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Abstract: End of 2019, the world has experienced a virus known as COVID-19, which almost changed 

everything in our daily and social lives. Every day, experts in medicine, economics, finance, and many 

different fields inform the community through the media or social networks about the virus, the effects, 

and changes in our “new life”. The virus is highly transmittable and shows different mutated forms. 

Therefore, to describe this attractive event, many mathematical models and studies have been applied 

to work on the infections and transmission risks of COVID-19. However, another discussion in the 

community besides the virus's transmission effect isthe fear of getting infected and dying from the 

corona. People who have never heard about this virus before 2019 face uncertain and different 

information about the virus from the media, social networks, and health organizations. This paper 

proposes a mathematical model of FDEs with a strong Allee effect about the novel coronavirus 

COVID-19, including the community's fear effect spread through the media and different networks. 

The primary target is to emphasize the psychological pressure during and after the lockdown. Using 

the Routh-Hurwitz Criteria, we analyze the local stability of two critical points: disease-free and co-

existing. In the end, we use MATLAB 2019 to implement simulation studies that support the theoretical 

findings. 
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1. Introduction 

1.1. Epidemiological information about SARS-CoV-2 

Coronaviruses belong to the Coronaviridae family. The Coronaviridae is sub-divided into four 

groups of coronaviruses; α-Coronavirus, β-Coronavirus, γ- Coronavirus, and δ-Coronavirus [1]. These 

viruses were not seen as attractive research in applied sciences since they were not highly pathogenic 

to humans until the outbreak of SARS-CoV in 2003 and MERS-CoV in 2012. Both viruses were 

transmitted directly from civets and dromedary camels (intermediate hosts) to the human hosts, 

respectively, and they showed the same natural host of bats in the epidemic spread [2,3]. These viruses 

appeared in endemic behaviors, and therefore the related studies were restricted to some areas such as 

medicine and biology and rarely discussed in applied mathematics [4,5]. 

In 2003, the world experienced a type of coronavirus in China known as SARS-CoV. This virus 

was transmitted to humans through intermediate hosts such as market civets. After that, people met 

another similar infection in the Middle East region in 2012, known as MERS-CoV, which spilled over 

to dromedary camels. These viruses showed severe respiratory syndromes in humans, including fever, 

dizziness, and cough [6–8]. However, all the coronaviruses mentioned above were endemic in the 

human populations causing 15-30 percent of respiratory tract infections each year. In December 2019, 

a virus of the Coronaviridae was announced in China-Wuhan. The spread was reported from the fish 

market in Wuhan, considering reptilians as intermediate hosts and bats as a natural host. A scenario 

was designed that the spread started in Wuhan's local fish market, where the people used to buy bats. 

Another scenario in the community was that the virus spread from the laboratory in Wuhan-China. 

WHO designated this new virus as COVID-19. Studies have shown that COVID-19 was characterized 

by two members of β-coronavirus; the human-origin coronavirus (SARS-CoV Tor2) and bat-origin 

coronavirus (bat-SL-CoVZC45) [9]. A virus that was expected to show similar epidemic behavior like 

SARS or MERS reached a pandemic stage and still exists in 2022. 

1.2. The pandemic spread of COVID-19 and the fear of the community 

The world faced many forms of pandemic diseases that changed the life of humans, the 

environment, and history; for example, plague in the 14th century, the first cholera pandemic recorded 

in 1817, the Spanish flu that started in 1918. However, nobody expected a change in our life in the 

fourth industrial revolution based on fear and worry about the future. To remind how the virus spillover, 

we returned to December 2019, when the world noticed a coronavirus appeared again in China. 

However, since 2003, SARS-CoV showed an endemic form. Nevertheless, the community was 

unaware of the consequences of the virustill March 16th, 2020, when the WHO upgraded the status of 

COVID-19 from epidemic to pandemic. 

Several fundamental protections such as quarantines, culling, heavy travel restrictions, and social 

distancing were applied to the community [10]. In addition, health institutions and organizations took 

high responsibilities to engage the public with healthy practices such as hand washing, keeping social 

distance, and staying at home during the lockdown period. Simultaneously, the governments started to 

collaborate with the WHO. Furthermore, the media played a significant role in informing the civilians 

about the infection rates, the necessary health protections, and lockdown announcements from the 

government. Besides this, the internet spreads many unuseful (unrealistic) information. As a result, 
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people started to create illusions related to the virus, which led to a fear effect in the community. The 

mutated forms of the viruses, such as the delta or omicron, emphasize that the virus continues to 

transmit the disease with a high transmission rate of R. Therefore, the discussion in the community 

and social networks will continue [1,9]. 

Until January 4th, 2022, the number of infections increased to 293,078,911 cases with 5,467,761 

deaths and 255,480,149 recovered. The USA shows the highest infection rate with 57,131,187, India 

with 34,960,261 infections, and Brazil hits 22,305,078 total cases. On the other side, an infection that 

started in China reached 102,841 infections, whose population is almost 1,439,323,776 [10]. 

Interestingly, a spread in China (Wuhan) did not show similar outbreaks and fatalities reported in 

Europe, the USA, or other counties. Additionally, the mutated form on the protein spike of the virus is 

recorded mainly in Europe, the USA, India, and South Africa, which increased the mortality rate more 

than before. 

Our study wants to emphasize the fear effect spread through the media and associations to humans 

indifferent, uncertain, and sometimes confusing information about the virus, vaccines, and protection 

rules. Considering the psychological effect such as anxiety, fear, or worry, it is shown among the 

students in China that there is a positive statistical correlation between the epidemiological spread and 

psychological health [11]. 

We can transform an experimental study from the predator-prey model to our case by defining 

the virus as a predator and the civilians as prey. This biological interpretation showed that the fear of 

the community to the virus (predation fears) itself could reduce the prey growth rate (psychological 

effect) by 40% [12], which means that the immune system becomes weak. Finally, many studies in 

medicine started  in their research on the psycho-social impact of COVID-19, which emphasizes the 

danger during the pandemic stage and beyond [13–16]. However, unfortunately, uncertain information 

about the virus, the spread, mutation, and the vaccines expedite a fear of the present and future. 

Therefore, we want to analyze and formulate an essential research topic to distinguish between 

“controlling the spread” with various mechanisms and “the community’s fear” during the lockdown 

period. Beyond that, we want to analyze the psychological pressure on civilians. Significantly, one 

should realize that the changes in the “normal life” and several waves of lockdowns lead to 

psychological breakdowns and thus allow the community to ask what the “new normal life” was and 

the significant reset of our life in the fourth industrial revolution. 

2. Mathematical model 

It has been seen that many biological and medical phenomena can be characterized via 

mathematical models. Specifically, some mathematical models analyze biological and environmental 

phenomena such as infections, treatments, or diseases [17–20]. However, the study of these phenomena 

has been restricted to models of ODEs. 

The nonlocal property of fractional-order models depends on the current state and its previous 

historical states [21]. The transformation of an integer-order model into a fractional-order model needs 

to be precise with respect to the order of differentiation 𝛼 . However, a slight  change in 𝛼  may 

causes a significant change in the behavior of the solutions [22]. Fractional-order differential equations 

can model complex biological phenomena with non-linear behavior and long-term memory, which 

cannot be represented mathematically by integer-order differential equations (IDEs) [23,24]. For 

example, Bozkurt [25] established the glioblastoma multiforme (GBM)–immune system (IS) 
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interaction using a fractional-order differential equation system to include the delay time (memory 

effect) [25]. Besides this, some vital studies that include the reliability analysis of uncertain fractional-

order dynamical systems and other fundamental studies see [26–30]. Thus, it is preferred to use FDEs 

in biological models since they are relevant to memory and hereditary systems [31–41]. 

Moreover, the experimental study of Elliott et al. [42] on Drosophila melanogaster as prey and 

mantid as their predator was necessary proof that the reproductive performance of drosophila decreases 

in the presence of mantid at low population density. This experiment was the critical evidence for the 

Allee effect due to the fear, which refers to the positive association among the species density and its 

per-capita growth rate at low density [43]. From the environmental perspective of the infection during 

the corona period, each community shows a threshold density that enables the government for a long-

term lockdown. Therefore, we incorporate a strong Allee effect into our system to analyze the 

stabilization under specific conditions. 

This paper established a 𝑆𝐸𝐼𝑄𝑅𝑆 + 𝐷 model that describes the pandemic infection. The virus is 

located in the human body and continues to transmit the disease from human to human. The system is 

divided into six-compartments. 𝑆(𝑡) shows the susceptible class that does not have any resistance to 

COVID-19. 𝐸(𝑡) is the exposed compartment that has been infected, but since the virus is in the 

incubation period, they carry and transmit the virus without showing any symptoms. The 𝐼(𝑡) 

compartment is the infected group determined as COVID-19 positive, and 𝑄(𝑡) shows the isolated 

class under the quarantine. 𝑅(𝑡) is the recovered compartment, while 𝐷(𝑡) means only the death 

class. We assume that the recovered class can return to the susceptible class since there is no permanent 

protection against the virus. Thus, we establish the model considering two types of fear during the 

movement from one compartment to the other one; the fear of the susceptible class to be infected and 

the fear of the individuals under quarantine and who are scared about the daily updated death rates. 

