Research article Special Issues

New approach on controllability of Hilfer fractional derivatives with nondense domain

  • Received: 14 January 2022 Revised: 17 February 2022 Accepted: 02 March 2022 Published: 21 March 2022
  • MSC : 34A08, 34K30, 37C25, 46B80, 93B05

  • This work picturizes the results on the controllability of the nondense Hilfer neutral fractional derivative (HNFD). The uniqueness and controllability of HNFD are discussed with Mönch theorem and Banach contraction technique. In addition, a numerical approximation is given to deal with different criteria of our results.

    Citation: Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani, Chokkalingam Ravichandran, Dumitru Baleanu, Devendra Kumar. New approach on controllability of Hilfer fractional derivatives with nondense domain[J]. AIMS Mathematics, 2022, 7(6): 10079-10095. doi: 10.3934/math.2022561

    Related Papers:

  • This work picturizes the results on the controllability of the nondense Hilfer neutral fractional derivative (HNFD). The uniqueness and controllability of HNFD are discussed with Mönch theorem and Banach contraction technique. In addition, a numerical approximation is given to deal with different criteria of our results.



    加载中


    [1] P. Agarwal, D. Baleanu, Y. Q. Chen, S. Momani, J. A. T. Machado, Fractional calculus, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-15-0430-3
    [2] K. Diethelm, The analysis of fractional differential equations, Berlin: Springer-Verlag, 2004. https://doi.org/10.1007/978-3-642-14574-2
    [3] X. L. Fu, On solutions of neutral nonlocal evolution equations with non-dense domain, J. Math. Anal. Appl., 299 (2004), 392–410. https://doi.org/10.1016/j.jmaa.2004.02.062 doi: 10.1016/j.jmaa.2004.02.062
    [4] X. L. Fu, X. B. Liu, Controllability of non-densely defined neutral functional differential systems in abstract space, Chin. Ann. Math. Ser. B, 28 (2007), 243–252. https://doi.org/10.1007/S11401-005-0028-9 doi: 10.1007/S11401-005-0028-9
    [5] K. M. Furati, M. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009
    [6] E. P. Gatsori, Controllability results for non-densely defined evolution differential inclusions with nonlocal conditions, J. Math. Anal. Appl., 297 (2004), 194–211. http://dx.doi.org/10.1016/j.jmaa.2004.04.055 doi: 10.1016/j.jmaa.2004.04.055
    [7] H. B. Gu, Y. Zhou, B. Ahmad, A. Alsaedi, Integral solutions of fractional evolution equations with non-dense domain, Electron. J. Differ. Equ., 2017 (2017), 145.
    [8] H. B. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
    [9] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [10] R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal., 12 (2009), 299–318.
    [11] D. E. Betancur-Herrera, N. Munoz-Galeano, A numerical method for solving Caputo's and Riemann-Liouville's fractional differential equations which includes multi-order fractional derivatives and variable coefficients, Commun. Nonlinear Sci., 84 (2020), 105180. https://doi.org/10.1016/j.cnsns.2020.105180 doi: 10.1016/j.cnsns.2020.105180
    [12] K. Jothimani, K. Kaliraj, S. K. Panda, K. S. Nisar, C. Ravichandran, Results on controllability of non-densely characterized neutral fractional delay differential system, EECT, 10 (2021), 619–631. http://doi.org/10.3934/eect.2020083 doi: 10.3934/eect.2020083
    [13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006.
    [14] K. D. Kucche, Y. K. Chang, C. Ravichandran, Results on non-densely defined impulsive Volterra functional integrodifferential equations with infinite delay, Nonlinear Stud., 23 (2016), 651–664.
    [15] A. Kumar, D. N. Pandey, Controllability results for non-densely defined impulsive fractional differential equations in abstract space, Differ. Equ. Dyn. Syst., 29 (2021), 227–237. https://doi.org/10.1007/s12591-019-00471-1 doi: 10.1007/s12591-019-00471-1
    [16] A. Kumar, R. K. Vats, A. Kumar, D. N. Chalishajar, Numerical approach to the controllability of fractional order impulsive differential equations, Demonstratio Math., 53 (2020), 193–207. https://doi.org/10.1515/dema-2020-0015 doi: 10.1515/dema-2020-0015
    [17] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
    [18] J. Y. Lv, X. Y. Yang, Approximate controllability of Hilfer fractional differential equations, Math. Method. Appl. Sci., 43 (2020), 242–254. https://doi.org/10.1002/mma.5862 doi: 10.1002/mma.5862
    [19] X. H. Liu, Y. F. Li, G. J. Xu, On the finite approximate controllability for Hilfer fractional evolution systems, Adv. Differ. Equ., 2020 (2020), 22. https://doi.org/10.1186/s13662-019-2478-5 doi: 10.1186/s13662-019-2478-5
    [20] K. S. Nisar, K. Logeswari, V. Vijayaraj, H. M. Baskonus, C. Ravichandran, Fractional order modeling the Gemini virus in capsicum annuum with optimal control, Fractal Fract., 6 (2022), 61. https://doi.org/10.3390/fractalfract6020061 doi: 10.3390/fractalfract6020061
    [21] J. Y. Park, K. Balachandran, N. Annapoorani, Existence results for impulsive neutral functional integrodifferential equations with infinite delay, Nonlinear Anal.-Theor., 71 (2009), 3152–3162. https://doi.org/10.1016/j.na.2009.01.192 doi: 10.1016/j.na.2009.01.192
    [22] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer-verlag, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [23] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999.
    [24] C. Ravichandran, N. Valliammal, J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin I., 356 (2019), 1535–1565. https://doi.org/10.1016/j.jfranklin.2018.12.001 doi: 10.1016/j.jfranklin.2018.12.001
    [25] C. Ravichandran, K. Munusamy, K. S. Nisar, N. Valliammal, Results on neutral partial integrodifferential equations using Monch-Krasnosel'Skii fixed point theorem with nonlocal conditions, Fractal Fract., 6 (2022), 75. https://doi.org/10.3390/fractalfract6020075 doi: 10.3390/fractalfract6020075
    [26] J. V. da C. Sousa, K. D. Kucche, E. Capelas de Oliveira, On the Ulam-Hyers stabilities of the solutions of $\psi$-Hilfer fractional differential equation with abstract Volterra operator, Math. Method. Appl. Sci., 42 (2019), 3021–3032. https://doi.org/10.1002/mma.5562 doi: 10.1002/mma.5562
    [27] V. Singh, Controllability of Hilfer fractional differential systems with non-dense domain, Numer. Funct. Anal. Optim., 40 (2019), 1572–1592. https://doi.org/10.1080/01630563.2019.1615947 doi: 10.1080/01630563.2019.1615947
    [28] V. Vijayakumar, R. Udhayakumar, Results on approximate controllability for non-densely defined Hilfer fractional differential system with infinite delay, Chaos Soliton. Fract., 139 (2020), 110019. http://doi.org/10.1016/j.chaos.2020.110019 doi: 10.1016/j.chaos.2020.110019
    [29] J. R. Wang, Y. R. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850–859. http://doi.org/10.1016/j.amc.2015.05.144 doi: 10.1016/j.amc.2015.05.144
    [30] J. R. Wang, A. G. Ibrahim, D. O'Regan, Finite approximate controllability of Hilfer fractional semilinear differential equations, Miskolc Math. Notes, 21 (2020), 489–507. http://doi.org/10.18514/MMN.2020.2921 doi: 10.18514/MMN.2020.2921
    [31] J. R. Wang, A. G. Ibrahim, D. O'Regan, Controllability of Hilfer fractional noninstantaneous impulsive semilinear differential inclusions with nonlocal conditions, Nonlinear Anal.-Model., 24 (2019), 958–984. https://doi.org/10.15388/NA.2019.6.7 doi: 10.15388/NA.2019.6.7
    [32] J. R. Wang, X. H. Liu, D. O'Regan, On the approximate controllability for Hilfer fractional evolution hemivariational inequalities, Numer. Funct. Anal. Optim., 40 (2019), 743–762. https://doi.org/10.1080/01630563.2018.1499667 doi: 10.1080/01630563.2018.1499667
    [33] A. Wintner, On the convergence of successive approximations, Am. J. Math., 68 (1946), 13–19. https://doi.org/10.2307/2371736 doi: 10.2307/2371736
    [34] M. Yang, A. Alsaedi, B. Ahmad, Y. Zhou, Attractivity for Hilfer fractional stochastic evolution equations, Adv. Differ. Equ., 2020 (2020), 130. https://doi.org/10.1186/s13662-020-02582-4 doi: 10.1186/s13662-020-02582-4
    [35] Z. L. You, M. Feckan, J. R. Wang, Relative controllability of fractional delay differential equations via delayed perturbation of Mittag-Leffler functions, J. Comput. Appl. Math., 378 (2020), 112939. https://doi.org/10.1016/j.cam.2020.112939 doi: 10.1016/j.cam.2020.112939
    [36] Z. F. Zhang, B. Liu, Controllability results for fractional functional differential equations with nondense domain, Numer. Funct. Anal. Optim., 35 (2014), 443–460. https://doi.org/10.1080/01630563.2013.813536 doi: 10.1080/01630563.2013.813536
    [37] J. Zhang, J. R. Wang, Y. Zhou, Numerical analysis for time-fractional Schrodinger equation on two space dimensions, Adv. Differ. Equ., 2020 (2020), 53. https://doi.org/10.1186/s13662-020-2525-2 doi: 10.1186/s13662-020-2525-2
    [38] Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal.-Real., 11 (2010), 4465–4475. https://doi.org/10.1016/j.nonrwa.2010.05.029 doi: 10.1016/j.nonrwa.2010.05.029
    [39] Y. Zhou, J. W. He, New results on controllability of fractional evolution systems with order $\alpha \in (1, 2)$, EECT, 10 (2021), 491–509. http://doi.org/10.3934/eect.2020077 doi: 10.3934/eect.2020077
    [40] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/10238
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2043) PDF downloads(102) Cited by(19)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog