘

℘

)2ϑ
Γ(2ϑ+1) − 0.008966

(
ϱ℘

℘

)3ϑ
Γ(3ϑ+1) ,

N(ϱ) = 400 − 1823.36
(
ϱ℘

℘

)ϑ
Γ(ϑ+1) + 8408.2894

(
ϱ℘

℘

)2ϑ
Γ(2ϑ+1) − 39200.2682

(
ϱ℘

℘

)3ϑ
Γ(3ϑ+1) − 355.6365

Γ(2ϑ+1)
(
ϱ℘

℘

)3ϑ
Γ2(ϑ+1)Γ(3ϑ+1) ,

O(ϱ) = 100 + 18211.44
(
ϱ℘

℘

)ϑ
Γ(ϑ+1) − 8488.5579

(
ϱ℘

℘

)2ϑ
Γ(2ϑ+1) + 39597.60959

(
ϱ℘

℘

)3ϑ
Γ(3ϑ+1) + 355.6365

Γ(2ϑ+1)
(
ϱ℘

℘

)3ϑ
Γ2(ϑ+1)Γ(3ϑ+1) ,

P(ϱ) = 50 − 2.14545
(
ϱ℘

℘

)ϑ
Γ(ϑ+1) + 22.6071

(
ϱ℘

℘

)2ϑ
Γ(2ϑ+1) − 106.7888

(
ϱ℘

℘

)3ϑ
Γ(3ϑ+1) ,

Q(ϱ) = 10 + 4.0454
(
ϱ℘

℘

)ϑ
Γ(ϑ+1) + 61.8304

(
ϱ℘

℘

)2ϑ
Γ(2ϑ+1) + 289.93398

(
ϱ℘

℘

)3ϑ
Γ(3ϑ+1) .

(7.1)

Now we display the result up to four components in Figures 1–5, which are associated with various
fractional orders, which can be seen in (7.1) in Figures 1–5. The vaccinated community diminishes
with distinct fractional orders at various proportions, as seen in Figure 1(a). Similarly, as demonstrated
in Figure 2(a), the susceptible community is expanding. As illustrated in Figures 3(a) and 4(a), both
infected and innately affected communities are proliferating. As a result of the susceptible community
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growing sick or insidiously afflicted. If a suitable treatment is adopted, the proportion of people who
have been cured will rise, as illustrated in Figure 5(a). The mechanism of demographic rise or decline
is generally quickest at smaller fractional orders and then flips, and the higher the fractional order, the
more rapid the procedure of growing population or reduction in the appropriate compartment.On the
other hand, fractional order derivatives can describe behaviour extremely broadly. As time progresses,
the recoverable community progressively grows and tends to a dynamic equilibrium, as noticed in
Figure 5(a).

Figures 1(b)–5(b), the approximate solutions for vaccinated M(ϱ), susceptible N(ϱ), innately
affected O(ϱ), infected P(ϱ) and recovered R(ϱ) communities, derived with the ℘-LADM exhibit a
remarkable degree of precision when contrasted to the LADM solution computed by Ahmad
et al. [38]. As a result, we may conclude that the ℘-LADM approach is an adequate and trustworthy
mathematical approach for solving linear and nonlinear differential equation systems in demographic
dynamics. The visual depictions explicitly indicate that ℘-LADM produces excellent outcomes once a
given amount of space has passed. This is a highly handy strategy that will surely find usage in a
variety of situations. So, the generalized Caputo fractional derivative operator has an added benefit
over the Caputo-Fabrizio in that it does not require the determination of intricate integrals, and it has
an edge over the ℘-LADM in that it has a reasonable aim when utilizing predictive control width. As
a result, it delivers an approximate solution that is effective.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

89.2

89.3

89.4

89.5

89.6

89.7

89.8

89.9

90

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

89.55

89.6

89.65

89.7

89.75

89.8

89.85

89.9

89.95

90

(b)

Figure 1. (a) Simulation of the approximate results of the Immunized class M(ϱ) for various
fractional order ϑ = 1, 0.9, 0.8, 0.7, 0.6. (b) Comparison analysis of the generalized Caputo
fractional derivative and the Caputo Fabrizio fractional derivative operator of the Immunized
class M(ϱ) when ϑ = 1 and ℘ = 0.67.

AIMS Mathematics Volume 7, Issue 6, 10096–10121.



10117

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

200

250

300

350

400

(a)
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Figure 2. (a) Simulation of the approximate results of the Susceptible class N(ϱ) for various
fractional order ϑ = 1, 0.9, 0.8, 0.7, 0.6. (b) Comparison analysis of the generalized Caputo
fractional derivative and the Caputo Fabrizio fractional derivative operator of the Susceptible
class N(ϱ) when ϑ = 1 and ℘ = 0.67.
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Figure 3. (a) Simulation of the approximate results of the latently infected class O(ϱ) for
various fractional order ϑ = 1, 0.9, 0.8, 0.7, 0.6. (b) Comparison analysis of the generalized
Caputo fractional derivative and the Caputo Fabrizio fractional derivative operator of the
latently infected class O(ϱ) when ϑ = 1 and ℘ = 0.67.
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Figure 4. (a) Simulation of the approximate results of the Infectious class P(ϱ) for various
fractional order ϑ = 1, 0.9, 0.8, 0.7, 0.6. (b) Comparison analysis of the generalized Caputo
fractional derivative and the Caputo Fabrizio fractional derivative operator of the Infectious
class P(ϱ) when ϑ = 1 and ℘ = 0.67.
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Figure 5. (a) Simulation of the approximate results of the Recoverable class Q(ϱ) for various
fractional order ϑ = 1, 0.9, 0.8, 0.7, 0.6. (b) Comparison analysis of the generalized Caputo
fractional derivative and the Caputo Fabrizio fractional derivative operator of the Recoverable
class Q(ϱ) when ϑ = 1 and ℘ = 0.67.

8. Conclusions

In this article, the generalized Caputo fractional derivative is employed to examine the
mathematical formulation of a tuberculosis model using preventative medication. With the assistance
of the Larey-Schauder dynamic substitute and Banach’s fixed point hypothesis, we demonstrated that
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the response of the analyzed paradigm (1.2) is developed by the generalized Caputo fractional
derivative. Furthermore, Ulam stability, such as Ulam-Hyers stable, generalized Ulam-Hyers stability,
Ulam-Hyers-Rassias stable, and generalized Ulam-Hyers-Rassias stable, were adopted to assess the
method’s reliability. Then, using the Matlab program, we implemented the ℘-LADM approach to
provide estimated values for various fractional-order problems, and we discovered that the findings of
the descriptive and predictive models (1.2) approaches to the classical ones when ϑ 7→ 1. The
comparison analysis shows that the projected scheme is in close agreement with the existing one. One
can be successfully extended to several forms of fractional derivatives with analogous methodologies
in numerous real-world applications for future development. We expect that this effort will serve as a
viable replacement for numerous scientific projects.
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