Therefore, in the system, 𝛼1 and 𝛼2 denote the level of the fear “to get infected” and “the death from 

COVID-19”. From a biological point of view, 

𝑓1(𝛼1, 𝐼) =
1

1+𝛼1𝐼
      and       𝑓2(𝛼2, 𝐷)

1

1+𝛼2𝐷
 

can be reasonably assumed to satisfy the following statements; 

Fear from infection COVID-19 

➢ 𝑓1(0, 𝐼) = 1 ; if there is no fear of the infection, the susceptible class does not have the 

psychological pressure. 

➢ 𝑓1(𝛼1, 0) = 1 ; if the virus disappears, the fear and the psychological effect disappear on the 

susceptible class. 

➢ lim
𝛼1→∞

𝑓1(𝛼1, 𝐼) = 0; if the virus's fear continues to expand more for a long-term period, then the 

“mentally healthy” susceptible class decreases to extinct. 

➢ lim
𝐼→∞

𝑓1(𝛼1, 𝐼) = 0; if the virus stays for a long-term period in a pandemic spread, the susceptible 

non-infected decreases to extinct. 

➢ 
𝜕𝑓1(𝛼1,𝐼)

𝜕𝛼1
< 0; if the fear effect increases, the offspring might be affected, and thus it decreases. 
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➢ 
𝜕𝑓1(𝛼1,𝐼)

𝜕𝐼
< 0; if the infection increases, the offspring might be affected, and thus it decreases. 

Fear from the death of COVID-19 

➢ 𝑓2(0, 𝐷) = 1; if there is no fear of death from COVID-19, then the individuals under quarantine 

do not have the psychological pressure. 

➢ 𝑓2(𝛼2, 0) = 1 ; if the death from COVID-19 decreases or extinct, then the fear and the 

psychological effect disappear on the individuals in the quarantine compartment.  

➢ lim
𝛼2→∞

𝑓2(𝛼2, 𝐷) = 0; if the fear of death from COVID-19 increases and expands more for a long-

term period, then the “mental health” class would become extinct. 

➢ lim
𝐷→∞

𝑓2(𝛼2, 𝐷) = 0; if the death rate from COVID-19 increases in daily records, the quarantine 

compartment decreases to extinct because of death. 

➢ 
𝜕𝑓2(𝛼2,𝐷)

𝜕𝛼2
< 0 ; if the fear effect increases, the carrying capacity of the compartment under 

quarantine decreases. 

➢ 
𝜕𝑓2(𝛼2,𝐷)

𝜕𝐷
< 0; if the death rate from COVID-19 increases, the compartment's carrying capacity 

under quarantine decreases. 

Thus, the mathematical model is modeled as follows; 

{
 
 
 
 

 
 
 
 𝐷

𝛼S(t) = Λ1 + S(t)𝑟 (1 −
S(t)

𝐾1
)

1

1+𝛼1𝐼(𝑡)
(𝑆(𝑡) − 𝜌) − β1𝐸(t)S(t) − β2𝐼(t)S(t) − 𝜂S(t) + 𝛿2𝑅(𝑡),

𝐷𝛼E(t) = Λ2 + β1(1 − ε1)𝐸(t)S(t) − θE(t) − 𝜂E(t) − 𝛿1𝐸(𝑡),                            

𝐷𝛼I(t) = β1ε1𝐸(t)S(t) + β2𝐼(t)S(t) + θE(t) − 𝛾1𝐼(𝑡) − 𝜂I(t) − 𝜇𝐼(𝑡),                    

𝐷𝛼Q(t) =
Q(t)

1+𝛼2𝐷(𝑡)
+ 𝛾1𝐼(𝑡) − 𝜂Q(t) − 𝜇𝑄(𝑡) − 𝛾2𝑄(𝑡),                                 

 
𝐷𝛼R(t) = 𝛿1𝐸(𝑡) + 𝛾2𝑄(𝑡) − 𝜂R(t) − 𝛿2𝑅(𝑡),                                         

𝐷𝛼D(t) =  𝜇(𝐼(𝑡) + 𝑄(𝑡)) −  𝜇1𝐷(𝑡)                                                

          (2.1) 

and 

𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼(0) = 𝐼0, 𝑄(0) = 𝑄0, 𝑅(0) = 𝑅0 and  𝐷(0) = 𝐷0,         (2.2) 

where the parameters are positive real numbers, 0 < 𝛼 ≤ 1, 𝐷𝛼 denotes the Caputo derivative and 

(𝑆, 𝐸, 𝐼, 𝑄, 𝑅, 𝐷) ∈ ℝ+
6 . 

The susceptible 𝑆(𝑡) comprises individuals who have not contacted any infected person but can 

get infected from COVID-19 infected people. 𝑆(𝑡) can get infected through 𝐸(𝑡), who do not know 

they are infected. r is the growth rate of 𝑆(𝑡), while 𝜌 is the Allee threshold (0 < 𝜌 < 𝐾1) and 𝐾1 

shows the carrying capacity of 𝑆(𝑡). Λ1 denotes the recruitment rate of the susceptible class and 𝛼1 

is the fear of the susceptible class to getting infected. The susceptible class lost their population density 

following contacts with 𝐸(𝑡) at a rate of  β1 and with 𝐼(t) at a rate of β2. 𝜂 shows natural death 

rate of the susceptible class 𝑆(𝑡). From the recovered class, a rate of 𝛿2 returns to the susceptible 

class since there is still no permanent treatment and protection to COVID-19. 
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The 𝐸(𝑡) class does not know that they have COVID-19 because of the late appeared symptoms 

of the infection. Λ2 denotes the current density of the exposed class. This compartment decreases 

following the health rules in doing PCR tests regularly before traveling or for work with a screening 

rate θ . Another stage during the epidemiological cases is that after being informed by the health 

organizations about the virus, the individuals become aware of the virus' symptoms with a rate of ε1 

so that the class moves to the infected compartment 𝐼(𝑡). Another vital piece of information about 

this compartment is that the individual can be the silent transmitter of COVID-19, as mentioned in the 

article of Harvard Medical School [44]. This is why all compartments need to permanently follow the 

health protection rules since the community also shows individuals who have the virus but do not show 

the symptoms at all. The intermediate transmitters, known as the silent transmitters, can recover 

without recognizing that they were infected from COVID-19. According to this essential study of [44], 

we show the recovery rate of 𝐸(𝑡) to 𝑅(𝑡) as 𝛿1. 𝜂 denotes the natural death in this compartment. 

I(t)  is the infected COVID-19 class. The population of this class increases with β1ε1  who 

noticed in the exposed class from the symptoms that they are infected. Another parametric increase 

comes from the screening rate θ  when the test shows COVID-19 positive. We assume that the 

individuals are aware to inform the health organizations when they feel the infection symptoms. From 

the infected compartment, a rate of 𝛾1 moves to be hospitalized or to stay at home under quarantine. 

The Q(t) compartment shows a fear effect 𝛼2 of the daily recorded death rates. The population 

density of the compartment increases with 𝛾1𝐼(𝑡)  who show mainly severe symptoms and are 

hospitalized under quarantine. 𝛾2 is the rate of recovered individuals during the quarantine period 

that changes the class from Q(t) to 𝑅(𝑡). In both compartments, the infected and the quarantined 

classes, we expect two types of recorded deaths; natural death and death from COVID-19. 

The R(t) compartment shows the class of recovered individuals. 𝛾2𝑄(𝑡) is the increase of the 

compartment that is expected from class 𝑄(𝑡) after successful treatment, the density of this class 

decreases with a rate of 𝛿2 to the susceptible class, which means that one can get infected again. The 

recovered class shows only the natural death of a rate 𝜂. 

The most discussed part in the community was the case of “death from COVID-19” and “death 

with COVID-19”. To distinguish this case in the compartment of 𝐷(𝑡),  the death of the infected 

population is subtracted from death who died from other symptoms during the infection that affects 

the immune system, which is denoted as  𝜇1; this means D(t) denotes only the group that died from 

corona itself. 

This study focuses mainly on five essential and sensitive parameters. These are; 𝛼1, the fear 

being infected, 𝛼2,  the fear to die from COVID-19, θ,  the rate of screening, ε1,  the rate of 

awareness and 𝛾2, rate of recovering from successful treatment. In this work, we want to distinguish 

between “the psychological fear effect” caused by different networks and “get aware” of living in the 

pandemic stage. Without any confusion, specific information from professional institutions would 

make civilians aware and not scared of the virus. Getting used to living in this pandemic spread and 

taking the necessary actions can be explained without terrifying people. Professional and quick 

response screening tests would reach successful movements between the compartments. 

Definition 2.1. [45] Given a function 𝜑(𝑡), the fractional integral with order 𝛼 > 0 is provided by 

Abdel's formula as 

𝐼𝛼𝜑(𝑡) =
1

Γ(𝛼)
∫ (𝑥 − 𝑡)𝛼−1𝜑(𝑡)𝑑𝑡
𝑥

0
 , 𝑥 > 0.                    (2.3) 
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Definition 2.2. [45] Let 𝜑:𝑅+ → 𝑅 be a continuous function. The Caputo fractional derivative of 

order 𝛼 ∈ (𝑛 − 1, 𝑛), where 𝑛 is a positive integer is defined as 

𝐷0
𝛼𝜑(𝑥) =

1

Γ(𝑛−𝛼)
∫

𝜑(𝑛)(𝑡)

(𝑥−𝑡)𝛼+1−𝑛

𝑥

0
.                         (2.4) 

When = 𝑛 , the derivatives are defined to be the usual 𝑛𝑡ℎ order derivatives. 

Definition 2.3. [46] The Mittag-Leffler function of one variable is 

𝐸𝛼(𝜆, 𝑧) = 𝐸𝛼(𝜆𝑧
𝛼) = ∑

𝜆𝑘𝑧𝛼𝑘

Γ(1+𝛼𝑘)
∞
𝑘=0  ,  (𝜆 ≠ 0, 𝑧 ∈ ℂ: 𝑅𝑒(𝛼) > 0).           (2.5) 

The parametric description is given as in Table 1. 

Table 1. Parametric description of the dynamical system. 

Notation Description of Parameter 

𝜶𝟏 The fear effect of the susceptible class to be infected by COVID-19 

𝜶𝟐 The fear effect of individuals under quarantine to die from COVID-19 

𝚲𝟏 The recruitment rate of the susceptible class 

𝚲𝟐 Rate of the exposed compartment 

𝑲𝟏 Carrying capacity of the susceptible class 

𝝆 Allee Threshold 

𝛃𝟏 Infection rate from the 𝑆 − 𝐸 interaction 

𝛃𝟐 Infection rate from the 𝑆 − 𝐼 interaction 

𝛆𝟏 Recognition of infection 

𝛉 Rate of screening 

𝜸𝟏 The rate of infected people being isolated 

𝜸𝟐 The rate of recovering due to treatment 

𝜹𝟏 The rate of change from the exposed compartment to the recovery compartment 

𝜹𝟐 The rate of change from the recovery compartment to the susceptible 

compartment 

𝝁 The death rate of COVID-19 infected  

𝝁𝟏 The death rate of the infected group died from different symptoms that were 

activated by the virus COVID-19 

𝜼 The natural death rate 

3. The existence and uniqueness of the solutions in the system 

For the biological validity of the system, we need to show that for all non-negative initial values, 

the solutions of the system (2.1) remain non-negative. Thus, our study in this section includes proving 

that the domain is positive and that the IVP system has a unique solution in ℝ+
6  . Denote  ℝ+

6 =

{ℳ ∈ ℝ6: ℳ ≥ 0} and let ℳ(𝑡) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐷(𝑡))𝑇 . We want to show that the 

domain ℝ+
6  is positively invariant following the lemma in [47,48], and the technique of [49]. 

Lemma 3.1. [47] (Generalized mean value theorem) Let 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] and 𝐷𝛼𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] for 

0 < 𝛼 ≤ 1, then we have 
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𝑓(𝑥) = 𝑓(𝑎) +
1

Γ(𝛼)
𝐷𝛼𝑓(𝜉)(𝑥 − 𝑎)𝛼                          (3.1) 

with 0 ≤ 𝜉 ≤ 𝑥, ∀𝑥 ∈ (𝑎, 𝑏]. 

Lemma 3.2. [48] Suppose 𝑓(𝑥) ∈ 𝐶[0, 𝑏]  and 𝐷𝛼𝑓(𝑥) ∈ 𝐶[0, 𝑏]  for 0 < 𝛼 ≤ 1.  Then, from 

Lemma 3.1. we have the following statements. 

(i) 𝑓 is non-decreasing if 𝐷𝛼𝑓(𝑥) ≥ 0, ∀𝑥 ∈ (0, 𝑏). 

(ii) 𝑓 is non-increasing if 𝐷𝛼𝑓(𝑥) ≤ 0, ∀𝑥 ∈ [0, 𝑏]. 

Theorem 3.1. The solution of the IVP in (2.1) and (2.2) is unique, and the solutions are in ℝ+
6 . 

Proof. From Lemma 3.1 and Lemma 3.2, we want to show the existence and uniqueness of (2.1) and 

(2.2) in (0,∞) using the technique in [49]. Notice that 

𝐷𝛼S(t)|𝑆=0 = Λ1 + 𝛿𝑅(𝑡)  ≥ 0, 

𝐷𝛼E(t)|𝐸=0 = Λ2 > 0, 

𝐷𝛼I(t)|𝐼=0 = β1ε1𝐸(t)S(t) + θE(t) ≥ 0, 

𝐷𝛼Q(t)|𝑄=0 = 𝛾1𝐼(𝑡) ≥ 0, 

𝐷𝛼R(t)|𝑅=0 = 𝛿1𝐸(𝑡) + 𝛾2𝑄(𝑡) ≥ 0, 

𝐷𝛼D(t)|𝐷=0 =  𝜇 (𝐼(𝑡) + 𝑄(𝑡)) ≥ 0. 

on each hyperplane bounding the nonnegative orthant. Hence, the domain ℝ+
6  is positively invariant. 

This completes the proof. 

4. Equilibria and local stability analysis 

This section defines at first two equilibria: the disease-free equilibrium point and the co-existing, 

namely the positive equilibrium point of system (2.1). After that, we analyze the local stability criteria 

of the system (2.1) around each equilibrium point based on specific conditions. 

4.1. Equilibria points 

Let us rewrite the system 
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{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝐷𝛼S(t) = 𝑓1(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐷(𝑡))                                               

= Λ1 + S(t)𝑟 (1 −
S(t)

𝐾1
)

1

1+𝛼1𝐼(𝑡)
(𝑆(𝑡) − 𝜌) − β1𝐸(t)S(t) − β2𝐼(t)S(t) − 𝜂S(t) + 𝛿2𝑅(𝑡),

𝐷𝛼E(t) = 𝑓2(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐷(𝑡))                                               

= Λ2 + β1(1 − ε1)𝐸(t)S(t) − 𝛿1𝐸(𝑡) − θE(t) − 𝜂E(t),                           

𝐷𝛼I(t) = 𝑓3(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐷(𝑡))                                              

= β1ε1𝐸(t)S(t) + β2𝐼(t)S(t) + θE(t) − 𝛾1𝐼(𝑡) − 𝜂I(t) − 𝜇𝐼(𝑡),                    

𝐷𝛼Q(t) = 𝑓4(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐷(𝑡))                                              

=
Q(t)

1+𝛼2𝐷(𝑡)
+ 𝛾1𝐼(𝑡) − 𝜂Q(t) − 𝜇𝑄(𝑡) − 𝛾2𝑄(𝑡),                               

 
  𝐷𝛼R(t) = 𝑓5(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐷(𝑡))                                               

= 𝛿1𝐸(𝑡) + 𝛾2𝑄(𝑡) − 𝜂R(t) − 𝛿2𝑅(𝑡),                                      

𝐷𝛼D(t) = 𝑓6(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐷(𝑡))                                            

=  𝜇(𝐼(𝑡) + 𝑄(𝑡)) −  𝜇1𝐷(𝑡).                                            

        (4.1) 

To analyze the stability of (4.1), we perturb the equilibrium points by 휀𝑖(𝑡) > 0, 𝑖 =

1, 2, 3, 4, 5, 6, that is 

S(t) − 𝑆̅ = 휀1(𝑡), E(t) − �̅� = 휀2(𝑡), I(t) − 𝐼 ̅ = 휀3(𝑡), Q(t) − �̅� = 휀4(𝑡), 

R(t) − �̅� = 휀5(𝑡) and D(t) − �̅� = 휀6(𝑡).                   (4.2) 

Thus, we have 

𝐷𝛼(휀1(𝑡)) ≃ 𝑓1(𝑆̅, �̅� , 𝐼,̅ �̅�, �̅�, �̅�) +
𝜕𝑓1(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑆
휀1(𝑡) +

𝜕𝑓1(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐸
휀2(𝑡) +

𝜕𝑓1(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐼
휀3(𝑡)  

            +
𝜕𝑓1(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑄
휀4(𝑡) +

𝜕𝑓1(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑅
휀5(𝑡) +

𝜕𝑓1(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐷
휀6(𝑡), 

𝐷𝛼(휀2(𝑡)) ≃ 𝑓2(𝑆̅, �̅� , 𝐼,̅ �̅�, �̅�, �̅�) +
𝜕𝑓2(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑆
휀1(𝑡) +

𝜕𝑓2(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐸
휀2(𝑡) +

𝜕𝑓2(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐼
휀3(𝑡)  

              +
𝜕𝑓2(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑄
휀4(𝑡) +

𝜕𝑓2(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑅
휀5(𝑡) +

𝜕𝑓2(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐷
휀6(𝑡), 

𝐷𝛼(휀3(𝑡)) ≃ 𝑓3(𝑆̅, �̅� , 𝐼,̅ �̅�, �̅�, �̅�) +
𝜕𝑓3(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑆
휀1(𝑡) +

𝜕𝑓3(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐸
휀2(𝑡) +

𝜕𝑓3(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐼
휀3(𝑡)  

              +
𝜕𝑓3(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑄
휀4(𝑡) +

𝜕𝑓3(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑅
휀5(𝑡) +

𝜕𝑓3(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐷
휀6(𝑡), 

𝐷𝛼(휀4(𝑡)) ≃ 𝑓4(𝑆̅, �̅� , 𝐼,̅ �̅�, �̅�, �̅�) +
𝜕𝑓4(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑆
휀1(𝑡) +

𝜕𝑓4(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐸
휀2(𝑡) +

𝜕𝑓4(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐼
휀3(𝑡)  

              +
𝜕𝑓4(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑄
휀4(𝑡) +

𝜕𝑓4(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑅
휀5(𝑡) +

𝜕𝑓4(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐷
휀6(𝑡), 

𝐷𝛼(휀5(𝑡)) ≃ 𝑓5(𝑆̅, �̅� , 𝐼,̅ �̅�, �̅�, �̅�) +
𝜕𝑓5(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑆
휀1(𝑡) +

𝜕𝑓5(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐸
휀2(𝑡) +

𝜕𝑓5(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐼
휀3(𝑡)  
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              +
𝜕𝑓5(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑄
휀4(𝑡) +

𝜕𝑓5(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑅
휀5(𝑡) +

𝜕𝑓5(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐷
휀6(𝑡) 

and 

𝐷𝛼(휀6(𝑡)) ≃ 𝑓6(𝑆̅, �̅� , 𝐼,̅ �̅�, �̅�, �̅�) +
𝜕𝑓6(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑆
휀1(𝑡) +

𝜕𝑓6(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐸
휀2(𝑡) +

𝜕𝑓6(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐼
휀3(𝑡)  

              +
𝜕𝑓6(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑄
휀4(𝑡) +

𝜕𝑓6(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝑅
휀5(𝑡) +

𝜕𝑓6(𝑆̅,�̅� ,𝐼,̅�̅�,�̅�,�̅�)

𝜕𝐷
휀6(𝑡). 

We use the property of equilibrium point that 

𝑓𝑖(𝑆̅, �̅� , 𝐼,̅ �̅�, �̅�, �̅�) = 0, 𝑖 = 1, 2, 3, 4, 5, 6,                     (4.3) 

and therefore, a linearized system about the equilibrium point is obtained, such as 

𝐷𝛼𝑉 = 𝐽𝑉,                                  (4.4) 

where  𝑉 = (휀1(𝑡), 휀2(𝑡), 휀3(𝑡), 휀4(𝑡), 휀5(𝑡), 휀6(𝑡) ) . Furthermore, 𝐽  is the Jacobian matrix at the 

equilibrium point. Moreover, we have 𝑊−1𝐽𝑊 = 𝐶  such that 𝐶  is the diagonal matrix of 

𝜆𝑖( 𝑖 = 1, 2, 3, 4, 5, 6) and 𝑊 shows the eigenvectors of 𝐽. Thus, we have 

{
 
 

 
 
𝐷𝛼𝜓1 = 𝜆1𝜓1,
𝐷𝛼𝜓2 = 𝜆2𝜓2,
𝐷𝛼𝜓3 = 𝜆3𝜓3,
𝐷𝛼𝜓4 = 𝜆4𝜓4,
𝐷𝛼𝜓5 = 𝜆5𝜓5,
𝐷𝛼𝜓6 = 𝜆6𝜓6,

       where   𝜓 =

(

 
 
 

𝜓1
𝜓2
𝜓3
𝜓4
𝜓5
𝜓6)

 
 
 

 ,                (4.5) 

and the solutions are given by Mittag-Leffler functions such as 

𝜓1(𝑡) = ∑
(𝜆1)

𝑛𝑡𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 𝜓1(0) = 𝐸𝛼(𝜆1𝑡

𝛼)𝜓1(0), 

𝜓2(𝑡) = ∑
(𝜆2)

𝑛𝑡𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 𝜓2(0) = 𝐸𝛼(𝜆2𝑡

𝛼)𝜓2(0), 

𝜓3(𝑡) = ∑
(𝜆3)

𝑛𝑡𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 𝜓3(0) = 𝐸𝛼(𝜆3𝑡

𝛼)𝜓3(0), 

𝜓4(𝑡) = ∑
(𝜆4)

𝑛𝑡𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 𝜓4(0) = 𝐸𝛼(𝜆4𝑡

𝛼)𝜓4(0), 

𝜓5(𝑡) = ∑
(𝜆5)

𝑛𝑡𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 𝜓5(0) = 𝐸𝛼(𝜆5𝑡

𝛼)𝜓5(0). 

and 

𝜓6(𝑡) = ∑
(𝜆6)

𝑛𝑡𝑛𝛼

Γ(𝑛𝛼+1)
∞
𝑛=0 𝜓6(0) = 𝐸𝛼(𝜆6𝑡

𝛼)𝜓6(0). 

Considering the study of Matington [50] and Zeng et al. [51], where they proved the stability 
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criteria using the Mittag-Leffler functions, we can say that if |𝑎𝑟𝑔(𝜆𝑖)| >
𝛼𝜋

2
 ( 𝑖 = 1, 2, 3, 4, 5, 6) , 

then 𝜓𝑖( 𝑖 = 1, 2, 3, 4, 5, 6)  are decreasing and therefore, 휀𝑖( 𝑖 = 1, 2, 3, 4, 5, 6)  are decreasing. In 

other words, let the solution 𝑉 = (휀1(𝑡), 휀2(𝑡), 휀3(𝑡), 휀4(𝑡), 휀5(𝑡), 휀6(𝑡) ) of (4.4) exist. If the solution 

of (4.4) is increasing, then the equilibrium point (𝑆̅, �̅�, 𝐼,̅ �̅�, �̅�, �̅�) of the system is unstable. Similarly, 

if the solution of (4.4) is decreasing, then the equilibrium point (𝑆̅, �̅�, 𝐼,̅ �̅�, �̅�, �̅�)  is locally 

asymptotically stable. 

Our study focuses on two equilibrium points; the disease-free equilibrium point and the co-

existing equilibrium point. These are given as follows; 

Disease-free equilibrium point: 𝜒1 = (𝑆1̅, 0 , 0, 0,0, 0), where for the disease free cubic equation 

𝑟𝑆1̅
3
− 𝑟(𝐾1 + 𝜌)𝑆1̅

2
+ 𝐾1(𝑟𝜌 + 𝜂)𝑆1̅ − Λ𝐾1 = 0,                 (4.6) 

holds for the Allee threshold and the carrying capacity such as 

𝜌 =
−(𝑟𝐾1+𝜂)+√(𝑟𝐾1−𝜂)

2+4𝑟Λ

2𝑟
     and  𝐾1 <

Λ

𝜂
 .                     (4.7) 

Co-existing (positive) equilibrium point: 𝜒2 = (𝑆2̅, �̅�2 ,  𝐼2̅, �̅�2, �̅�2, �̅�2). 

4.2. Local stability analysis of the disease-free and co-existing equilibrium points 

In this part, we assume that the civilians show total awareness of the virus, ε1 = 1. Thus, we aim 

to focus mainly on the screening effect and the fear through different networks in spreading uncertain 

information about the pandemic case worldwide. We want to know the psychological effect on humans 

during epidemiological existence. 

The Jacobian matrix of the disease-free point 𝜒1 = (𝑆1̅, 0 , 0, 0,0, 0) is given by 

𝐽(𝜒1) =

(

 
 
 

𝑎11 𝑎12 𝑎13 0 𝑎15 0

0 𝑎22 0 0 0 0

0 𝑎32 𝑎33 0 0 0

0 0 𝑎43 𝑎44 0 0

0 𝑎52 0 𝑎54 𝑎55 0

0 0 𝑎63 𝑎64 0 𝑎66)

 
 
 

,                      (4.8) 

where 

𝑎11 = −𝜌𝑟 − 𝜂 −
3𝑟

𝐾1
𝑆1̅
2
+ 2𝑟 (1 +

𝜌

𝐾1
) 𝑆1̅, 𝑎12 = −β1𝑆1̅, 𝑎13 = 𝑆1̅ {−𝛼1𝑟 (1 −

𝑆1̅

𝐾1
) (𝑆1̅ − 𝜌) −

β2} , 𝑎15 = 𝛿2,  𝑎22 = β1(1 − ε1)𝑆1̅ − (θ + 𝜂 + 𝛿1),   𝑎32 = β1𝑆1̅ + θ, 𝑎33 = β2𝑆1̅ − (𝛾1 + 𝜂 + 𝜇), 

𝑎43 = 𝛾1, 𝑎44 = 1 − (𝜂 + 𝜇 + 𝛾2), 𝑎52 = 𝛿1,   𝑎54 = 𝛾2, 𝑎55 = −𝜂 − 𝛿2,  𝑎63 = 𝑎64 = 𝜇  and 𝑎66 =

−𝜇1. 

Thus, the Eq (4.1) around the disease-free equilibrium point 𝜒1 is given by 

(𝑎11 − 𝜆)(𝑎22 − 𝜆)(𝑎33 − 𝜆)(𝑎44 − 𝜆)(𝑎55 − 𝜆)(𝑎66 − 𝜆) = 0.         (4.9) 
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Theorem 4.1. Let 𝜒1 be the disease-free equilibrium point of system (4.1) and assume that 𝜂 + 𝜇 +

𝛾2 > 1. Then 𝜒1 is stable local asymptotic if and only if 

2(𝐾1+𝜌)

3
< 𝑆1̅ <

𝛾1+𝜂+𝜇

β2
.                        (4.10) 

Proof. From (4.9), it follows that 

(i) 𝜆1 = −𝜌𝑟 − 𝜂 −
3𝑟

𝐾1
𝑆1̅
2
+ 2𝑟 (1 +

𝜌

𝐾1
) 𝑆1̅ < 0, if 𝑆1̅ >

2(𝐾1+𝜌)

3
, which holds (4.7). 

(ii) 𝜆2 = −(θ + 𝜂 + 𝛿1) < 0. 

(iii) 𝜆3 = β2𝑆1̅ − (𝛾1 + 𝜂 + 𝜇) < 0, if 𝑆1̅ <
𝛾1+𝜂+𝜇

β2
. 

(iv) 𝜆4 = 1 − (𝜂 + 𝜇 + 𝛾2) < 0, if 𝜂 + 𝜇 + 𝛾2 > 1. 

(v) 𝜆5 = −𝜂 − 𝛿2 < 0. 

(vi) 𝜆6 = −𝜇1 < 0. 

Remark 4.1. Theorem 4.1 shows the essential steps to transform the epidemiological phenomena into 

a disease-free case. The awareness of the civilians, given as 휀1, has been assumed as 휀1 = 1, which 

means aware with sufficient information from leading pandemic institutions without any confusion to 

minimize the spread of infection. This awareness applies the rules like keeping social distance from 

individuals, wearing a mask, etc... The next essential step is to avoid contact with infected individuals 

and continue using health practices. Professional and quick response tools, including PCR tests at 

home, would also decrease the exposed compartment. Another sequential step is successful treatment 

responses to move from the quarantine compartment to the recovery compartment. The equilibrium 

point of the susceptible class shows the balance of the Allee threshold and the carrying capacity that 

does not deliver any form of fear effect. 

Thus, we summarize the remark of Theorem 4.1. in emphasizing that the disease-free stability 

criteria exist in some primary parametric forms, such as the screening rate supported by rapid isolation 

mechanisms, successful treatment, and the infection's awareness. 

The Jacobian matrix of the co-existing equilibrium point 𝜒2 = (𝑆2̅, �̅�2 , 𝐼2̅, �̅�2, �̅�2, �̅�2) is given as 

𝐽(𝜒2) =

(

 
 
 

𝑎11 𝑎12 𝑎13 0 𝑎15 0

0 𝑎22 0 0 0 0

𝑎31 𝑎32 𝑎33 0 0 0

0 0 𝑎43 𝑎44 0 𝑎46
0 𝑎52 0 𝑎54 𝑎55 0

0 0 𝑎63 𝑎64 0 𝑎66)

 
 
 

,                    (4.11) 

where 

𝑎11 = 𝑟 (2𝑆2̅ −
3𝑆2̅

2

𝐾1
+
2𝑝𝑆2̅

𝐾1
− 𝑝) ∙

1

1+𝛼1 𝐼2̅
− β1�̅�2 − β2 𝐼2̅ − 𝜂,  𝑎12 = −β1𝑆2̅,  𝑎13 = −𝛼1𝑆2̅𝑟 (1 −

𝑆2̅

𝐾1
) (𝑆2̅ − 𝑝) ∙

1

(1+𝛼1 𝐼2̅)
2 − β2𝑆2̅,  𝑎15 = 𝛿2, 𝑎22 = −(θ + 𝜂 + 𝛿1),  𝑎31 = β1�̅�2 + β2 𝐼2̅, 𝑎32 = β1𝑆2̅ +
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θ,  𝑎33 = β2𝑆2̅ − (𝛾1 + 𝜂 + 𝜇),  𝑎43 = 𝛾1, 𝑎44 =
1

1+𝛼2�̅�2
− (𝜂 + 𝜇 + 𝛾2),  𝑎46 = −

𝛼2�̅�2

(1+𝛼2�̅�2)
2 , 𝑎52 =

𝛿1 𝑎54 = 𝛾2, 𝑎55 = −𝜂 − 𝛿2, 𝑎63 = 𝑎64 = 𝜇 and 𝑎66 = −𝜇1. 

From the Jacobian matrix in (4.11), we obtain 

{(𝑎44 − 𝜆)(𝑎66 − 𝜆) − 𝑎46𝑎64}{(𝑎11 − 𝜆)(𝑎33 − 𝜆) − 𝑎13𝑎31} − 𝑎15𝑎31𝑎54{𝑎43(𝑎66 − 𝜆) −

𝑎46𝑎63} = 0,                               (4.12) 

where we have 𝜆2 = −(θ + 𝜂 + 𝛿1) < 0 and 𝜆5 = −𝜂 − 𝛿2 < 0. In addition, since we want to focus 

on the psychological fear effect for the co-existing equilibrium point, we assume that there is no 

permanent treatment of 𝛾2. This happened precisely when the treatments were in discussion, and some 

social networks spread wrong information that people can have chronic diseases in the future from 

those treatments. To understand the individuals fear to get infected and the death from the corona is 

now more precisely formulated as a characteristic equation that is based on two quadratic equations; 

(1) 𝜆2 − (𝑎44 + 𝑎66)𝜆 + 𝑎44𝑎66 − 𝑎46𝑎64 = 0,                                     (4.13) 

which shows a basic reproduction number of 𝑅01 =
𝑎46𝑎64

𝑎44𝑎66
. This has an equation of a form such as 

𝜆2 − (𝑎44 + 𝑎66)𝜆 + 𝑎44𝑎66(1 − 𝑅01) = 0.                  (4.14) 

Considering the characteristic Eq (4.12) again, we want to incorporate a second reproductive number 

𝑅02 =
𝑎13𝑎31

𝑎11𝑎33
, which belongs to the susceptible and infected compartments, which is 

(2) 𝜆2 − (𝑎11 + 𝑎33)𝜆 + 𝑎11𝑎33(1 − 𝑅02) = 0.                                     (4.15) 

Theorem 4.2. Let 𝜒2 be the positive equilibrium point of the system (4.1) and assume that 𝑅01 < 1 

and  𝑅02 < 1.  Moreover, let the conditions 𝜂 + 𝜇 +  𝜇1 < 1  , β2 >
3(𝛾1+𝜂+𝜇)

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

  and 

𝑆2̅− 𝐼2̅

�̅�2
>

β1

β2
 hold. If 

1

�̅�2
(

1

𝜂+𝜇+ 𝜇1
− 1) < 𝛼2 <

1

�̅�2
(

1

𝜂+𝜇
− 1)                      (4.16) 

and 

1

𝐼2̅
{

𝑟(2𝐾1�̅�2−3𝑆2̅
2
+2𝑝𝑆2̅−𝐾1𝑝)

𝐾1(β1�̅�2+β2 𝐼2̅−β2�̅�2+(𝛾1+2𝜂+𝜇))
− 1} < 𝛼1,                   (4.17) 

where 
𝛾1+𝜂+𝜇

β2
< 𝑆2̅ <

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

3
. Then the roots of (4.12) are real or complex conjugates 

with negative real parts and |𝑎𝑟𝑔(𝜆𝑖)| >
𝛼𝜋

2
 (𝑖 = 1, 2, 3, 4), 𝛼 ∈ (0, 1) is equivalent to the Routh-

Hurwitz Criteria. This implies that 𝜒2 is locally asymptotically stable. 

Proof. Let us consider at first the isolated (under quarantine) and the death compartment, where 

∆1= (𝑎44 + 𝑎66)
2 − 4𝑎44𝑎66(1 − 𝑅01) > 0.                    (4.18) 
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From (4.18), we have 

𝛼2 <
1

�̅�2
(

1

𝜂+𝜇
− 1),                        (4.19) 

where 𝑅01 < 1 and 𝜂 + 𝜇 < 1. Moreover, computations show that 

𝑎44 + 𝑎66 < 0 ⟹
1

1+𝛼2�̅�2
− (𝜂 + 𝜇 +  𝜇1) < 0,                (4.20) 

if 

𝛼2 >
1

�̅�2
(

1

𝜂+𝜇+ 𝜇1
− 1),                       (4.21) 

where 𝜂 + 𝜇 +  𝜇1 < 1. From both (4.19) and (4.21), we obtain 

1

�̅�2
(

1

𝜂+𝜇+ 𝜇1
− 1) < 𝛼2 <

1

�̅�2
(

1

𝜂+𝜇
− 1).                 (4.22) 

Considering now the discriminant of the characteristic equation of the 𝑆 − 𝐼 compartments, we have 

∆2= (𝑎11 + 𝑎33)
2 − 4𝑎11𝑎33(1 − 𝑅02) > 0,                     (4.23) 

if 𝑅02 < 1 and the following statements hold; 

𝑆2̅ >
𝛾1+𝜂+𝜇

β2
                              (4.24) 

and 

𝑆2̅ <
(𝐾1+𝑝)+√(𝐾1−𝑝)

2+𝐾1𝑝

3
,                      (4.25) 

where 

1

𝐼2̅
{
𝑟(2𝐾1𝑆2̅−3�̅�2

2
+2𝑝𝑆2̅−𝐾1𝑝)

𝐾1(β1�̅�2+β2 𝐼2̅+𝜂)
− 1} < 𝛼1.                 (4.26) 

From (4.24) and (2.25), we have β2 >
3(𝛾1+𝜂+𝜇)

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

 such that 

𝛾1 + 𝜂 + 𝜇

β2
< 𝑆2̅ <

(𝐾1 + 𝑝) + √(𝐾1 − 𝑝)
2 + 𝐾1𝑝

3
. 

Furthermore, we get that 

𝑎11 + 𝑎33 < 0 ⟹ 𝑟 (2𝑆2̅ −
3𝑆2̅

2

𝐾1
+
2𝑝𝑆2̅

𝐾1
− 𝑝) ∙

1

1+𝛼1 𝐼2̅
− β1�̅�2 − β2 𝐼2̅ + β2𝑆2̅ − (𝛾1 + 2𝜂 + 𝜇) < 0, 

if 
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1

𝐼2̅
{

𝑟(2𝐾1�̅�2−3𝑆2̅
2
+2𝑝𝑆2̅−𝐾1𝑝)

𝐾1(β1�̅�2+β2 𝐼2̅−β2�̅�2+(𝛾1+2𝜂+𝜇))
− 1} < 𝛼1.               (4.27) 

From both (4.26) and (4.27), we get at the end that 

1

 𝐼2̅
{
𝑟(2𝐾1�̅�2−3�̅�2

2
+2𝑝𝑆2̅−𝐾1𝑝)

𝐾1(β1�̅�2+β2 𝐼2̅+𝜂)
− 1} <

1

 𝐼2̅
{

𝑟(2𝐾1�̅�2−3�̅�2
2
+2𝑝𝑆2̅−𝐾1𝑝)

𝐾1(β1�̅�2+β2 𝐼2̅−β2�̅�2+(𝛾1+2𝜂+𝜇))
− 1} < 𝛼1,      (4.28) 

where 
𝑆2̅− 𝐼2̅

�̅�2
>

β1

β2
. This completes the proof. 

Remark 4.2. In the local stability of the co-existing equilibrium point, we assumed that the recognition 

of the infection is high enough such that ε1 = 1. To keep the co-existing equilibrium point under 

control, the major work on stability is on the screening rate, the quick recovery of the exposed 

compartment, and the movement from the recovery to the susceptible class. Theorem 4.2. shows that 

the Allee threshold and the carrying capacity of the susceptible class are mainly affected by the 

interaction of the 𝑆 − 𝐼  compartments. Permanent health practices, wearing masks, and keeping 

social distance can avoid or minimize contact with an infected individual, raising the susceptible 

compartment's carrying capacity and Allee threshold. We noticed in Theorem 4.2. that the fear of death 

from the corona is mainly related to distinguishing whether the recorded deaths are from corona or 

with corona. On the other side, the fear 𝛼1 to get infected exists mainly related to the information of 

silent transmitters and transmitters without recognition. 

Theorem 4.3. Let 𝜒2 be the co-existing equilibrium point of system (4.1) and assume that 𝑅01 = 1 

and 𝑅02 = 1. Moreover, suppose that 𝜂 + 𝜇 +  𝜇1 < 1 and 
𝑆2̅− 𝐼2̅

�̅�2
>

β1

β2
. If 

𝛼2 <
1

�̅�2
(

1

𝜂+𝜇+ 𝜇1
− 1)                            (4.29) 

and 

𝛼1 <
1

 𝐼2̅
{

𝑟(2𝐾1�̅�2−3�̅�2
2
+2𝑝𝑆2̅−𝐾1𝑝)

𝐾1(β1�̅�2+β2 𝐼2̅−β2�̅�2+(𝛾1+2𝜂+𝜇))
− 1},                   (4.30) 

where 𝑆2̅ <
(𝐾1+𝑝)+√(𝐾1−𝑝)

2+𝐾1𝑝

3
  . Then the characteristic equation shows some non-negative 

eigenvalues such that |𝑎𝑟𝑔(𝜆∗)| = 0 <
𝛼𝜋

2
 , where  𝛼 ∈ (0, 1) . Thus the equilibrium point 𝜒2  is 

unstable. 

Proof. Let 𝑅01 = 1. Then we have  ∆1= (𝑎44 + 𝑎66)
2 > 0. Furthermore, 

𝑎44 + 𝑎66 > 0 ⟹
1

1+𝛼2�̅�2
− (𝜂 + 𝜇 +  𝜇1) > 0,               (4.31) 

if 
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𝛼2 <
1

�̅�2
(

1

𝜂+𝜇+ 𝜇1
− 1),                        (4.32) 

where 𝜂 + 𝜇 +  𝜇1 < 1. 

On the other side, since 𝑅02 =  1, we obtain ∆1= (𝑎11 + 𝑎33)
2 > 0. We have 

𝑎11 + 𝑎33 > 0 ⟹ 𝑟 (2𝑆2̅ −
3𝑆2̅

2

𝐾1
+
2𝑝𝑆2̅

𝐾1
− 𝑝) ∙

1

1+𝛼1 𝐼2̅
− β1�̅�2 − β2 𝐼2̅ + β2𝑆2̅ − (𝛾1 + 2𝜂 + 𝜇) > 0, 

if 

𝑆2̅ <
(𝐾1+𝑝)+√(𝐾1−𝑝)

2+𝐾1𝑝

3
                        (4.33) 

and 

𝛼1 <
1

 𝐼2̅
{

𝑟(2𝐾1�̅�2−3�̅�2
2
+2𝑝𝑆2̅−𝐾1𝑝)

𝐾1(β1�̅�2+β2 𝐼2̅−β2�̅�2+(𝛾1+2𝜂+𝜇))
− 1},                   (4.34) 

where 
𝑆2̅− 𝐼2̅

�̅�2
>

β1

β2
. This completes the proof. 

Remark 4.3. Theorem 4.3 considers the co-existing equilibrium point's unstable (uncontrollable) case. 

The basic reproduction numbers are assumed as 𝑅01 =  1 and 𝑅02 =  1. The reproduction numbers 

are based on the fear parameters and the compartments of 𝐼 and 𝐷, respectively. The uncontrolled 

case can exist if the screening rate is low or insufficient, such as it cannot detect the silent spreaders. 

These infected individuals can continue to transmit the infection to the susceptible class with a rate of 

β1 and 𝛽2. The increase of the infected compartments (exposed and COVID-19 detected classes) 

decreases the susceptible density, which leads to a fear of mental health problems of the susceptible 

class. From the reproduction number 𝑅01, it can be seen that the fear of dying from corona, which is 

given as 𝛼2 is based on the density of the isolated compartment. 

