Research article Special Issues

A fractional-order model of COVID-19 with a strong Allee effect considering the fear effect spread by social networks to the community and the existence of the silent spreaders during the pandemic stage

  • Received: 17 January 2022 Revised: 25 February 2022 Accepted: 11 March 2022 Published: 21 March 2022
  • MSC : 23A33, 26A33, 34A09

  • End of 2019, the world has experienced a virus known as COVID-19, which almost changed everything in our daily and social lives. Every day, experts in medicine, economics, finance, and many different fields inform the community through the media or social networks about the virus, the effects, and changes in our "new life". The virus is highly transmittable and shows different mutated forms. Therefore, to describe this attractive event, many mathematical models and studies have been applied to work on the infections and transmission risks of COVID-19. However, another discussion in the community besides the virus's transmission effect isthe fear of getting infected and dying from the corona. People who have never heard about this virus before 2019 face uncertain and different information about the virus from the media, social networks, and health organizations. This paper proposes a mathematical model of FDEs with a strong Allee effect about the novel coronavirus COVID-19, including the community's fear effect spread through the media and different networks. The primary target is to emphasize the psychological pressure during and after the lockdown. Using the Routh-Hurwitz Criteria, we analyze the local stability of two critical points: disease-free and co-existing. In the end, we use MATLAB 2019 to implement simulation studies that support the theoretical findings.

    Citation: Ali Yousef. A fractional-order model of COVID-19 with a strong Allee effect considering the fear effect spread by social networks to the community and the existence of the silent spreaders during the pandemic stage[J]. AIMS Mathematics, 2022, 7(6): 10052-10078. doi: 10.3934/math.2022560

    Related Papers:

  • End of 2019, the world has experienced a virus known as COVID-19, which almost changed everything in our daily and social lives. Every day, experts in medicine, economics, finance, and many different fields inform the community through the media or social networks about the virus, the effects, and changes in our "new life". The virus is highly transmittable and shows different mutated forms. Therefore, to describe this attractive event, many mathematical models and studies have been applied to work on the infections and transmission risks of COVID-19. However, another discussion in the community besides the virus's transmission effect isthe fear of getting infected and dying from the corona. People who have never heard about this virus before 2019 face uncertain and different information about the virus from the media, social networks, and health organizations. This paper proposes a mathematical model of FDEs with a strong Allee effect about the novel coronavirus COVID-19, including the community's fear effect spread through the media and different networks. The primary target is to emphasize the psychological pressure during and after the lockdown. Using the Routh-Hurwitz Criteria, we analyze the local stability of two critical points: disease-free and co-existing. In the end, we use MATLAB 2019 to implement simulation studies that support the theoretical findings.



    加载中


    [1] A. R. Fehr, S. Perlman, Coronaviruses: an overview of their replication and pathogenesis, In: Coronaviruses, New York, NY: Humana Press, 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
    [2] P. C. Woo, S. K. Lau, Y. Huang, K. Y. Yuen, Coronavirus diversity, phylogeny, interspecies jumping, Exp. Biol. Med. (Maywood), 234 (2009), 1117–1127. https://doi.org/10.3181/0903-MR-94 doi: 10.3181/0903-MR-94
    [3] S. Su, G. Wong, W. Shi, J. Liu, A. C. K. Lai, J. Zhou, et al., Epidemiology, genetic recombination, and pathogenesis of Coronaviruses, Trends Microbiol., 24 (2016), 490–502. https://doi.org/10.1016/j.tim.2016.03.003 doi: 10.1016/j.tim.2016.03.003
    [4] D. Forni, R. Cagliari, M. Clerici, M. Sironi, Molecular evolution of human coronavirus genomes, Trends Microbiol., 25 (2017), 35–48. https://doi.org/10.1016/j.tim.2016.09.001 doi: 10.1016/j.tim.2016.09.001
    [5] N. Al-Asuoad, L. Rong, S. Alaswad, M. Shiller, Mathematical model and simulations of MERS outbreak: predictions and implications for control measures, Biomath, 5 (2016), 1612141. http://doi.org/10.11145/j.biomath.2016.12.141 doi: 10.11145/j.biomath.2016.12.141
    [6] N. Masood, S. S. Malik, M. N. Raja, S. Mubarik, C. Yu, Unraveling the epidemiology, geographical distribution, and genomic evolution of potentially lethal coronaviruses (SARS, MERS, and SARS CoV-2), Front. Cell. Infect. Microbiol., 10 (2020), 499. https://doi.org/10.3389/fcimb.2020.00499 doi: 10.3389/fcimb.2020.00499
    [7] S. Krishnamoorthy, B. Swain, R. S. Verma, S. S. Gunthe, SARS-CoV, MERS-CoV, and 2019-nCoV viruses: an overview of origin, evolution, and genetic variations, VirusDis., 31 (2020), 411–423. https://doi.org/10.1007/s13337-020-00632-9 doi: 10.1007/s13337-020-00632-9
    [8] A. Bawazir, N. Yenugachati, O. B. Da'ar, H. Jradi, Epidemiological trends, characteristics, and distribution of COVID-19: lessons from SARS and MERS outbreaks and way forward, J. Infect. Dis. Epidemiol., 6 (2020), 127. https://doi.org/10.23937/2474-3658/1510127 doi: 10.23937/2474-3658/1510127
    [9] F. Wu, S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, et al., A new coronavirus associated with human respiratory disease in China, Nature, 579 (2020), 265–269. https://doi.org/10.1038/s41586-020-2008-3 doi: 10.1038/s41586-020-2008-3
    [10] World Health Organization, Novel Coronavirus (2019-nCoV) Situation Reports. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.
    [11] G. Bonaccorsi, F. Pierri, M. Cinelli, A. Flori, A. Galeazzi, F. Porcelli, et al., Economic and social consequences of human mobility restrictions under COVID-19, PNAS, 117 (2020), 15530–15535. https://doi.org/10.1073/pnas.2007658117 doi: 10.1073/pnas.2007658117
    [12] S. K. Samal, Population dynamics with multiple Allee effects induced by fear factors — A mathematical study on prey-predator interactions, Appl. Math. Model., 64 (2018), 1–14. https://doi.org/10.1016/j.apm.2018.07.021 doi: 10.1016/j.apm.2018.07.021
    [13] M. Di Giuseppe, S. Zilcha-Mano, T. A. Prout, J. C. Perry, G. Orrù, C. Conversano, Psychological impact of Coronavirus Disease 2019 among Italians during the first week of lockdown, Front. Psychiatry, 11 (2020), 576597. https://doi.org/10.3389/fpsyt.2020.576597 doi: 10.3389/fpsyt.2020.576597
    [14] M. Luo, L. Guo, M. Yu, W. Jiang, H. Wang, The psychological and mental impact of Coronavirus Disease 2019 (COVID-19) on medical staff and the general public — A systematic review and meta-analysis, Psychiatry Res., 291 (2020), 113190. https://doi.org/10.1016/j.psychres.2020.113190 doi: 10.1016/j.psychres.2020.113190
    [15] Y. Wang, S. Ma, C. Yang, Z. Cai, S. Hu, B. Zhang, et al., Acute psychological effects of Coronavirus Disease 2019 outbreak among healthcare workers in China: a cross-sectional study, Transl. Psychiatry, 10 (2020), 348. https://doi.org/10.1038/s41398-020-01031-w doi: 10.1038/s41398-020-01031-w