Theorem 4.4. Let 𝜒2  be the co-existing equilibrium point of system (4.1). Assume that 𝜂 + 𝜇 +

 𝜇1 < 1 ,
𝑆2̅− 𝐼2̅

�̅�2
>

β1

β2
 and β2 >

3(𝛾1+𝜂+𝜇)

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

. Let the basic reproduction numbers be 

𝑅01 > 1 +
{

1

1+𝛼2�̅�2
−(𝜂+𝜇+ 𝜇1)}

2

4 𝜇1(
1

1+𝛼2�̅�2
−(𝜂+𝜇))

                         (4.35) 

and 

𝑅02 > 1 +
{𝑟(2�̅�2−

3�̅�2
2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
−β1�̅�2−β2 𝐼2̅+β2�̅�2−(𝛾1+2𝜂+𝜇)}

2

4(β2�̅�2−(𝛾1+𝜂+𝜇))(β1�̅�2+β2 𝐼2̅+𝜂−𝑟(2�̅�2−
3�̅�2

2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
)

,           (4.36) 

such that 
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𝛼1 <  
1

 𝐼2̅
{

𝑟(2𝐾1�̅�2−3𝑆2̅
2
+2𝑝𝑆2̅−𝐾1𝑝)

𝐾1(β1�̅�2+β2 𝐼2̅−β2𝑆2̅+(𝛾1+2𝜂+𝜇))
− 1}  and 𝛼2 <

1

�̅�2
(

1

𝜂+𝜇+ 𝜇1
− 1) , where 

𝛾1+𝜂+𝜇

β2
< 𝑆2̅ <

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

3
 . Then the eigenvalues of (4.14) and (4.15) show complex conjugate, which 

implies that the 𝑆 − 𝐼 and 𝑄 − 𝐷 interaction has an asymptotic stable behavior such that 

|𝑎𝑟𝑔(𝜆1,3)| = 𝑡𝑎𝑛
−1 |√

4(β2�̅�2−(𝛾1+𝜂+𝜇))(β1�̅�2+β2 𝐼2̅+𝜂−𝑟(2�̅�2−
3�̅�2

2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
)(𝑅02−1)

{𝑟(2�̅�2−
3�̅�2

2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
−β1�̅�2−β2 𝐼2̅+β2�̅�2−(𝛾1+2𝜂+𝜇)}

2 − 1| >
𝛼𝜋

2
, 

and 

|𝑎𝑟𝑔(𝜆4,6)| = 𝑡𝑎𝑛
−1
||√

4 𝜇1(
1

1+𝛼2�̅�2
−(𝜂+𝜇))(𝑅01−1)

{
1

1+𝛼2�̅�2
−(𝜂+𝜇+ 𝜇1)}

2 − 1|| >
𝛼𝜋

2
. 

Proof. Let us consider the isolated (under quarantine) and death compartment where 

∆1= (𝑎44 + 𝑎66)
2 − 4𝑎44𝑎66(1 − 𝑅01) < 0.                     (4.37) 

From (4.37), we have 

𝑅01 > 1 +
{

1

1+𝛼2�̅�2
−(𝜂+𝜇+ 𝜇1)}

2

4 𝜇1(
1

1+𝛼2�̅�2
−(𝜂+𝜇))

,                      (4.38) 

where 

𝛼2 <
1

�̅�2
(

1

𝜂+𝜇+ 𝜇1
− 1)   for   𝜂 + 𝜇 +  𝜇1 < 1.                (4.39) 

Furthermore, computations show that from (4.39), we have 𝑎44 + 𝑎66 > 0. This completes the 

proof of the 𝑄 − 𝐷 interaction. 

Considering now the discriminant of the characteristic equation includes the interaction of the 

𝑆 − 𝐼 compartments 

∆2= (𝑎11 + 𝑎33)
2 − 4𝑎11𝑎33(1 − 𝑅02) < 0,                   (4.40) 

we obtain 

𝑅02 > 1 +
{𝑟(2�̅�2−

3�̅�2
2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
−β1�̅�2−β2 𝐼2̅+β2�̅�2−(𝛾1+2𝜂+𝜇)}

2

4(β2�̅�2−(𝛾1+𝜂+𝜇))(β1�̅�2+β2 𝐼2̅+𝜂−𝑟(2�̅�2−
3�̅�2

2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
)

,              (4.41) 

where 

𝛾1+𝜂+𝜇

β2
< 𝑆2̅ <

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

3
   for   β2 >

3(𝛾1+𝜂+𝜇)

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

.               (4.42) 
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Furthermore, we get that 

𝑎11 + 𝑎33 > 0 ⟹ 𝑟 (2𝑆2̅ −
3𝑆2̅

2

𝐾1
+
2𝑝𝑆2̅

𝐾1
− 𝑝) ∙

1

1+𝛼1 𝐼2̅
− β1�̅�2 − β2 𝐼2̅ + β2𝑆2̅ − (𝛾1 + 2𝜂 + 𝜇) > 0, 

if 

𝛼1 < 
1

 𝐼2̅
{

𝑟(2𝐾1�̅�2−3𝑆2̅
2
+2𝑝𝑆2̅−𝐾1𝑝)

𝐾1(β1�̅�2+β2 𝐼2̅−β2𝑆2̅+(𝛾1+2𝜂+𝜇))
− 1}                    (4.43) 

where 
𝑆2̅− 𝐼2̅

�̅�2
>

β1

β2
. 

Remark 4.4. In Theorem 4.4. we proved that the characteristic equations' eigenvalues in (4.14) and 

(4.15) show complex eigenvalues under specific conditions. In this scenario, the recovery rate is 

limited or takes  a long time to move from the recovery compartment to the susceptible compartment. 

The basic reproduction number of both 𝑅01 > 1 and 𝑅02 > 1. While the transmission rate is more 

significant than one, the susceptible class knows that the transmission risk is high from the infected 

compartment that does not apply the permanent rules. Thus, the fear of getting infected 𝛼1 exists and 

depends on the carrying capacity, the threshold of the susceptible class, and the infectional 

transmissions from the silent spreaders and the known infected compartments. The fear to die from 

corona, which is denoted as 𝛼2 , shows an upper bound according to the parameters of death from 

corona and death with corona. Thus both parameters, 𝜇 and 𝜇1 should be clarified cristal to avoid 

any confusion in the human mind. 

Theorem 4.5. Let 𝜒2  be the co-existing equilibrium point of system (4.1). Assume that 𝜂 + 𝜇 +

 𝜇1 < 1, 
𝑆2̅− 𝐼2̅

�̅�2
>

β1

β2
 and β2 >

3(𝛾1+𝜂+𝜇)

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

. Let the basic reproduction numbers be 

such that 

𝑅01 > 1 +
{

1

1+𝛼2�̅�2
−(𝜂+𝜇+ 𝜇1)}

2

4 𝜇1(
1

1+𝛼2�̅�2
−(𝜂+𝜇))

                          (4.44) 

and 

𝑅02 > 1 +
{𝑟(2�̅�2−

3�̅�2
2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
−β1�̅�2−β2 𝐼2̅+β2�̅�2−(𝛾1+2𝜂+𝜇)}

2

4(β2�̅�2−(𝛾1+𝜂+𝜇))(β1�̅�2+β2 𝐼2̅+𝜂−𝑟(2�̅�2−
3�̅�2

2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
)

,             (4.45) 

1

�̅�2
(

1

𝜂+𝜇+ 𝜇1
− 1) < 𝛼2 <

1

�̅�2
(

1

𝜂+𝜇
− 1) and 𝛼1 >

1

 𝐼2̅
{

𝑟(2𝐾1𝑆2̅−3𝑆2̅
2
+2𝑝𝑆2̅−𝐾1𝑝)

𝐾1(β1�̅�2+β2 𝐼2̅−β2𝑆2̅+(𝛾1+2𝜂+𝜇))
− 1}, where 

𝛾1+𝜂+𝜇

β2
< 𝑆2̅ <

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

3
 for β2 >

3(𝛾1+𝜂+𝜇)

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

. 

Then the 𝑆 − 𝐼 and 𝑄 − 𝐷 compartments are asymptotic stable such that 



10070 

AIMS Mathematics  Volume 7, Issue 6, 10052–10078. 

0 < 𝛼 < 2 −
2

𝜋
𝑡𝑎𝑛−1 |√

4(β2�̅�2−(𝛾1+𝜂+𝜇))(β1�̅�2+β2 𝐼2̅+𝜂−𝑟(2�̅�2−
3�̅�2

2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
)(𝑅02−1)

{𝑟(2�̅�2−
3�̅�2

2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
−β1�̅�2−β2 𝐼2̅+β2�̅�2−(𝛾1+2𝜂+𝜇)}

2 − 1|, 

and 

0 < 𝛼 < 2 −
2

𝜋
𝑡𝑎𝑛−1 ||√

4 𝜇1(
1

1+𝛼2�̅�2
−(𝜂+𝜇))(𝑅01−1)

{
1

1+𝛼2�̅�2
−(𝜂+𝜇+ 𝜇1)}

2 − 1||. 

Proof. From 

∆1= (𝑎44 + 𝑎66)
2 − 4𝑎44𝑎66(1 − 𝑅01) < 0,                     (4.46) 

we have 

𝑅01 > 1 +
{

1

1+𝛼2�̅�2
−(𝜂+𝜇+ 𝜇1)}

2

4 𝜇1(
1

1+𝛼2�̅�2
−(𝜂+𝜇))

,                      (4.47) 

where 

𝛼2 <
1

�̅�2
(

1

𝜂+𝜇
− 1)   for   𝜂 + 𝜇 < 1.                  (4.48) 

Furthermore, we have 

𝑎44 + 𝑎66 < 0 ⟹
1

1+𝛼2�̅�2
− (𝜂 + 𝜇 +  𝜇1) < 0,                 (4.49) 

if 

𝛼2 >
1

�̅�2
(

1

𝜂+𝜇+ 𝜇1
− 1)   for   𝜂 + 𝜇 +  𝜇1 < 1.                (4.50) 

From (4.48) and (4.50), we obtain 

1

�̅�2
(

1

𝜂+𝜇+ 𝜇1
− 1) < 𝛼2 <

1

�̅�2
(

1

𝜂+𝜇
− 1). 

Considering now the discriminant of the characteristic equation includes the interaction of the 𝑆 − 𝐼 

compartments 

∆2= (𝑎11 + 𝑎33)
2 − 4𝑎11𝑎33(1 − 𝑅02) < 0 ,                   (4.51) 

we obtain 

𝑅02 > 1 +
{𝑟(2�̅�2−

3�̅�2
2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
−β1�̅�2−β2 𝐼2̅+β2�̅�2−(𝛾1+2𝜂+𝜇)}

2

4(β2�̅�2−(𝛾1+𝜂+𝜇))(β1�̅�2+β2 𝐼2̅+𝜂−𝑟(2�̅�2−
3�̅�2

2

𝐾1
+
2𝑝�̅�2
𝐾1

−𝑝)∙
1

1+𝛼1 �̅�2
)

,            (4.52) 
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where 
𝛾1+𝜂+𝜇

β2
< 𝑆2̅ <

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

3
   for   β2 >

3(𝛾1+𝜂+𝜇)

(𝐾1+𝑝)+√(𝐾1−𝑝)
2+𝐾1𝑝

. 

Moreover, we get that 

𝑎11 + 𝑎33 < 0 ⟹ 𝑟 (2𝑆2̅ −
3𝑆2̅

2

𝐾1
+
2𝑝𝑆2̅

𝐾1
− 𝑝) ∙

1

1+𝛼1 𝐼2̅
− β1�̅�2 − β2 𝐼2̅ + β2𝑆2̅ − (𝛾1 + 2𝜂 + 𝜇) < 0, 

if 

𝛼1 > 
1

 𝐼2̅
{

𝑟(2𝐾1�̅�2−3𝑆2̅
2
+2𝑝𝑆2̅−𝐾1𝑝)

𝐾1(β1�̅�2+β2 𝐼2̅−β2𝑆2̅+(𝛾1+2𝜂+𝜇))
− 1},                   (4.53) 

where 
𝑆2̅− 𝐼2̅

�̅�2
>

β1

β2
. 

Remark 4.5. In Theorem 4.5. we show that both fears, 𝛼1 and 𝛼2 are restricted to a bounded interval. 

The fear effect 𝛼2 recognizes the difference between “the death from corona” and “with corona”, 

which keeps the compartments stable. However, the transmission of the exposed and the infected 

compartments still exist. The fear in 𝛼1 focus on the parametric changes of the carrying capacity of 

the susceptible class,  the Allee threshold, and the infectional rates. 

5. Some numerical simulations by using MATLAB 2019 

Finally, in this section, we want to illustrate the fear effect of 𝛼1 and 𝛼2 in using MATLAB 2019. 

On the other side, we consider the effect of the parameters such as screening, recovering from the infection, 

and the death rates of infected people who die from different symptoms. Here we discuss and show the 

psychological pressure on humans spread through different organisations and networks. We determine the 

initial conditions of system (4.1) as 𝑆(0) = 2000, 𝐸(0) = 80, 𝐼(0) = 40, 𝑄(0) = 30, 𝑅(0) =

10, 𝐷(0) = 2, and the values of the parameters are given in Table 2. 

Table 2. Parametric values of Table 1. 

Notation Description of Parameter Rates 

𝜶𝟏 The fear effect of the susceptible class to be 

infected by COVID-19 

[0, 1] 

𝜶𝟐 The fear effect of individuals under quarantine to 

die from COVID-19 

[0, 1] 

𝚲𝟏 The recruitment rate of the susceptible class 1.2 

𝚲𝟐 Rate of the exposed compartment 1 

𝑲𝟏 Carrying capacity of the susceptible class 1000 

𝝆 Allee Threshold 10 

𝛃𝟏 Infection rate from the 𝑆 − 𝐸 interaction 0.0008 

𝛃𝟐 Infection rate from the 𝑆 − 𝐼 interaction 0.0004 

𝛆𝟏 Recognition of infection [0.5, 1] 

𝛉 Rate of screening [0.2, 0.6] 

Continued on next page 
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Notation Description of Parameter Rates 

𝜸𝟏 The rate of infected people being isolated 0.6 

𝜸𝟐 The rate of recovering due to treatment [0, 0.08] 

𝜹𝟏 The rate of change from the exposed compartment 

to the recovery compartment 

0.08 

𝜹𝟐 The rate of change from the recovery 

compartment to the susceptible compartment 

0.6 

𝝁 The death rate of COVID-19 infected  0.00019 

 𝝁𝟏 The death rate of the infected group died from 

different symptoms that were activated by the 

virus COVID-19 

0.00019 

𝜼 The natural death rate 0.00012 

Figure 1 shows a case when the awareness in the community is 60%. The screening exists 20%, 

and that is why the community is scared from the infection, 𝛼1 = 𝛼2 = 0.5, since also there is no 

permanent treatment. We choose in this simulation the recovery due to the treatment as 𝛾2 = 0.4. 

According to the graphs, we can notice that the susceptible class reaches a carrying capacity because 

of the existing treatment and the community awareness. The recovery and the quarantine compartments 

increase smoothly due to the increase of the infected groups. Here we can see that while the fear exists, 

the awareness of the community can still keep the carrying capacity of the susceptible compartment 

stable. 

 

Figure 1. The dynamical behavior of system (2.1), where 휀 = 0.6, 𝜃 = 0.2, 𝛼1 = 𝛼2 = 0.5 and 

𝛾2 = 0.4 for the population density at time 𝑡. 
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In the theoretical study, we also discuss the case of total awareness, that is, ε1 = 1. We prove 

that there is a negative relation between the recognition of the virus and the fear effect. In other words, 

in full awareness, the fear of getting infected decreases, and as a result, the fear of death from corona 

decreases. In Figure 2, the fear parameters are chosen 𝛼1 = 𝛼2 = 0.2. However, as discussed above, 

we still assume that the screening and treatment rates are low. The below graphs show that full 

awareness of the community to keep permanent health practices and not to be confused from any 

distorted information spread through some networks decreases the infection to an endemic stage. 

 

Figure 2. The dynamical behavior of system (2.1), where 휀 = 1, 𝜃 = 0.2, 𝛼1 = 𝛼2 = 0.2 

and 𝛾2 = 0.4 for the population density at time 𝑡. 

In Figure 3, we increase the screening rate and show that this stabilizes the susceptible class, and from 

early detections of the infections, the quarantine period can start on time. As a result, Figure 3(a)–(d) shows 

a successful reduction of the epidemiological case. 

Our main theoretical study was related to open discussions in social networks about whether 

treatment problems are helpful or successful. Even this discussion increased the fear of the susceptible 

and infected compartments. In addition, some people stopped using the medicines or avoided taking 

the vaccine. Figure 4 shows the change of the above graph related to the increase of fear and decrease 

of treatment. Reducing the treatment process even to 10% shows a constant pandemic spread for a 

long-term period. We increased the screening test in this scenario; however, this would only help detect 

and reduce the silent spreaders. 
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Figure 3. The dynamical behavior of system (2.1), where 휀 = 1, 𝜃 = 0.5, 𝛼1 = 𝛼2 = 0.2  and 

𝛾2 = 0.4 for the population density at time 𝑡. 

 

Figure 4. The dynamical behavior of system (2.1), where 휀 = 0.6, 𝜃 = 0.7, 𝛼1 = 𝛼2 = 0.6 and 

𝛾2 = 0.1 for the population density at time 𝑡. 
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6. Conclusions 

This study constructed a mathematical SEIQRS+D model to discuss the community's fear of 

considering unstable information through social networks. We want to show the difference between 

“to keep the community aware” and “let the community be scared”. 

It is evident that everyone’s life almost changed due to the pandemic. People worked for a long 

time at home; students attended classes online. People talked in social distances and behind masks for 

more than two years. The new life affects the psychology of humans; however, the adaptation to this 

new life needs a professional guide from leading organizations. During the pandemic stage, many 

social networks and media used this environmental phenomenon as trend discussions and did not 

clarify the situation. This study aims to analyze what would happen when we do not focus on 

recognition and improvements in medicine rather than concentrating on distorted information. The 

results show that the epidemiological stage would continue to stay long. 

We conclude that permanent health care regulations are essential to stabilize the community’s 

recognition of the virus COVID-19. However, as necessary as the awareness, we also emphasize on 

reaching clear information about screening tools and treatment processes. The pandemic should not 

create unrealistic stories that affect mental health during this challenging event. 
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