    [16] N. Umm Min Allah, S. Arshad, H. Mahmood, H. Abbas, The psychological impact of coronavirus outbreak in Pakistan, Asia-Pac. Psychiatry, 12 (2020), e12409. https://doi.org/10.1111/appy.12409 doi: 10.1111/appy.12409
    [17] X. Liu, D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solution. Fract., 32 (2007), 80–94. https://doi.org/10.1016/j.chaos.2005.10.081 doi: 10.1016/j.chaos.2005.10.081
    [18] F. Bozkurt, A. Yousef, T. Abdeljawad, Analysis of the outbreak of the novel coronavirus Covid-19 dynamic model with control mechanisms, Results Phys., 19 (2020), 103586. https://doi.org/10.1016/j.rinp.2020.103586 doi: 10.1016/j.rinp.2020.103586
    [19] Y. Huang, Z. Zhu, Z. Li, Modeling the Allee effect and fear effect in a predator-prey system incorporating a prey refuge, Adv. Differ. Equ., 2020 (2020), 321. https://doi.org/10.1186/s13662-020-02727-5 doi: 10.1186/s13662-020-02727-5
    [20] M. D. Johnson, B. Pell, A dynamical framework for modeling fear of infection and frustration with social distancing in Covid-19 spread, Math. Biosci. Eng., 17 (2020), 7892–7915. https://doi.org/10.3934/mbe.2020401 doi: 10.3934/mbe.2020401
    [21] K. Al-Khaled, M. Alquran, An approximate solution for a fractional-order model of generalized Harry Dym equation, Math. Sci., 8 (2014), 125–130. https://doi.org/10.1007/s40096-015-0137-x doi: 10.1007/s40096-015-0137-x
    [22] R. L. Bagley, R. A. Calico, Fractional order state equations for the control of viscoelastically damped structures, J. Guid. Control Dyn., 14 (1991), 304–311. https://doi.org/10.2514/3.20641 doi: 10.2514/3.20641
    [23] M. Ichise, Y. Nagayanagi, T. Kojima, An analog simulation of non-integer order transfer functions for analysis of electrode process, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 33 (1971), 253–265. https://doi.org/10.1016/S0022-0728(71)80115-8 doi: 10.1016/S0022-0728(71)80115-8
    [24] W. M. Ahmad, J. C. Sprott, Chaos in fractional order autonomous non-linear systems, Chaos Solution. Fract., 16 (2003), 339–351. https://doi.org/10.1016/S0960-0779(02)00438-1 doi: 10.1016/S0960-0779(02)00438-1
    [25] F. Bozkurt, Stability analysis of a fractional-order differential equation system of a GBM-IS interaction depending on the density, Appl. Math. Inform. Sci., 8 (2014), 1021–1028. https://doi.org/10.12785/amis/080310 doi: 10.12785/amis/080310
    [26] T. Jin, H. Xia, S. Gao, Reliability analysis of the uncertain fractional-order dynamic system with state constraint, Math. Method. Appl. Sci., 45 (2022), 2615–2637. https://doi.org/10.1002/mma.7943 doi: 10.1002/mma.7943
    [27] T. Jin, S. Gao, H. Xia, H. Ding, Reliability analysis for the fractional-order circuit system subject to the uncertain random fractional-order model with caputo type, J. Adv. Res., 32 (2021), 15–26. https://doi.org/10.1016/j.jare.2021.04.008 doi: 10.1016/j.jare.2021.04.008
    [28] M. S. Abdo, T. Abdeljawad, K. D. Kuche, M. A. Alqudah, S. M. Ali, M. B. Jeelani, On non-linear pantograph fractional differential equations with Atangana-Baleanu-caputo derivative, Adv. Differ. Equ., 2021 (2021), 65. https://doi.org/10.1186/s13662-021-03229-8 doi: 10.1186/s13662-021-03229-8
    [29] M. D. Kassim, T. Abdeljawad, W. Shatanawi, S. M. Ali, M. S. Abdo, A qualitative study on generalized caputo fractional integro-differential equations, Adv. Differ. Equ., 2021 (2021), 375. https://doi.org/10.1186/s13662-021-03530-6 doi: 10.1186/s13662-021-03530-6
    [30] D. Qian, C. Li, R. P. Agarwal, P. J. Y.Wang, Stability analysis of a fractional differential system with Riemann-Liouville derivatives, Math. Comput. Model., 52 (2010), 862–874. https://doi.org/10.1016/j.mcm.2010.05.016 doi: 10.1016/j.mcm.2010.05.016
    [31] A. N. Chatterjee, F. Al Basir, A model for SARS-CoV-2 infection with treatment, Comput. Math. Method. Med., 2020 (2020), 1352982. https://doi.org/10.1155/2020/1352982 doi: 10.1155/2020/1352982
    [32] J. Mondal, P. Samui, A. N. Chatterjee, Optimal control strategies of non-pharmaceutical interventions for COVID-19 control, J. Interdiscip. Math., 24 (2021), 125–153. https://doi.org/10.1080/09720502.2020.1833459 doi: 10.1080/09720502.2020.1833459
    [33] A. N. Chatterjee, F. Al Basir, M. A. Almuqrin, J. Mondal, I. Khan, SARS-CoV-2 infection with lytic and non-lytic immune responses: A fractional order optimal control theoretical study, Results Phys., 26 (2021), 104260. https://doi.org/10.1016/j.rinp.2021.104260 doi: 10.1016/j.rinp.2021.104260
    [34] J. Mondal, P. Samui, A. N. Chatterjee, Dynamical demeanour of SARS-CoV-2 virus undergoing immune response mechanism in COVID-19 pandemic, Eur. Phys. J. Spec. Top., 2022, in press. https://doi.org/10.1140/epjs/s11734-022-00437-5
    [35] A. N. Chatterjee, B. Ahmad, A fractional-order differential equation model of COVID-19 infection of epithelial cells, Chaos Soliton. Fract., 147 (2021), 110952. https://doi.org/10.1016/j.chaos.2021.110952 doi: 10.1016/j.chaos.2021.110952
    [36] I. Qwusu-Mensah, L. Kinyemi, B. Oduro, O. S. Iyiola, A fractional-order approach to modeling and simulations of the novel COVID-19, Adv. Differ. Equ., 2020 (2020), 683. https://doi.org/10.1186/s13662-020-03141-7 doi: 10.1186/s13662-020-03141-7
    [37] A. Yousef, F. Bozkurt, Bifurcation and stability analysis of a system of fractional-order differential equations for a plant-herbivore model with Allee Effect, Mathematics, 7 (2019), 454. https://doi.org/10.3390/math7050454 doi: 10.3390/math7050454
    [38] M. Mandal, S. Jana, S. K. Nandi, T. K. Kar, Modelling, and control of the fractional-order epidemic model with fear effect, Energ. Ecol. Environ., 5 (2020), 421–432. https://doi.org/10.1007/s40974-020-00192-0 doi: 10.1007/s40974-020-00192-0
    [39] N. Ozdemir, E. Ucar, Investigating of an immune system-cancer mathematical model with Mittag-Leffler kernel, AIMS Mathematics, 5 (2020), 1519–1531. https://doi.org/ 10.3934/math.2020104
    [40] W. M. Ahmad, J. C. Sprott, Chaos in fractional order autonomous non-linear systems, Chaos Solution. Fract., 16 (2003), 339–351. https://doi.org/10.1016/S0960-0779(02)00438-1 doi: 10.1016/S0960-0779(02)00438-1
    [41] A. Yousef, F. Bozkurt, T. Abdeljawad, Qualitative analysis of a fractional pandemic spread model of the novel coronavirus (COVID-19), Comput. Mater. Con., 66 (2021), 843–869. https://dou.org/10.32604/cmc.2020.012060
    [42] K. H. Elliott, G. S. Bettini, D. R. Norris, Fear creates and Allee effect: experimental evidence from seasonal populations, Proc. R. Soc. B, 284 (2017), 20170878. https://doi.org/10.1098/rspb.2017.0878 doi: 10.1098/rspb.2017.0878
    [43] S. K. Sasmal, Population dynamics with multiple Allee effects included by a fear factors-A mathematical study on prey-predator interactions, Appl. Math. Model., 64 (2018), 1–14. https://doi.org/10.1016/j.apm.2018.07.021 doi: 10.1016/j.apm.2018.07.021
    [44] Harward Medical School, Silent Spreaders?, by MEH News and Public Affairs, 2020. Available from: https://hms.harvard.edu/news/silent-spreaders.
    [45] L. Li, J. G. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs, SIAM J. Math. Anal., 50 (2016), 2867–2900. https://doi.org/10.1137/17M1160318 doi: 10.1137/17M1160318
    [46] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory, and applications of fractional differential equations, Elsevier, 2006.
    [47] Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102
    [48] W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040 doi: 10.1016/j.jmaa.2006.10.040
    [49] N. Ozalp, E. Demirci, A fractional-order SEIR model with vertical transmission, Math. Comput. Model., 54 (2011), 1–6. https://doi.org/10.1016/j.mcm.2010.12.051 doi: 10.1016/j.mcm.2010.12.051
    [50] D. Matignon, Stability results for fractional-order differential equations with applications to control processing, Comput. Eng. Sys. Appl., 2 (1996), 963–968.
    [51] Q. S. Zeng, G. Y. Cao, X. J. Zhu, The asymptotic stability on sequential fractional-order systems, J. Shanghai Jiaotong Univ., 39 (2005), 346–348.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1445) PDF downloads(87) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog