
In ecology, the impact of predators goes beyond killing prey, the mere presence of predators reduces the ability of prey to reproduce. In this study, we extend the predator-prey model with fear effect by introducing the state-dependent control with a nonlinear action threshold depending on the combination of the density of prey and its changing rate. We initially defined the Poincaré map of the proposed model and studied its fundamental properties. Utilizing the properties of the Poincaré map, periodic solution of the model is further investigated, including the existence and stability of the order-1 periodic solution and the existence of the order-k () periodic solutions. In addition, the influence of the fear effect on the system's dynamics is explored through numerical simulations. The action threshold used in this paper is more consistent with the actual growth of the population than in earlier linear threshold studies, and the results show that the control objectives are better achieved using the action threshold strategy. The analytical approach used in this study provided several novel methods for analyzing the complex dynamics that rely on state-dependent impulsive.
Citation: Yazhi Wu, Guangyao Tang, Changcheng Xiang. Dynamic analysis of a predator-prey state-dependent impulsive model with fear effect in which action threshold depending on the prey density and its changing rate[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13152-13171. doi: 10.3934/mbe.2022615
[1] | Jiajia Jiao, Xiao Xiao, Zhiyu Li . dm-GAN: Distributed multi-latent code inversion enhanced GAN for fast and accurate breast X-ray image automatic generation. Mathematical Biosciences and Engineering, 2023, 20(11): 19485-19503. doi: 10.3934/mbe.2023863 |
[2] | Wangping Xiong, Yimin Zhu, Qingxia Zeng, Jianqiang Du, Kaiqi Wang, Jigen Luo, Ming Yang, Xian Zhou . Dose-effect relationship analysis of TCM based on deep Boltzmann machine and partial least squares. Mathematical Biosciences and Engineering, 2023, 20(8): 14395-14413. doi: 10.3934/mbe.2023644 |
[3] | Qi Cui, Ruohan Meng, Zhili Zhou, Xingming Sun, Kaiwen Zhu . An anti-forensic scheme on computer graphic images and natural images using generative adversarial networks. Mathematical Biosciences and Engineering, 2019, 16(5): 4923-4935. doi: 10.3934/mbe.2019248 |
[4] | Enyang He, Yuhang Jiang, Diwei Wei, Yifan Wang, Wenjing Sun, Miao Jia, Bowen Shi, Hualei Cui . The potential effects and mechanism of echinacoside powder in the treatment of Hirschsprung's Disease. Mathematical Biosciences and Engineering, 2023, 20(8): 14222-14240. doi: 10.3934/mbe.2023636 |
[5] | Arturo Nicola Natali, Chiara Giulia Fontanella, Silvia Todros, Piero G. Pavan, Simone Carmignato, Filippo Zanini, Emanuele Luigi Carniel . Conformation and mechanics of the polymeric cuff of artificial urinary sphincter. Mathematical Biosciences and Engineering, 2020, 17(4): 3894-3908. doi: 10.3934/mbe.2020216 |
[6] | Marios G. Krokidis, Themis P. Exarchos, Panagiotis Vlamos . Data-driven biomarker analysis using computational omics approaches to assess neurodegenerative disease progression. Mathematical Biosciences and Engineering, 2021, 18(2): 1813-1832. doi: 10.3934/mbe.2021094 |
[7] | Feng Wang, Xiaochen Feng, Ren Kong, Shan Chang . Generating new protein sequences by using dense network and attention mechanism. Mathematical Biosciences and Engineering, 2023, 20(2): 4178-4197. doi: 10.3934/mbe.2023195 |
[8] | Binjie Hou, Gang Chen . A new imbalanced data oversampling method based on Bootstrap method and Wasserstein Generative Adversarial Network. Mathematical Biosciences and Engineering, 2024, 21(3): 4309-4327. doi: 10.3934/mbe.2024190 |
[9] | Jia Yu, Huiling Peng, Guoqiang Wang, Nianfeng Shi . A topical VAEGAN-IHMM approach for automatic story segmentation. Mathematical Biosciences and Engineering, 2024, 21(7): 6608-6630. doi: 10.3934/mbe.2024289 |
[10] | Chen Yue, Mingquan Ye, Peipei Wang, Daobin Huang, Xiaojie Lu . SRV-GAN: A generative adversarial network for segmenting retinal vessels. Mathematical Biosciences and Engineering, 2022, 19(10): 9948-9965. doi: 10.3934/mbe.2022464 |
In ecology, the impact of predators goes beyond killing prey, the mere presence of predators reduces the ability of prey to reproduce. In this study, we extend the predator-prey model with fear effect by introducing the state-dependent control with a nonlinear action threshold depending on the combination of the density of prey and its changing rate. We initially defined the Poincaré map of the proposed model and studied its fundamental properties. Utilizing the properties of the Poincaré map, periodic solution of the model is further investigated, including the existence and stability of the order-1 periodic solution and the existence of the order-k () periodic solutions. In addition, the influence of the fear effect on the system's dynamics is explored through numerical simulations. The action threshold used in this paper is more consistent with the actual growth of the population than in earlier linear threshold studies, and the results show that the control objectives are better achieved using the action threshold strategy. The analytical approach used in this study provided several novel methods for analyzing the complex dynamics that rely on state-dependent impulsive.
The Oddi sphincter (SO) is a precision smooth muscle device at the junction of the bile duct, pancreas and duodenum. It forms a temporal transitional compound movement (MMC) under the multiple and complex regulations of nerves, humors and local reflexes, which play important roles in controlling bile and pancreatic fluid discharge and preventing reflux [1]. Sphincter of Oddi Dysfunction (SOD) is a group of diseases caused by abnormal diastolic function of SO. It is clinically divided into two types, biliary type and pancreatic type, and the former is common [2]. SOD often has no evidence of organic change, but it will bring long-lasting and unbearable trouble to patients. In severe cases, it can be secondary to liver damage, abnormal trypsin and even acute pancreatitis, seriously endangering the life and health of patients [3]. Therefore, it is of great significance to explore the pathological mechanism and drug treatment of SOD.
Shao Yao Gan Cao Tang (SYGC), sourced from Shang Han Za Bing Lun in 210 CE, is made up of 2 traditional Chinese medicines: Paeoniae radix and Glycyrrhizae radix (1:1), which has been used to treat general muscle pain or tremor in skeletal muscles [4]. The Paeoniae Radix can nourish blood and relieve the depressed liver, and Glycyrrhizae Radix can strengthen the spleen and Qi [5]. It is reported that SYGC can reduce abdominal pain and muscular cramps [4] and suppress duodenal peristalsis during endoscopic retrograde cholangiopancreatography (ERCP) [6]. Our clinical study has indicated that SYGC had good curative effects on SOD, relieving abdominal pain symptoms, improving liver function and reducing bile excretion time [7]. However, its chemical profile responsible for the therapeutic effects on SOD is still unclear.
Recently, network pharmacology and transcriptomics have been widely used to explore the active components and potential mechanisms of traditional Chinese medicine (TCM) [8,9]. In this study, to enable a full assessment of transcriptomics changes in SOD and to increase our understanding of the SYGC mechanism on SOD, ultra-high-performance liquid chromatography coupled with Quadrupole Exactive-Orbitrap high-resolution mass spectrometry (UHPLC-Q Exactive-Orbitrap HR-MS) was first used to identify chemicals of SYGC. Then, transcriptomics and network pharmacology were applied to uncover the mechanism of SYGC in the treatment of SOD. Finally, the binding affinities between the active compounds and the key targets were determined via molecular docking. Figure 1 shows the flowchart of the study design. This study provides a basis for the clinical application of SYGC in the treatment of SOD.
The ingredients of SYGC samples were measured by UHPLC-Q-Exactive Orbitrap analysis [10] which was performed by an UHPLC system (UltiMate 3000 RS, Thermo Fisher Scientific, USA) coupled with a Q Exactive Orbitrap (QE, Thermo Fisher Scientific, USA) equipped with an electrospray ionization source (ESI). The protonated molecular weights of all identified compounds were calculated within an error of 10 ppm. Following careful comparisons with the retention times and MS/MS spectra of the reference standards, reference literature, Chemical Book and self-built databases, a total of 111 chemicals were identified or tentatively characterized from SYGC. Then, active compounds were screened based on the parameters including Lipinski's "rule of five, " Ghose #violations and GI absorption, which was performed by a SwissADME (http://www.swissadme.ch/) [11]. The target information of each component of SYGC was obtained from HERB (http://herb.ac.cn/) [12], SwisstargetPrediction (http://swisstargetprediction.ch/) [13] and BATMAN-TCM (http://bionet.ncpsb.org.cn/batman-tcm/index.php/Home/Index/index) [14].
The animal experiments were performed by the experimental animal welfare ethics review committee of the Shanghai University of TCM. Forty guinea pigs were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China; qualified production number P2020-052). The guinea pigs were fed under a 12 h cycle of light/dark in IVC conditions and had free access to food and water. The guinea pigs were divided into four groups: control group (N), SOD group (M), SYGC gavage treatment group (G), IRE1 inhibit treatment group (IR) as a positive control group (n = 10/group). The M, G and IR groups were injected intravenously with morphine injection at 0.6 mg/kg body weight, and the normal group was injected intravenously with equal volume of normal saline three times a week for a total of 4 weeks. G group was given orally at 12.5 g/kg per day. The IR group was administered by injection of 30 mg/kg twice a week. After the last administration, all animals were fasted for 12 hours, and the abdominal cavity was opened after anesthesia. After the duodenum was dissected, the white papillary protrusion and the texture of the Oddi sphincter tissue were isolated for follow-up experiments. Blood samples were collected for measurement of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities.
Oddi sphincter tissue samples were fixed in 10% neutral formalin for 48 hours, then dehydrated by conventional gradient, embedded in paraffin, sliced, baked at 60 ℃ for 40 minutes, stained with hematoxylin-eosin (HE) and sealed. The sections were stained with HE to observe the morphological changes such as inflammatory cell infiltration and sphincter injury of Oddi sphincter.
Total RNA in sphincter tissues from the SOD (n = 3) and control samples (n = 3) were extracted using TRIzol Reagent (TIANGEN, China). The purity, concentration and integrity of the total RNA samples were checked for further analysis, and Samples with RNA integrity number (RIN) ≥ 7 were considered to be of high quality. A transcriptome sequencing using the Illumina sequencing platform (HiSeqTM 2500) was conducted on each total RNA sample by OE Biotech Co., Ltd. (Shanghai, China). The raw data were shown in Supplementary data. The differentially expressed genes (DEGs) were screened with |log2 fold-change (FC)| ≥ 1.0 and q ≤ 0.05, which applied for gene ontology (GO) and KEGG enrichment analysis.
To obtain the intersection targets, the key targets of SYGC and SOD DEGs was plotted by https://www.bioinformatics.com.cn, a free online platform for data analysis and visualization. Metascape platform (https://metascape.org/gp/index.html) [15] was applied to perform Gene ontology (GO) and pathway enrichment analysis (Wiki, Reactome and KEGG pathway) of the above intersection targets.
The STRING (https://string-db.org/) database was applied to create a protein-protein interaction (PPI) network of intersecting target genes. The Cytoscape 3.9.0 (https://cytoscape.org/) was used to visualize complex relationships between the active chemical components and the target genes. Next, Molecular Complex Detection (MCODE) [16] and ClusterOne analysis [17] were used to find the core targets. MCODE scores ≥ 3 and (node ≥ 3 and P < 0.05) were set as the criteria. The number of nodes ≥ 3 and P < 0.05 were set as the criteria for ClusterOne analysis.
The Protein Data Bank (PDB, https://www.rcsb.org/) was used to obtain the crystal structures of core targets. The three-dimensional structures of active ingredients were downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov/). Molecular docking was performed to calculate the binding affinity between active ingredients and core targets by the AutoDock Vina (http://vina.scripps.edu/). The corresponding PDB codes were 4af3, 6hky and 4cik for AURKB, KIF11 and PLG, respectively. We first removed the proteins' water molecules, added polar hydrogen. Then, active pockets were built according to the position of ligand in the PDB complex. The binding energy of ligands in PDB structures was applied for positive control.
Total RNA was extracted from each sphincter of Oddi tissue using TRIzol (Invitrogen Corporation, CA, USA). cDNA was prepared through cDNA Synthesis SuperMix. Using Gapdh as an internal reference, RT-qPCR was performed to detect the mRNA expression levels of intersecting genes among MCODE genes, ClusterONE genes and genes of significant enrichment pathways. The amplification primers were synthesized by Shanghai Sangon Biological Engineering Technology, as shown in Table 1. The mRNA expression level was normalized to that of Gapdh in the same sample. The relative expression of each target gene was calculated by the 2-ΔΔCt method.
Gene name | Forward | Reverse |
Serpine1 | TGGTGGTGACTACTACGACATCCTG | GAATGCTGGTGATGGCGGAGAG |
Mmp9 | GTGAAGACGCAGACGGTGGATC | TAGAAGCGGTCCTGGCAGAAGTAG |
Plg | GTGGCGTTACCTGTCAGAAGTGG | CCTGTTGGTCGTTGTCTGGATTCC |
Ccnb1 | GTGATGTGGATGCGGAAGATGGAG | GGCTCTCATGTTTCCAGTGACCTC |
Cacna2d2 | ACTACTCCAATCGCCCCTCT | GAGTAGGAGATGGAGCGTGC |
Rad51 | TGCGTATGCTCGTGGGTTCAAC | AGCGGTGGCACTGTCTACAATAAG |
Prkcb | AAACCATCAAGTGCTCCCTTAACCC | CCCAAATCTCCACGGACAGTCTTC |
Alox5 | TCACCATCGCCATCAACACCAAG | AGCACAGTGAGGTATAGGTCAGGTC |
Adora2a | GCCTATCGCATCCGTGAGTTCC | GTGCCTCCTGCCTTGAAGAGTTC |
Chrnb4 | GCCGATGGAACCTATGAAGTGTCTG | GGGAAGTGCCTGACCTCAATCTTG |
Aurkb | AGAAAGTGGATCTGTGGTGCATTGG | CGCCTGTAAGTCTCGTTGTGTGAG |
Top2a | ATGTTGAATGGCACCGAGAAGACC | CGGCTCTCTCCACCTCTGACAG |
Tyms | TGCCCTTCAACATTGCCAGCTAC | GTGTGCGTCTCCCAGTGTATGC |
Kif11 | CGGAAAGCTAACGCCCACTCAG | TCTTATCAGCCAGTCCTCCAGTTCG |
Kcnq1 | GACGATTGCCTCCTGCTTCTCTG | GCCTCTGCTTCTGCTGGACTTTC |
Casq2 | ACAACACCAACAATCCTGACCTGAG | GTCTTCTCCCAGTAGGCAACAAGC |
Bard1 | AGGCAAACAGGGCTCTCAGAAAAC | GAAGGTAGTGGACAAGGCGAATGG |
Lck | AGCATAACGGTGAATGGTGGAAGG | CTTGCGGCTCAGGCTCTTGAAG |
Jak3 | GTGCTGCTCAAGGTGCTGGATG | ACACGAGATGCGGGTAGGACAC |
Rasgrp3 | CACGCCTCAAAGAGACCCATTCC | TGAAACCATCACAGTCGGCAAAGG |
Adipoq | TTTGTGTACCGCTCAGCCTTCAG | GTGGTGCCATCGTAGTGGTTCTG |
Gh1 | GCTGATGCGGGAACTAGAAGATGG | TCGTTGCTGCGTAAGTTGGTGTC |
C-kit | GGCAAGATTTGTGTGTTGTCT | AGATGAAGGGAGAAACTGCTC |
Gapdh | CATGTCTGGCAAAGTGGATAT | CGTGGGTAGAATCATACTGGA |
After the model was successfully constructed, the SYGC and positive drug (IRE1 inhibitor) were administered for four weeks. The control group was given the same dose of physiological saline solution. Compared with the normal group, the sphincter tissue of the model group showed edema, increased inflammatory cell infiltration (Figure 2) and decreased c-kit expression (Figure 3), and the ring muscle had partial disorders and irregularities. Also, symptoms such as submucosal fibrous tissue hyperplasia and smooth muscle hypertrophy appeared. After treatment with SYGC or IRE1 inhibitor, the sphincter tissue showed increased c-kit expression and decreased inflammation infiltration, and ring muscle disorders were reduced, suggesting an improved Cajal cell activity in the Oddi sphincter. In addition, compared with the normal group, the serum ALT and AST levels in the model group were significantly higher (P < 0.01). Compared with the model group, the serum ALT levels in G and IR group were significantly decreased (P < 0.01) (Figure 3), indicating that Shaoyao Gancao Decoction can improve the liver function of SOD guinea pigs.
To identify the major chemical components, the SYGC samples were analyzed using the UHPLC-Q-Exactive Orbitrap HR-MS analysis. As shown in Figure 4 and Table 2, 23 compounds were identified under in positive ion mode and 88 compounds were identified under in negative ion mode. Then, Swissadme was applied to explore the pharmacological parameters of these compounds. Finally, 32 candidate compounds passed the parameters (Lipinski's "rule of five, " Ghose #violations and GI absorption) and were selected for further research (Table 3). Specifically, 6 ingredients were from Paeonia lactiflora Pall., 22 from Glycyrrhiza uralensis Fisch., and 4 from both herbs.
No. | RT/min | Ion mode | Measured mass /Da | Calculated mass /Da | Error/ppm | MS/MS | Molecular formula | Identification | Source |
1 | 0.84 | [M-H]- | 173.1034 | 173.1033 | 0.681 | 173.10339;156.07675;131.08128 | C6H14N4O2 | Arginine* | M.H. |
2 | 0.88 | [M+FA-H]- | 195.0501 | 195.0499 | 1.030 | 195.05022;177.03963;129.01799;99.00733 | C5H10O5 | Arabinose[x] | M.H. |
3 | 0.89 | [M+H]+ | 118.0867 | 118.0863 | 3.598 | 118.08656;100.07622;72.08146 | C5H11NO2 | Valine[x] | M.H. |
4 | 0.89 | [M+H]+ | 138.0551 | 138.0550 | 1.267 | 138.05498;110.06044;94.06567 | C7H7NO2 | Trigonelline[x] | M.H. |
5 | 0.90 | [M-H]- | 179.0550 | 179.0550 | 0.142 | 179.055 | C6H12O6 | Glucose* | M.H. |
6 | 0.90 | [M+FA-H]- | 549.1670 | 549.1661 | 1.547 | 549.16809;503.16235;341.10956;179.05505 | C18H32O16 | Raffinose[x] | M.H. |
7 | 0.96 | [M-H]- | 341.1087 | 341.1078 | 2.616 | 341.10913;179.05518;119.03361;89.02291 | C12H22O11 | Sucrose* | M.H. |
8 | 0.98 | [M-H]- | 191.0552 | 191.0550 | 1.023 | 191.01898;111.00737;87.00727 | C7H12O6 | Quinic acid* | M.H. |
9 | 1.01 | [M-H]- | 149.0080 | 149.0081 | -0.633 | 149.09593;92.92764 | C4H6O6 | Tartaric acid[x] | M.H. |
10 | 1.09 | [M-H]- | 133.0128 | 133.0131 | -2.404 | 133.01285;115.00210;89.02249;71.01216 | C4H6O5 | Malic acid[x] | M.H. |
11 | 1.09 | [M-H]- | 115.0022 | 115.0026 | -3.175 | 115.00217;71.01230 | C4H4O4 | Maleic acid[x] | M.H. |
12 | 1.29 | [M+H]+ | 123.0557 | 123.0553 | 3.093 | 123.05553;108.05737;95.08607;80.05014 | C6H6N2O | Nicotinamide[x] | M.H. |
13 | 1.33 | [M+H]+ | 144.1020 | 144.1019 | 0.797 | 144.10194;100.35320;84.08141 | C7H13NO2 | Stachydrine* | GC |
14 | 1.42 | [M-H]- | 191.0187 | 191.0186 | 0.581 | 191.01889;173.00797;111.00725;87.00718 | C6H8O7 | Citric acid[x] | M.H. |
15 | 1.46 | [M+H]+ | 130.0501 | 130.0499 | 1.848 | 130.05000;84.04503 | C5H7NO3 | Pyroglutamic acid[x] | M.H. |
16 | 1.58 | [M+H]+ | 182.0814 | 182.0812 | 1.374 | 182.13684;165.05475;136.07573;119.04947 | C9H11NO3 | Tyrosine* | M.H. |
17 | 2.01 | [M-H]- | 169.0131 | 169.0131 | -0.235 | 169.0133;125.0231 | C7H6O5 | Gallic acid* | M.H. |
18 | 2.08 | [M+H]+ | 152.0569 | 152.0567 | 1.273 | 152.05675;135.03027;110.03525 | C5H5N5O | Guanine* | M.H. |
19 | 2.09 | [M-H]- | 282.0843 | 282.0833 | 3.527 | 282.08444;150.04097;133.01430;108.01913 | C10H13N5O5 | Guanosine* | M.H. |
20 | 2.13 | [M+H]+ | 166.1229 | 166.1226 | 1.681 | 166.12270;149.09624;121.10149;93.07048 | C10H15NO | Hordenine[x] | GC |
21 | 3.59 | [M+H]+ | 166.0865 | 166.0863 | 1.233 | 166.0862;148.11176;124.03969;106.06532 | C9H11NO2 | L-Phenylalanine* | M.H. |
22 | 6.51 | [M-H]- | 183.0290 | 183.0288 | 0.984 | 183.02908;168.00549;139.03885;124.01530 | C8H8O5 | Methyl Gallate* | SY |
23 | 6.66 | [M-H]- | 203.0819 | 203.0815 | 1.703 | 203.08202;159.09161;142.06496;116.04915 | C11H12N2O2 | Tryptophan[x] | M.H. |
24 | 7.42 | [M-H]- | 285.0615 | 285.0605 | 3.600 | 285.06174;152.01036;108.02022 | C12H14O8 | Uralenneoside[x] | GC |
25 | 7.69 | [M-H]- | 165.0546 | 165.0546 | -0.307 | 165.05461;141.78123;121.06437;93.03300 | C9 H10O3 | Phloretic acid[x] | GC |
26 | 8.40 | [M+FA-H]- | 389.1455 | 389.1442 | 3.229 | 389.14597;343.14001;181.08600;151.07516 | C16H24O8 | Mudanpioside F[y] | SY |
27 | 8.44 | [M-H]- | 289.0718 | 289.0707 | 3.755 | 289.07199;245.08183;203.07066;109.02801 | C15H14O6 | (+)-Catechin* | SY |
28 | 8.73 | [M-H]- | 121.0281 | 121.0284 | -2.280 | 121.02818;119.04868;94.02834 | C7H6O2 | 4-Hydroxybenzaldehyde[x] | GC |
29 | 9.64 | [M-H]- | 179.0340 | 179.0339 | 0.362 | 179.03398;135.04384;107.04886 | C9H8O4 | Caffeic acid* | M.H. |
30 | 9.70 | [M-H]- | 543.1178 | 543.1167 | 2.057 | 543.15491;255.06639;135.00732;119.04897 | C23H28O13S | Paeoniflorin Sulfite[y] | SY |
31 | 9.88 | [M-H]- | 495.1507 | 495.1497 | 2.014 | 495.15140;281.06665;137.02313;93.03300 | C23H28O12 | Oxypaeoniflorin* | SY |
32 | 12.53 | [M-H]- | 121.0279 | 121.0284 | -4.511 | 121.02815;119.04897;93.03310 | C7H6O2 | 3-Hydroxybenzaldehyde* | SY |
33 | 12.54 | [M+H]+ | 197.0810 | 197.0808 | 0.632 | 197.08055;179.07030;133.06485;105.07025 | C10H12O4 | Paeonilactone B[y] | SY |
34 | 12.55 | [M+FA-H]- | 525.1610 | 525.1603 | 1.414 | 525.16180;479.15598;283.08264;121.02814 | C23H28O11 | Albiflorin* | SY |
35 | 12.74 | [M+H]+ | 319.1180 | 319.1176 | 1.050 | 319.11862;197.08090;151.07539;105.03388 | C17H18O6 | Paeoniflorigenone* | SY |
36 | 12.87 | [M-H]- | 163.0389 | 163.0390 | -0.678 | 163.03896;119.04886 | C9H8O3 | p-Coumaric acid[x] | M.H. |
37 | 13.01 | [M-H]- | 197.0447 | 197.0445 | 1.219 | 197.04483;182.02116;166.99760;123.00723 | C9H10O5 | Ethyl Gallate* | SY |
38 | 14.02 | [M+H]+ | 195.0654 | 195.0652 | 1.306 | 195.06525;180.04169;135.04424 | C10H10O4 | Ferulic acid* | SY |
39 | 14.10 | [M+FA-H]- | 525.1611 | 525.1603 | 1.529 | 525.16205;449.14566;327.10876;121.02717 | C23H28O11 | Paeoniflorin* | SY |
40 | 14.12 | [M-H]- | 121.0272 | 121.0284 | -9.964 | 121.02805;119.04849;93.03285 | C7H6O2 | 2-Hydroxybenzaldehyde | SY |
41 | 14.58 | [M-H]- | 593.1513 | 593.1501 | 2.046 | 593.15198;473.10907;383.07767;353.06711 | C27H30O15 | Vcenin-II[x] | GC |
42 | 14.88 | [M+H]+ | 179.0341 | 179.0339 | 1.367 | 179.07022;151.07547;133.06494;105.07031 | C9H6O4 | 5, 7-Dihydroxycoumarin[x] | GC |
43 | 15.89 | [M-H]- | 417.1193 | 417.1180 | 3.072 | 417.11948;255.06616;153.01817;119.04880 | C21H22O9 | Neoliquiritin* | GC |
44 | 16.29 | [M-H]- | 563.1405 | 563.1395 | 1.719 | 563.14099;443.09879;383.07742;353.06689 | C26H28O14 | Schaftoside[x] | GC |
45 | 16.58 | [M-H]- | 137.0231 | 137.0233 | -1.683 | 137.0232; 93.0332 | C7H6O3 | 3, 4-Dihydroxybenzaldehyde* | M.H. |
46 | 16.60 | [M-H]- | 563.1405 | 549.1603 | 1.719 | 549.16174;429.10385;255.06619;135.00745 | C26H30O13 | Naringenin 7-O-(2-β-D-Apiofuranosyl)-β-D-glucopyranoside[x] | GC |
47 | 16.64 | [M-H]- | 563.1404 | 563.1395 | 1.613 | 563.14105;473.10779;383.07770;353.06702 | C26H28O14 | Isoschaftoside[x] | GC |
48 | 16.73 | [M-H]- | 417.1190 | 417.1180 | 2.281 | 417.11957;255.06628;153.01817;135.00742 | C21H22O9 | Liquiritin* | GC |
49 | 17.03 | [M+H]+ | 581.1873 | 581.1865 | 1.339 | 581.18451;419.13376;257.08060;137.02328 | C27H32O14 | Isoliquiritigenin-4, 4'-diglucoside[x] | GC |
50 | 17.34 | [M+H]+ | 465.1036 | 465.1028 | 1.715 | 465.11786;333.18991;135.11693;107.08585 | C21H20O12 | Hyperin* | SY |
51 | 17.52 | [M-H]- | 549.1613 | 549.1603 | 1.917 | 549.16064;255.06677;153.01819;119.04881 | C26H30O13 | Liquiritin apiroside[x] | GC |
52 | 17.73 | [M-H]- | 631.1669 | 631.1658 | 1.780 | 631.16779;491.11960;313.05685;169.01320 | C30H32O15 | Galloylpaeoniflorin* | SY |
53 | 18.82 | [M+H]+ | 465.1037 | 465.1028 | 2.102 | 465.11781;285.07422;153.12750;135.11693 | C21H20O12 | Isoquercitrin* | SY |
54 | 19.21 | [M+H]+ | 301.0709 | 301.0707 | 0.749 | 301.07056;286.04709;167.03397;105.03389 | C16H12O6 | Pratensein[x] | GC |
55 | 19.24 | [M-H]- | 433.1140 | 433.1129 | 2.440 | 433.11423;271.06122;151.00252;119.04887 | C21H22O10 | Chalconaringenin 4-O-glucoside[x] | GC |
56 | 19.73 | [M+H]+ | 579.1715 | 579.1708 | 1.171 | 579.17090;325.07077;121.02876 | C27H30O14 | Violanthin[x] | GC |
57 | 20.11 | [M+H]+ | 481.1711 | 481.1704 | 1.272 | 481.19099;197.08093;133.06490;105.03391 | C23H28O11 | Mudanpioside I | SY |
58 | 20.14 | [M-H]- | 301.0716 | 301.0707 | 2.974 | 301.07159;286.04800;191.03429;150.03105 | C16H14O6 | Hesperetin* | GC |
59 | 20.27 | [M+H]+ | 301.0708 | 301.0707 | 0.549 | 301.07059;167.03403;105.03387 | C16H12O6 | Rhamnocitrin[x] | GC |
60 | 20.53 | [M+FA-H]- | 507.1504 | 507.1497 | 1.415 | 507.15225;461.14590;339.10834;177.05472 | C23H26O10 | Lactiflorin* | SY |
61 | 20.68 | [M-H]- | 431.0982 | 431.0973 | 2.173 | 431.09805;268.03763 | C21H20O10 | kaempferol-3-rhamnoside[x] | GC |
62 | 21.55 | [M-H]- | 255.0661 | 255.0652 | 3.547 | 255.06625;153.01811;135.00746;119.04885 | C15H12O4 | Liquiritigenin* | GC |
63 | 22.01 | [M-H]- | 417.1190 | 417.1180 | 2.425 | 417.11951;255.06613;119.04876 | C21H22O9 | Isoliquiritin* | GC |
64 | 22.09 | [M-H]- | 549.1616 | 549.1603 | 1.465 | 549.16174;255.06610;135.00732 | C26H30O13 | Isoliquiritin Apioside[x] | GC |
65 | 22.22 | [M-H]- | 459.1298 | 459.1286 | 2.715 | 459.13025;255.06625;153.01826;119.04884 | C23H24O10 | 6'-Acetyliquiritin[x] | GC |
66 | 22.28 | [M+FA-H]- | 475.1245 | 475.1235 | 2.205 | 475.12463;267.06631;252.04248 | C22H22O9 | Ononin* | GC |
67 | 22.31 | [M+H]+ | 563.1763 | 563.1759 | 0.733 | 563.17450;269.08069 | C27H30O13 | Glycyroside[x] | GC |
68 | 22.57 | [M-H]- | 591.1721 | 591.1708 | 2.179 | 591.17230;549.16211;255.06621;135.00746 | C28H32O14 | Liquiritigenin-4′-O-[β-D-3-O-acetyl-apiofuranosyl-(1-2)]-β-D-glucopyranoside[x] | GC |
69 | 22.71 | [M-H]- | 285.0768 | 285.0758 | 3.613 | 285.07687;270.05347;177.01819;150.03105 | C16H14O5 | Licochalcone B* | GC |
70 | 22.88 | [M-H]- | 549.1614 | 549.1603 | 2.026 | 549.16180;417.11899;255.06616;153.01814 | C26H30O13 | Licuraside[x] | GC |
71 | 23.19 | [M-H]- | 263.1290 | 263.1278 | 4.501 | 263.12851;219.13876;104.11462;151.07529 | C15H20O4 | (+)-Asycisic acid[x] | M.H. |
72 | 23.25 | [M-H]- | 599.1773 | 599.1759 | 2.324 | 599.17773;281.06717;137.02309;93.03311 | C30H32O13 | Benzoyloxypaeoniflorin* | SY |
73 | 23.90 | [M+H]+ | 255.0653 | 255.0652 | 0.489 | 255.06505;137.02332;85.57477 | C15H10O4 | Daidzein* | GC |
74 | 24.03 | [M-H]- | 695.1986 | 695.1970 | 2.249 | 695.19916;531.15088;255.0612;135.00742 | C35 H36 O15 | Licorice-glycoside B/D1/D2[x] | GC |
75 | 24.08 | [M-H]- | 299.0559 | 299.0550 | 3.095 | 299.05618;284.03284;199.03935;147.00769 | C16H12O6 | 7, 2', 4'-Trihydroxy-5-methoxy-3-arylcoumarin[x] | GC |
76 | 25.71 | [M-H]- | 285.0768 | 285.0758 | 3.718 | 285.07684;270.05359;177.01857;150.03105 | C16H14O5 | Homobutein[x] | GC |
77 | 25.91 | [M+FA-H]- | 491.1196 | 491.1184 | 2.499 | 491.12021;329.13995;153.01823;109.02785 | C22H22O10 | Trifolirhizin[x] | GC |
78 | 26.27 | [M-H]- | 269.0819 | 269.0808 | 4.105 | 269.046 | C16H14O4 | Echinatin[x] | GC |
79 | 26.60 | [M-H]- | 725.2094 | 725.2076 | 2.398 | 725.20972;531.15088;255.06610;135.00740 | C36 H38O16 | Licorice-glycoside A/C1/C2 | GC |
80 | 27.02 | [M+FA-H]- | 629.1876 | 629.1865 | 1.809 | 629.18817;583.18237;121.02798 | C30H32O12 | Benzoylalbiflorin* | SY |
81 | 27.17 | [M+H]+ | 287.0552 | 287.0550 | 0.681 | 287.05493;151.03905;121.02861 | C15H10O6 | Kaempferol* | M.H. |
82 | 27.54 | [M+FA-H]- | 629.1877 | 629.1865 | 1.999 | 629.18726;583.18323;553.17212;121.02816 | C30H32O12 | Benzoylpaeoniflorin* | SY |
83 | 27.54 | [M-H]- | 301.0716 | 301.0707 | 3.173 | 301.07151;286.04802;191.03429;150.03101 | C16H14O6 | Tetrahydroxymethoxychalcone[x] | GC |
84 | 28.31 | [M-H]- | 255.0660 | 255.0652 | 3.233 | 255.06618;153.01802;135.00734;119.04870 | C15H12O4 | Isoliquiritigenin* | GC |
85 | 29.71 | [M-H]- | 267.0662 | 267.0652 | 3.650 | 267.06635;252.04263 | C16H12O4 | Formononetin* | GC |
86 | 31.54 | [M-H]- | 837.3913 | 837.3903 | 1.162 | 837.39191;775.39111;485.32816;351.05701 | C42H62O17 | Licorice saponin P2[x] | GC |
87 | 31.90 | [M-H]- | 895.3972 | 895.3958 | 1.579 | 895.39838;628.15387;351.05673;113.02299 | C44H64O19 | Uralsaponin F[x] | GC |
88 | 33.09 | [M-H]- | 853.3866 | 853.3852 | 1.592 | 853.38739;351.05695;289.05539;113.02303 | C42H62O18 | 22-Hydroxy-licorice saponin G2[x] | GC |
89 | 33.46 | [M-H]- | 819.3817 | 819.3798 | 2.377 | 819.38220;573.36359;351.05740;193.03456 | C42H60O16 | Licorice saponin E2[x] | GC |
90 | 34.04 | [M-H]- | 879.4027 | 879.4009 | 2.068 | 879.40271;581.34503;351.05740 | C44H64O18 | 22-Acetoxyl-glycyrrhizin[x] | GC |
91 | 34.42 | [M-H]- | 983.4498 | 983.4482 | 1.622 | 983.44983;821.39618;627.35510;351.05698 | C48H72O21 | Licorice saponin A3[x] | GC |
92 | 34.82 | [M-H]- | 863.4077 | 863.4060 | 1.938 | 863.40833;758.07990;351.05658;193.03439 | C44H64O17 | 22β-Acetoxyglycyrrhaldehyde[x] | GC |
93 | 35.27 | [M-H]- | 353.1030 | 353.1020 | 2.932 | 353.10287;284.03271;125.02303 | C20H18O6 | Licoisoflavone A[x] | GC |
94 | 35.46 | [M-H]- | 353.1395 | 353.1384 | 3.341 | 353.13989;173.03392;165.01820;125.02313 | C21H22O5 | Gancaonin I[x] | GC |
95 | 35.57 | [M-H]- | 837.3920 | 837.3903 | 1.962 | 837.39221;732.52264;351.05753;193.03474 | C42H62O17 | Licorice saponin Q2[x] | GC |
96 | 36.42 | [M-H]- | 367.1186 | 367.1176 | 2.575 | 367.11871;309.04059;203.07121 | C21H20O6 | Glycycoumarin[x] | GC |
97 | 37.02 | [M-H]- | 353.1031 | 353.1020 | 3.187 | 353.10321;297.04050 | C20H18O6 | Licoflavonol[x] | GC |
98 | 37.71 | [M-H]- | 837.3919 | 837.3903 | 1.819 | 837.39270;732.47290;351.05701 | C42H62O17 | Licorice saponin G2[x] | GC |
99 | 37.90 | [M-H]- | 337.1447 | 337.1434 | 3.780 | 337.10840;282.05301 | C21H22O4 | Licochalcone A* | GC |
100 | 38.15 | [M-H]- | 351.0875 | 351.0863 | 3.262 | 351.08752;333.07715;283.09756;177.01840 | C20H16O6 | Licoisoflavone B[x] | GC |
101 | 38.44 | [M-H]- | 837.3919 | 837.3903 | 1.891 | 837.39282;607.58362;351.05847;193.03423 | C42H62O17 | Uralsaponin N[x] | GC |
102 | 38.61 | [M-H]- | 967.4548 | 967.4533 | 1.560 | 967.45569;860.47540;497.11691 | C48H72O20 | Rhaoglycyrrhizin[x] | GC |
103 | 39.22 | [M-H]- | 821.3973 | 821.3954 | 2.274 | 821.39740;724.18427;589.77423;351.05710 | C42H62O16 | Glycyrrhizic acid* | GC |
104 | 39.22 | [M-H]- | 823.4035 | 823.4111 | -9.184 | 823.41315;574.30713;351.05688;113.02302 | C42H64O16 | Uralsaponin C[x] | GC |
105 | 39.64 | [M-H]- | 821.3972 | 821.3954 | 2.201 | 821.39734;351.05698;193.03477;113.02299 | C42H62O16 | Licorice saponin H2[x] | GC |
106 | 40.54 | [M-H]- | 807.4181 | 807.4161 | 2.406 | 807.41821;351.05682;193.03471;113.02308 | C42H64O15 | Licoricesaponin B2[x] | GC |
107 | 40.69 | [M-H]- | 985.4656 | 985.4639 | 1.720 | 985.46442;497.11523;321.08276;113.02301 | C48H74O21 | Yunganoside D1 or Yunganoside G1[x] | GC |
108 | 40.77 | [M-H]- | 807.4186 | 807.4161 | 2.333 | 807.41840;351.05688;193.03471;113.02303 | C42H64O15 | 22-Dehydroxyural saponin[x] | GC |
109 | 40.90 | [M-H]- | 821.3978 | 821.3954 | 2.203 | 821.39771;351.05685;193.03465;113.02307 | C42H62O16 | Licorice Saponin K2[x] | GC |
110 | 40.96 | [M-H]- | 823.4038 | 823.4111 | -8.880 | 823.41223;351.05713;193.03426;113.02285 | C42H64O16 | Licorice Saponin SJ2[x] | GC |
111 | 42.81 | [M-H]- | 255.2327 | 255.2319 | 3.461 | 255.13889;149.09576;119.04839;93.03307 | C16H32O2 | Palmitic Acid[x] | M.H. |
*Note: * means that the ingredient was confirmed by the reference substance (Supplementary material); [x] means that ingredient was confirmed by the reference literature "Chinese Journal of Natural Medicines, 19 (2021), 305–320. https://doi.org/10.1016/S1875-5364(21)60031-6"; [y] means that ingredient was confirmed by the reference literature "Journal of Chinese Mass Spectrometry Society, 35 (2014), 269–278. https://doi.org/10.7538/zpxb.2014.35.03.0269"; SY: Paeonia lactiflora Pall., GC:Glycyrrhiza uralensis Fisch., M.H.:SY and GC. |
Identification | GI absorption | Lipinski # violations | Ghose # violations | MW | Rotatable bonds | H-bond acceptors | H-bond donors | TPSA |
Hordenine | High | 0 | 0 | 165.23 | 3 | 2 | 1 | 23.47 |
Methyl Gallate | High | 0 | 0 | 184.15 | 2 | 5 | 3 | 86.99 |
Phloretic acid | High | 0 | 0 | 166.17 | 3 | 3 | 2 | 57.53 |
(+)-Catechin | High | 0 | 0 | 290.27 | 1 | 6 | 5 | 110.38 |
Caffeic acid | High | 0 | 0 | 180.16 | 2 | 4 | 3 | 77.76 |
Paeonilactone B | High | 0 | 0 | 196.2 | 0 | 4 | 1 | 63.6 |
Paeoniflorigenone | High | 0 | 0 | 318.32 | 4 | 6 | 1 | 82.06 |
p-Coumaric acid | High | 0 | 0 | 164.16 | 2 | 3 | 2 | 57.53 |
Ethyl Gallate | High | 0 | 0 | 198.17 | 3 | 5 | 3 | 86.99 |
Ferulic acid | High | 0 | 0 | 194.18 | 3 | 4 | 2 | 66.76 |
Pratensein | High | 0 | 0 | 300.26 | 2 | 6 | 3 | 100.13 |
Hesperetin | High | 0 | 0 | 302.28 | 2 | 6 | 3 | 96.22 |
Rhamnocitrin | High | 0 | 0 | 300.26 | 2 | 6 | 3 | 100.13 |
Liquiritigenin | High | 0 | 0 | 256.25 | 1 | 4 | 2 | 66.76 |
Ononin | High | 0 | 0 | 430.4 | 5 | 9 | 4 | 138.82 |
Licochalcone B | High | 0 | 0 | 286.28 | 4 | 5 | 3 | 86.99 |
Daidzein | High | 0 | 0 | 254.24 | 1 | 4 | 2 | 70.67 |
7, 2', 4'-Trihydroxy-5-methoxy -3-arylcoumarin | High | 0 | 0 | 300.26 | 2 | 6 | 3 | 100.13 |
Homobutein | High | 0 | 0 | 286.28 | 4 | 5 | 3 | 86.99 |
Trifolirhizin | High | 0 | 0 | 446.4 | 3 | 10 | 4 | 136.3 |
Echinatin | High | 0 | 0 | 270.28 | 4 | 4 | 2 | 66.76 |
Kaempferol | High | 0 | 0 | 286.24 | 1 | 6 | 4 | 111.13 |
Tetrahydroxymethoxy chalcone | High | 0 | 0 | 302.28 | 4 | 6 | 4 | 107.22 |
Isoliquiritigenin | High | 0 | 0 | 256.25 | 3 | 4 | 3 | 77.76 |
Formononetin | High | 0 | 0 | 270.28 | 2 | 4 | 1 | 55.76 |
Licoisoflavone A | High | 0 | 0 | 354.35 | 3 | 6 | 4 | 111.13 |
Gancaonin I | High | 0 | 0 | 354.4 | 5 | 5 | 2 | 72.06 |
Glycycoumarin | High | 0 | 0 | 368.38 | 4 | 6 | 3 | 100.13 |
Licoflavonol | High | 0 | 0 | 354.35 | 3 | 6 | 4 | 111.13 |
Licochalcone A | High | 0 | 0 | 338.4 | 6 | 4 | 2 | 66.76 |
Licoisoflavone B | High | 0 | 0 | 352.34 | 1 | 6 | 3 | 100.13 |
Palmitic Acid | High | 1 | 0 | 256.42 | 14 | 2 | 1 | 37.3 |
The target information of 32 active ingredients was obtained from HERB, SwisstargetPrediction and BATMANTCM. Once duplicate genes were deleted, a total of 1023 targets for SYGC were obtained.
Furthermore, we explored the dysfunctional genes and pathways in guinea pig SOD using RNA-Seq of sphincter tissues from the Control and SOD groups. The RNA from the three replicate samples from the control and SOD groups was sequenced. In all, 16,281 genes were identified (Supplementary data). To determine the differentially expressed genes (DEGs), a q-value < 0.05 was used as the cut-off value for gene expression in the control and SOD groups using DESeq2. As a result, 649 DEGs including 247 up-regulated and 402 down-regulated genes were screened (Figure 5A). The top 10 enriched GO terms in each category as cellular component (CC), molecular function (MF), biological process (BP) and of the identified DEGs are shown in Figure 5B. The GO terms showed that DEGs were mainly related to negative regulation of cell fate commitment, extracellular space, serine-type endopeptidase inhibitor activity, etc. On the other hand, the results of KEGG enrichment analysis showed that the top enriched KEGG terms were, for example, complement and coagulation cascades, B cell receptor signaling pathway, primary immunodeficiency NF-kappa B signaling pathway (Figure 5C).
To identify the intersecting genes between SYGC and SOD, a Venn analysis was performed on the target genes of SYGC and SOD DEGs. As shown in Figure 6A, 52 genes were identified as intersecting genes of SYGC and SOD. Then, these intersecting genes were imported into the Metascape database to carry out GO enrichment analysis and pathway enrichment analysis (Figure 6B). BP terms were mainly found in regulation of ion transport, response to xenobiotic stimulus and leukocyte migration. CC terms were mainly enriched in ion channel complex, side of membrane, and perinuclear region of cytoplasm. MF terms were mainly present in kinase binding, kinase binding-membrane spanning protein tyrosine kinase activity and carbonate dehydratase activity. These factors can exert therapeutic effects on SOD.
In addition, the results of the pathway enrichment analysis mainly involved the B cell receptor signaling pathway, complement system, signaling by receptor tyrosine kinases, Interleukin-4 and Interleukin-13 signaling, as well as muscle contraction, among others (Figure 6C).
The STRING database (http://www.string-db.org) was used to investigate the target genes' interactions. There were 57 nodes and 158 edges in the protein-protein interaction network. Then, the complex interactions between active components and potential target genes were visualized using the Cytoscape, including 82 nodes and 214 edges (Figure 7A). Four significant clusters were obtained from ClusterONE analysis (node ≥ 3 and P < 0.05). Cluster 1 consisted of 10 nodes (Figure 7B); Cluster 2 consisted of 11 nodes (Figure 7C); Cluster 3 consisted of 8 nodes (Figure 7D); Cluster 4 consisted of 3 nodes (Figure 7E). Four significant modules were obtained from MCODE analysis (score ≥ 3). Module 1 (score: 8.75) consisted of 9 nodes (Figure 7F); Module 2 (score: 7.125) consisted of 17 nodes (Figure 7G); module 3 (score: 3.6) consisted of 6 nodes (Figure 7H); module 4 (score: 3) consisted of 3 nodes (Figure 7I). Finally, 20 intersecting genes between MCODE genes and ClusterONE genes were obtained, including SERPINE1, MMP9, PLG, CCNB1, CACNA2D2, RAD51, CHRNB4, AURKB, TOP2A, TYMS, KIF11, KCNQ1, CASQ2, BARD1, CHRNA4, IGFBP1, TNNT2, SCN4A, MKI67, CMA1.
The present study examined the intersecting genes between MCODE and ClusterONE genes involved in the B cell receptor signaling pathway (AURKB, KIF11) and complement system (PLG). Each of the enriched components is docked with the three genes. The binding energy of ligands in PDB structures was used for positive control (VX6 for AURKB: -8.8 kcal/mol, GCE for KIF11: -9.5 kcal/mol, XO3 for PLG: -7 kcal/mol). Glycycoumarin and licoflavonol exert lower score than VX4 ligand for AURKB target, indicating a strong binding activity. Rhamnocitrin shows a relative lower score compared to GCE ligand for KIF11 target, indicating a good binding activity. Echinatin, homobutein and licoflavonol present a relative lower score compared to XO3 ligand for PLG target, suggesting a good binding activity (Table 4).
Ligand | Group | AURKB (4af3) | KIF11 (6hky) | PLG (4cik) |
VX6_AURKB | control | -8.8 | - | - |
GCE_KIF11 | - | -9.5 | - | |
XO3_PLG | - | - | -7 | |
Echinatin | SYGC | -8.4 | -8.2 | -6.4 |
Ethyl Gallate | -6.3 | -6.1 | -5.4 | |
Glycycoumarin | -9.3 | -7.9 | -6.3 | |
Hesperetin | -8.7 | -8.6 | -5.9 | |
Homobutein | -8.2 | -8.2 | -6.4 | |
Kaempferol | -8.8 | -8.8 | -6.3 | |
Licoflavonol | -9.1 | -7.5 | -6.4 | |
Methyl Gallate | -6.2 | -6.2 | -5.4 | |
Palmitic Acid | -6.3 | -6.2 | -5 | |
Rhamnocitrin | -8.3 | -9 | -6.3 |
Specifically, AURKB showed 12 interactions with glycycoumarin, including unfavorable donor- donor, Pi-sigma, Pi-alkyl and Alkyl, which were connected with GLU 161, LEU 83, ALA 157, VAL 91 and PHE 88 (Figure 8A). It showed 13 interactions with licoflavonol including carbon hydrogen bond, conventional hydrogen bond, unfavorable donor- donor, Pi-sigma, Pi-alkyl and Alkyl, which were connected with VAL 91, LYS 106, ALA 157, GLU 161 and GLY 160 (Figure 8B). KIF11 showed 8 interactions with rhamnocitrin, including conventional hydrogen bonds, Pi-sigma, Pi-alkyl and Pi-anion, which were connected with TRP 127, PRO 137, ALA 133, GLU 116 and ARG 119 (Figure 8C). PLG showed 6 interactions with echinatin including carbon hydrogen bond, conventional hydrogen bond, unfavorable donor- donor, Pi-cation, Pi-Pi stacked and Pi-Pi T-shaped, which were connected with TYR 72, ASP 55, ARG 71, TRP 62 and ARG 35 (Figure 8D). It showed 6 interactions with homobutein including carbon hydrogen bond, Pi-donor hydrogen bond, Pi-Pi stacked, Pi-Pi T-shaped, Pi-anion, Pi-alkyl and Pi-cation, which were connected with ARG 35, TRP 62, TYR 72, ASP 55 and ARG 71 (Figure 8E). It showed 9 interactions with licoflavonol including carbon hydrogen bond, Pi-Pi stacked, Pi-Pi T-shaped, Pi-anion, Alkyl and Pi-cation, which were connected with ASP 55, TRP 62, TYR 72, ASP 57 and ARG 35 (Figure 8F).
To verify the results of bioinformatics analysis, we obtained the top eight genes (Prkcb, Alox5, Adora2a, Lck, Jak3, Rasgrp3, Adipoq and Gh1) involved in the 52 gene-related signal pathways and 14 intersecting genes (Serpine1, Mmp9, Plg, Ccnb1, Cacna2d2, Rad51, Chrnb4, Aurkb, Top2a, Tyms, Kif11, Kcnq1, Casq2 and Bard1) among MCODE genes, ClusterONE genes and genes of significant enrichment pathways. We detected the mRNA expression levels of these genes by RT-qPCR in the Oddi sphincter tissues. Compared with the control group, the M group showed decreased expression of Ccnb1, Mmp9, Rad51, Top2a, Tyms, Kif11, Rasgrp3, Prkcb, Lck, Jak3, Adora2a, Aurkb and Gh1 and increased expression of Cacna2d2, Chrnb4, Alox5 and Plg. Moreover, the expression of Ccnb1, Cacna2d2 and Chrnb4 returned to normal after SYGC treatment (Figure 9).
SOD is a key secondary pathological change in the context of gallbladder- and pancreas-related inflammatory diseases and seriously impacts patients' quality of life [18,19]. At present, the research on its pathogenesis and effective treatment are in the preliminary stages. TCM has been widely applied for the discovery of candidate drugs [20]. SYGC is used for the treatment of pain-related diseases with reducing muscle tension, relieving spasms and providing analgesia [21]. Moreover, paeoniflorin, an extract of Shaoyao, can relax the SO muscle via reducing calcium ion influx [22]. Isoliquiritigenin, a flavonoid from licorice, relaxed guinea-pig tracheal smooth muscle through the cGMP/PKG pathway [23]. Consistent with our clinical study [7], we also found that SYGC administration can repair the structure and ultrastructure of the SO in vivo with decreased inflammation infiltration and ring muscle disorders. However, the detailed regulatory mechanism of SYGC action against SOD requires further investigation.
Therefore, we used the systematic pharmacological method to discover the potential molecular mechanisms of SYGC on SOD. At first, a total of 649 DEGs were identified in SOD, which were mainly enriched in complement and coagulation cascades, B cell receptor signaling pathway, primary immunodeficiency and NF-kappa B signaling pathway. Recently, it was well established that immune disorders and inflammation played an important role in the occurrence and development of numerous diseases, including SOD [24,25,26]. The B cell receptor (BCR) signaling pathway was crucial for normal B cell development and adaptive immunity [27], and B cell-derived IgE may lead to smooth muscle contraction induced by the degranulation of mast cells [28]. NF-κB showed a key role in various biological processes, including inflammation, immune response, cell growth and survival and development [29,30,31]. NF-κB signaling impeded the recovery of skeletal muscle function after damage [32]. In addition, NF-kappaB activation served as a survival factor in B cell, which prevented cell apoptosis [33,34]. These results suggest that SOD may exert a dysfunction crosstalk between B cell receptor and NF-κB signaling pathway.
Then, does SYGC ameliorate SOD by regulating the B cell receptor signaling pathway? We first identified 32 candidate compounds using UHPLC-Q-Orbitrap-HRMS and network pharmacology analysis. Interestingly, these chemicals had an effect in the B cell receptor signaling pathway. Additionally, SYGC may improve SOD through multiple pathways including the complement system, Interleukin-4 and Interleukin-13 signaling and muscle contraction. Therefore, these results suggest that the B cell receptor signaling pathway may play a central role in these multiple pathways. For example, IL-4 and IL-13 exerted their signaling action by IL-4Rα/IL-13Rα complexes [35], and IL-4 was demonstrated to regulate B-cell receptor signaling in chronic lymphocytic leukemia [36]. The complement system, an essential contributor of innate immunity, was also important in regulating B cell responses at multiple stages of the peripheral response [37]. Combined with the effect of SYGC on muscle cramps [4,38], we speculate that SYGC improve SOD through relieving immune and inflammation dysfunction.
Additionally, we discovered three genes associated with the B cell receptor signaling pathway and complement system in the SYGC treatment of SOD, namely AURKB, KIF11 and PLG. Aurora kinase B (AURKB), which belongs to the mitotic protein kinase family, played a role in mitosis and the inflammatory pathway through of NF-κB transcription [39,40]. The plasminogen protein encoded by PLG can regulate skeletal muscle regeneration [41] and the resolution of inflammation through macrophage polarization and efferocytosis [42]. Moreover, the expression of these 3 genes returned to normal after SYGC treatment. These data imply that the three genes may play a critical role in the SYGC treatment of SOD.
Furthermore, glycycoumarin, licoflavonol, echinatin and homobutein exert good binding activity with the above three genes. It was reported that glycycoumarin can relax gastrointestinal smooth muscle tone [43] and inhibit tetanic contractions [38]. Echinatin and homobutein exerted favorable pharmacological effects on anti-inflammatory and anti-oxidant activity partly to NF-κB inhibition [44,45,46]. Collectively, these chemical components of SYGC provide the pharmacological basis for the immune and inflammation activities related to SOD.
In conclusion, the present study displayed that multi-ingredient therapeutics of SYGC regulated SOD development by multi-targets and multi-pathways. Future studies should be conducted to explore the involvement of these targets in the treatment of SOD with SYGC. In addition, more experiments are still needed to confirm our findings. Nevertheless, our research still provided some reasonable major mediators for the anti-SOD effects of SYGC, including four active compounds (glycycoumarin, licoflavonol, echinatin and homobutein), three targets (AURKB, KIF11 and PLG) and several pathways (B cell receptor signaling pathway, complement system and muscle contraction).
This work was supported by grants from the National Natural Science Foundation of China (No. 81904017).
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
[1] |
A. Hastings, T. Powell, Chaos in a three-species food chain, Ecology, 72 (1991), 896–903. http://dx.doi.org/https://doi.org/10.2307/1940591 doi: 10.2307/1940591
![]() |
[2] |
M. F. Danca, J. Chattopadhyay, Chaos control of hastings-powell model by combining chaotic motions, Chaos Interdiscipl. J. Nonlinear Sci., 26 (2016), 043106. http://dx.doi.org/https://doi.org/10.1063/1.4946811 doi: 10.1063/1.4946811
![]() |
[3] |
G. Maciorowski, U. Jankowiak, T. H. Sparks, M. Polakowski, P. Tryjanowski, Biodiversity hotspots at a small scale: The importance of eagles' nests to many other animals, Bullet. Ecolog. Soc. Am., 102 (2021), e03220. http://dx.doi.org/10.1002/ecy.3220 doi: 10.1002/ecy.3220
![]() |
[4] | J. Robert, Predation, Taylor, Springer Netherlands, 1984. http://dx.doi.org/http://dx.doi.org/10.1179/136217103225005633 |
[5] |
S. L. Lima, Nonlethal effects in the ecology of predator-prey interactions, Bioscience, 48 (1998), 25–34. http://dx.doi.org/10.2307/1313225 doi: 10.2307/1313225
![]() |
[6] | W. B. Cannon, Bodily changes in pain, hunger, fear and rage, Bodily changes in pain, hunger, fear, and rage, 1915. http://dx.doi.org/10.1037/10013-000 |
[7] |
X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1–26. http://dx.doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
![]() |
[8] |
X. Wang, X. Zou, Modeling the fear effect in predatorey interactions with adaptive avoidance of predators, Bullet. Math. Biol., 79 (2017), 1–35. http://dx.doi.org/10.1007/s11538-017-0287-0 doi: 10.1007/s11538-017-0287-0
![]() |
[9] |
L. Y. Zanette, A. F. White, M. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–1401. http://dx.doi.org/https://doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908
![]() |
[10] |
A. Das, G. P. Samanta, Modelling the fear effect on a stochastic prey-predator system with additional food for predator, J. Phys. A Math. Theoret., 51 (2018), 465–601. http://dx.doi.org/10.1088/1751-8121/aae4c6 doi: 10.1088/1751-8121/aae4c6
![]() |
[11] | D. Sahoo, G. P. Samanta, Impact of fear effect in a two prey-one predator system with switching behaviour in predation, Differ. Equat. Dynam. Syst., (2021), 1–23. http://dx.doi.org/https://doi.org/10.1007/s12591-021-00575-7 |
[12] |
B. K. Das, D. Sahoo, G. P. Samanta, Impact of fear in a delay-induced predator-prey system with intraspecific competition within predator species, Math. Comput. Simul. (MATCOM), 191 (2022), 134–156. http://dx.doi.org/10.1016/j.matcom.2021.08.005 doi: 10.1016/j.matcom.2021.08.005
![]() |
[13] |
K. Sarkar, S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecolog. Complex., 42 (2020), 100826. http://dx.doi.org/10.1016/j.ecocom.2020.100826 doi: 10.1016/j.ecocom.2020.100826
![]() |
[14] |
V. Kumar, N. Kumari, Stability and bifurcation analysis of hassell-varley prey-predator system with fear effect, Int. J. Appl. Comput. Math., 6 (2020), 1–20. http://dx.doi.org/10.1007/s40819-020-00899-y doi: 10.1007/s40819-020-00899-y
![]() |
[15] | S. A. Rahi, S. Kurnaz, R. K. Naji, The impact of fear on a stage structure predator system with anti-predator behavior, Appl. Nanosci., (2020), 1–16. http://dx.doi.org/10.1007/s13204-021-02160-4 |
[16] |
N. Pati, S. Garai, M. Hossain, G. C. Layek, N. Pal, Fear induced multistability in a predator-prey model, Int. J. Bifurc. Chaos, 31 (2021), 2150150. https://doi.org/10.1142/s0218127421501509 doi: 10.1142/s0218127421501509
![]() |
[17] |
I. U. Khan, S. Tang, B. Tang, The state-dependent impulsive model with action threshold depending on the pest density and its changing rate, Complexity, 2019 (2019), 6509867. http://dx.doi.org/10.1155/2019/6509867 doi: 10.1155/2019/6509867
![]() |
[18] | W. Zhao, J. Li, X. Meng, Dynamical analysis of SIR epidemic model with nonlinear pulse vaccination and lifelong immunity, Discrete Dynam. Nat. Soc., 2015. http://dx.doi.org/10.1155/2015/848623 |
[19] |
S. Tang, B. Tang, A. Wang, Y. Xiao, Holling II predator-prey impulsive semi-dynamic model with complex Poincaré map, Nonlinear Dynam., 81 (2015), 1575–1596. http://dx.doi.org/10.1007/s11071-015-2092-3 doi: 10.1007/s11071-015-2092-3
![]() |
[20] |
X. Meng, L. Zhang, Evolutionary dynamics in a lotka-volterra competition model with impulsive periodic disturbance, Math. Methods Appl. Sci., 39 (2016), 177–188. http://dx.doi.org/10.1002/mma.3467 doi: 10.1002/mma.3467
![]() |
[21] |
X. Yu, S. Yuan, T. Zhang, Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling, Nonlinear Anal. Hybrid Syst., 34 (2019), 209–225. http://dx.doi.org/10.1016/j.nahs.2019.06.005 doi: 10.1016/j.nahs.2019.06.005
![]() |
[22] |
D. Fang, Y. Pei, Y. Lv, L. Chen, Periodicity induced by state feedback controls and driven by disparate dynamics of a herbivore–plankton model with cannibalism, Nonlinear Dynam., 90 (2017), 2657–2672. http://dx.doi.org/10.1007/s11071-017-3829-y doi: 10.1007/s11071-017-3829-y
![]() |
[23] | D. Li, Y. Liu, H. Cheng, Dynamic complexity of a phytoplankton-fish model with the impulsive feedback control by means of poincarmap, Complexity, 2020. http://dx.doi.org/10.1155/2020/8974763 |
[24] |
J. Yang, S. Tang, Holling type II predator-prey model with nonlinear pulse as state-dependent feedback control, Elsevier Sci. Publishers B. V., 291 (2016), 225–241. http://dx.doi.org/10.1016/j.cam.2015.01.017 doi: 10.1016/j.cam.2015.01.017
![]() |
[25] |
Z. Shi, H. Cheng, Y. Liu, Y. Wang, Optimization of an integrated feedback control for a pest management predator-prey model, Math. Biosci. Eng., 16 (2019), 7963–7981. http://dx.doi.org/10.3934/mbe.2019401 doi: 10.3934/mbe.2019401
![]() |
[26] |
I. U. Khan, S. Tang, The impulsive model with pest density and its change rate dependent feedback control, Discrete Dynam. Nat. Soc., 2020 (2020), 1–20. http://dx.doi.org/10.1155/2020/4561241 doi: 10.1155/2020/4561241
![]() |
[27] |
T. Li, W. Zhao, Periodic solution of a neutral delay leslie predator-prey model and the effect of random perturbation on the smith growth model, Complexity, 2020 (2020), 1–15. http://dx.doi.org/10.1155/2020/8428269 doi: 10.1155/2020/8428269
![]() |
[28] |
Y. Li, Y. Li, Y. Liu, H. Cheng, Stability analysis and control optimization of a prey-predator model with linear feedback control, Discrete Dynam. Nat. Soc., 2018 (2018), 1–12. http://dx.doi.org/10.1155/2018/4945728 doi: 10.1155/2018/4945728
![]() |
[29] |
Z. Shi, H. Cheng, Y. Liu, Y. Li, A cydia pomonella integrated management predator-prey model with smith growth and linear feedback control, IEEE Access, 7 (2019), 126066–126076. http://dx.doi.org/10.1109/ACCESS.2019.2938772 doi: 10.1109/ACCESS.2019.2938772
![]() |
[30] |
H. Qi, X. Leng, X. Meng, T. Zhang, Periodic solution and ergodic stationary distribution of seis dynamical systems with active and latent patients, Qual. Theory Dynam. Syst., 18 (2018), 347–369. http://dx.doi.org/10.1007/s12346-018-0289-9 doi: 10.1007/s12346-018-0289-9
![]() |
[31] | G. Wang, M. Yi, S. Tang, Dynamics of an antitumour model with pulsed radioimmunotherapy, Comput. Math. Methods Med., 2022. http://dx.doi.org/https://doi.org/10.1155/2022/4692772 |
[32] |
W. Wang, X. Lai, Global stability analysis of a viral infection model in a critical case, Math. Biosci. Eng., 17 (2020), 1442–1449. http://dx.doi.org/10.3934/mbe.2020074 doi: 10.3934/mbe.2020074
![]() |
[33] |
W. Li, T. Zhang, Y. Wang, H. Cheng, Dynamic analysis of a plankton–herbivore state-dependent impulsive model with action threshold depending on the density and its changing rate, Nonlinear Dynam., 107 (2022), 2951–2963. http://dx.doi.org/10.1007/s11071-021-07022-w doi: 10.1007/s11071-021-07022-w
![]() |
[34] |
B. Tang, W. Zhao, Sliding dynamics and bifurcations of a filippov system with nonlinear threshold control, Int. J. Bifurc. Chaos, 31 (2021), 2150214. http://dx.doi.org/10.1142/S021812742150214X doi: 10.1142/S021812742150214X
![]() |
[35] | Y. Tian, H. Li, The study of a predator-prey model with fear effect based on state-dependent harvesting strategy, Complexity, 2022. http://dx.doi.org/10.1155/2022/9496599 |
[36] |
Q. Zhang, B. Tang, S. Tang, Vaccination threshold size and backward bifurcation of sir model with state-dependent pulse control, J. Theoret. Biol., 455 (2018), 75–85. http://dx.doi.org/10.1016/j.jtbi.2018.07.010 doi: 10.1016/j.jtbi.2018.07.010
![]() |
[37] |
R. J Smith, E. J. Schwartz, Predicting the potential impact of a cytotoxic t-lymphocyte hiv vaccine: How often should you vaccinate and how strong should the vaccine be?, Math. Biosci., 212 (2008), 180–187. http://dx.doi.org/10.1016/j.mbs.2008.02.001 doi: 10.1016/j.mbs.2008.02.001
![]() |
[38] |
B. Tang, Y. Xiao, S. Tang, R. A. Cheke, A feedback control model of comprehensive therapy for treating immunogenic tumours, Int. J. Bifurc. Chaos, 26 (2016), 1650039. http://dx.doi.org/10.1142/S0218127416500395 doi: 10.1142/S0218127416500395
![]() |
[39] |
Q. Zhang, S. Tang, Bifurcation analysis of an ecological model with nonlinear state–dependent feedback control by poincaré map defined in phase set, Commun. Nonlinear Sci. Numer. Simul., 108 (2022), 106212. http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2021.106212 doi: 10.1016/j.cnsns.2021.106212
![]() |
[40] |
Z. Liang, G. Pang, X. Zeng, Y. Liang, Qualitative analysis of a predator–prey system with mutual interference and impulsive state feedback control, Nonlinear Dynam., 87 (2017), 1495–1509. http://dx.doi.org/10.1007/s11071-016-3129-y doi: 10.1007/s11071-016-3129-y
![]() |
1. | Liang Kong, Yang Liu, Jia-hua Wang, Mei-jun Lv, Ya-zhu Wang, Wan-ping Sun, Hui-min Cao, Rui-bo Guo, Lu Zhang, Yang Yu, Juan Zang, Lian-qun Jia, Xue-tao Li, Linggui Zhugan decoction ameliorating mitochondrial damage of doxorubicin-induced cardiotoxicity by modulating the AMPK-FOXO3a pathway targeting BTG2, 2025, 139, 09447113, 156529, 10.1016/j.phymed.2025.156529 | |
2. | Haonan Lin, Yixuan Liang, Wangqiang Zhao, Junwei Cao, Tianqi Wang, Changmiao Wang, Reassessing the role of nitric oxide in the pathogenesis of sphincter of Oddi dysfunction, 2025, 13, 2052-0034, 10.1093/gastro/goaf001 |
Gene name | Forward | Reverse |
Serpine1 | TGGTGGTGACTACTACGACATCCTG | GAATGCTGGTGATGGCGGAGAG |
Mmp9 | GTGAAGACGCAGACGGTGGATC | TAGAAGCGGTCCTGGCAGAAGTAG |
Plg | GTGGCGTTACCTGTCAGAAGTGG | CCTGTTGGTCGTTGTCTGGATTCC |
Ccnb1 | GTGATGTGGATGCGGAAGATGGAG | GGCTCTCATGTTTCCAGTGACCTC |
Cacna2d2 | ACTACTCCAATCGCCCCTCT | GAGTAGGAGATGGAGCGTGC |
Rad51 | TGCGTATGCTCGTGGGTTCAAC | AGCGGTGGCACTGTCTACAATAAG |
Prkcb | AAACCATCAAGTGCTCCCTTAACCC | CCCAAATCTCCACGGACAGTCTTC |
Alox5 | TCACCATCGCCATCAACACCAAG | AGCACAGTGAGGTATAGGTCAGGTC |
Adora2a | GCCTATCGCATCCGTGAGTTCC | GTGCCTCCTGCCTTGAAGAGTTC |
Chrnb4 | GCCGATGGAACCTATGAAGTGTCTG | GGGAAGTGCCTGACCTCAATCTTG |
Aurkb | AGAAAGTGGATCTGTGGTGCATTGG | CGCCTGTAAGTCTCGTTGTGTGAG |
Top2a | ATGTTGAATGGCACCGAGAAGACC | CGGCTCTCTCCACCTCTGACAG |
Tyms | TGCCCTTCAACATTGCCAGCTAC | GTGTGCGTCTCCCAGTGTATGC |
Kif11 | CGGAAAGCTAACGCCCACTCAG | TCTTATCAGCCAGTCCTCCAGTTCG |
Kcnq1 | GACGATTGCCTCCTGCTTCTCTG | GCCTCTGCTTCTGCTGGACTTTC |
Casq2 | ACAACACCAACAATCCTGACCTGAG | GTCTTCTCCCAGTAGGCAACAAGC |
Bard1 | AGGCAAACAGGGCTCTCAGAAAAC | GAAGGTAGTGGACAAGGCGAATGG |
Lck | AGCATAACGGTGAATGGTGGAAGG | CTTGCGGCTCAGGCTCTTGAAG |
Jak3 | GTGCTGCTCAAGGTGCTGGATG | ACACGAGATGCGGGTAGGACAC |
Rasgrp3 | CACGCCTCAAAGAGACCCATTCC | TGAAACCATCACAGTCGGCAAAGG |
Adipoq | TTTGTGTACCGCTCAGCCTTCAG | GTGGTGCCATCGTAGTGGTTCTG |
Gh1 | GCTGATGCGGGAACTAGAAGATGG | TCGTTGCTGCGTAAGTTGGTGTC |
C-kit | GGCAAGATTTGTGTGTTGTCT | AGATGAAGGGAGAAACTGCTC |
Gapdh | CATGTCTGGCAAAGTGGATAT | CGTGGGTAGAATCATACTGGA |
No. | RT/min | Ion mode | Measured mass /Da | Calculated mass /Da | Error/ppm | MS/MS | Molecular formula | Identification | Source |
1 | 0.84 | [M-H]- | 173.1034 | 173.1033 | 0.681 | 173.10339;156.07675;131.08128 | C6H14N4O2 | Arginine* | M.H. |
2 | 0.88 | [M+FA-H]- | 195.0501 | 195.0499 | 1.030 | 195.05022;177.03963;129.01799;99.00733 | C5H10O5 | Arabinose[x] | M.H. |
3 | 0.89 | [M+H]+ | 118.0867 | 118.0863 | 3.598 | 118.08656;100.07622;72.08146 | C5H11NO2 | Valine[x] | M.H. |
4 | 0.89 | [M+H]+ | 138.0551 | 138.0550 | 1.267 | 138.05498;110.06044;94.06567 | C7H7NO2 | Trigonelline[x] | M.H. |
5 | 0.90 | [M-H]- | 179.0550 | 179.0550 | 0.142 | 179.055 | C6H12O6 | Glucose* | M.H. |
6 | 0.90 | [M+FA-H]- | 549.1670 | 549.1661 | 1.547 | 549.16809;503.16235;341.10956;179.05505 | C18H32O16 | Raffinose[x] | M.H. |
7 | 0.96 | [M-H]- | 341.1087 | 341.1078 | 2.616 | 341.10913;179.05518;119.03361;89.02291 | C12H22O11 | Sucrose* | M.H. |
8 | 0.98 | [M-H]- | 191.0552 | 191.0550 | 1.023 | 191.01898;111.00737;87.00727 | C7H12O6 | Quinic acid* | M.H. |
9 | 1.01 | [M-H]- | 149.0080 | 149.0081 | -0.633 | 149.09593;92.92764 | C4H6O6 | Tartaric acid[x] | M.H. |
10 | 1.09 | [M-H]- | 133.0128 | 133.0131 | -2.404 | 133.01285;115.00210;89.02249;71.01216 | C4H6O5 | Malic acid[x] | M.H. |
11 | 1.09 | [M-H]- | 115.0022 | 115.0026 | -3.175 | 115.00217;71.01230 | C4H4O4 | Maleic acid[x] | M.H. |
12 | 1.29 | [M+H]+ | 123.0557 | 123.0553 | 3.093 | 123.05553;108.05737;95.08607;80.05014 | C6H6N2O | Nicotinamide[x] | M.H. |
13 | 1.33 | [M+H]+ | 144.1020 | 144.1019 | 0.797 | 144.10194;100.35320;84.08141 | C7H13NO2 | Stachydrine* | GC |
14 | 1.42 | [M-H]- | 191.0187 | 191.0186 | 0.581 | 191.01889;173.00797;111.00725;87.00718 | C6H8O7 | Citric acid[x] | M.H. |
15 | 1.46 | [M+H]+ | 130.0501 | 130.0499 | 1.848 | 130.05000;84.04503 | C5H7NO3 | Pyroglutamic acid[x] | M.H. |
16 | 1.58 | [M+H]+ | 182.0814 | 182.0812 | 1.374 | 182.13684;165.05475;136.07573;119.04947 | C9H11NO3 | Tyrosine* | M.H. |
17 | 2.01 | [M-H]- | 169.0131 | 169.0131 | -0.235 | 169.0133;125.0231 | C7H6O5 | Gallic acid* | M.H. |
18 | 2.08 | [M+H]+ | 152.0569 | 152.0567 | 1.273 | 152.05675;135.03027;110.03525 | C5H5N5O | Guanine* | M.H. |
19 | 2.09 | [M-H]- | 282.0843 | 282.0833 | 3.527 | 282.08444;150.04097;133.01430;108.01913 | C10H13N5O5 | Guanosine* | M.H. |
20 | 2.13 | [M+H]+ | 166.1229 | 166.1226 | 1.681 | 166.12270;149.09624;121.10149;93.07048 | C10H15NO | Hordenine[x] | GC |
21 | 3.59 | [M+H]+ | 166.0865 | 166.0863 | 1.233 | 166.0862;148.11176;124.03969;106.06532 | C9H11NO2 | L-Phenylalanine* | M.H. |
22 | 6.51 | [M-H]- | 183.0290 | 183.0288 | 0.984 | 183.02908;168.00549;139.03885;124.01530 | C8H8O5 | Methyl Gallate* | SY |
23 | 6.66 | [M-H]- | 203.0819 | 203.0815 | 1.703 | 203.08202;159.09161;142.06496;116.04915 | C11H12N2O2 | Tryptophan[x] | M.H. |
24 | 7.42 | [M-H]- | 285.0615 | 285.0605 | 3.600 | 285.06174;152.01036;108.02022 | C12H14O8 | Uralenneoside[x] | GC |
25 | 7.69 | [M-H]- | 165.0546 | 165.0546 | -0.307 | 165.05461;141.78123;121.06437;93.03300 | C9 H10O3 | Phloretic acid[x] | GC |
26 | 8.40 | [M+FA-H]- | 389.1455 | 389.1442 | 3.229 | 389.14597;343.14001;181.08600;151.07516 | C16H24O8 | Mudanpioside F[y] | SY |
27 | 8.44 | [M-H]- | 289.0718 | 289.0707 | 3.755 | 289.07199;245.08183;203.07066;109.02801 | C15H14O6 | (+)-Catechin* | SY |
28 | 8.73 | [M-H]- | 121.0281 | 121.0284 | -2.280 | 121.02818;119.04868;94.02834 | C7H6O2 | 4-Hydroxybenzaldehyde[x] | GC |
29 | 9.64 | [M-H]- | 179.0340 | 179.0339 | 0.362 | 179.03398;135.04384;107.04886 | C9H8O4 | Caffeic acid* | M.H. |
30 | 9.70 | [M-H]- | 543.1178 | 543.1167 | 2.057 | 543.15491;255.06639;135.00732;119.04897 | C23H28O13S | Paeoniflorin Sulfite[y] | SY |
31 | 9.88 | [M-H]- | 495.1507 | 495.1497 | 2.014 | 495.15140;281.06665;137.02313;93.03300 | C23H28O12 | Oxypaeoniflorin* | SY |
32 | 12.53 | [M-H]- | 121.0279 | 121.0284 | -4.511 | 121.02815;119.04897;93.03310 | C7H6O2 | 3-Hydroxybenzaldehyde* | SY |
33 | 12.54 | [M+H]+ | 197.0810 | 197.0808 | 0.632 | 197.08055;179.07030;133.06485;105.07025 | C10H12O4 | Paeonilactone B[y] | SY |
34 | 12.55 | [M+FA-H]- | 525.1610 | 525.1603 | 1.414 | 525.16180;479.15598;283.08264;121.02814 | C23H28O11 | Albiflorin* | SY |
35 | 12.74 | [M+H]+ | 319.1180 | 319.1176 | 1.050 | 319.11862;197.08090;151.07539;105.03388 | C17H18O6 | Paeoniflorigenone* | SY |
36 | 12.87 | [M-H]- | 163.0389 | 163.0390 | -0.678 | 163.03896;119.04886 | C9H8O3 | p-Coumaric acid[x] | M.H. |
37 | 13.01 | [M-H]- | 197.0447 | 197.0445 | 1.219 | 197.04483;182.02116;166.99760;123.00723 | C9H10O5 | Ethyl Gallate* | SY |
38 | 14.02 | [M+H]+ | 195.0654 | 195.0652 | 1.306 | 195.06525;180.04169;135.04424 | C10H10O4 | Ferulic acid* | SY |
39 | 14.10 | [M+FA-H]- | 525.1611 | 525.1603 | 1.529 | 525.16205;449.14566;327.10876;121.02717 | C23H28O11 | Paeoniflorin* | SY |
40 | 14.12 | [M-H]- | 121.0272 | 121.0284 | -9.964 | 121.02805;119.04849;93.03285 | C7H6O2 | 2-Hydroxybenzaldehyde | SY |
41 | 14.58 | [M-H]- | 593.1513 | 593.1501 | 2.046 | 593.15198;473.10907;383.07767;353.06711 | C27H30O15 | Vcenin-II[x] | GC |
42 | 14.88 | [M+H]+ | 179.0341 | 179.0339 | 1.367 | 179.07022;151.07547;133.06494;105.07031 | C9H6O4 | 5, 7-Dihydroxycoumarin[x] | GC |
43 | 15.89 | [M-H]- | 417.1193 | 417.1180 | 3.072 | 417.11948;255.06616;153.01817;119.04880 | C21H22O9 | Neoliquiritin* | GC |
44 | 16.29 | [M-H]- | 563.1405 | 563.1395 | 1.719 | 563.14099;443.09879;383.07742;353.06689 | C26H28O14 | Schaftoside[x] | GC |
45 | 16.58 | [M-H]- | 137.0231 | 137.0233 | -1.683 | 137.0232; 93.0332 | C7H6O3 | 3, 4-Dihydroxybenzaldehyde* | M.H. |
46 | 16.60 | [M-H]- | 563.1405 | 549.1603 | 1.719 | 549.16174;429.10385;255.06619;135.00745 | C26H30O13 | Naringenin 7-O-(2-β-D-Apiofuranosyl)-β-D-glucopyranoside[x] | GC |
47 | 16.64 | [M-H]- | 563.1404 | 563.1395 | 1.613 | 563.14105;473.10779;383.07770;353.06702 | C26H28O14 | Isoschaftoside[x] | GC |
48 | 16.73 | [M-H]- | 417.1190 | 417.1180 | 2.281 | 417.11957;255.06628;153.01817;135.00742 | C21H22O9 | Liquiritin* | GC |
49 | 17.03 | [M+H]+ | 581.1873 | 581.1865 | 1.339 | 581.18451;419.13376;257.08060;137.02328 | C27H32O14 | Isoliquiritigenin-4, 4'-diglucoside[x] | GC |
50 | 17.34 | [M+H]+ | 465.1036 | 465.1028 | 1.715 | 465.11786;333.18991;135.11693;107.08585 | C21H20O12 | Hyperin* | SY |
51 | 17.52 | [M-H]- | 549.1613 | 549.1603 | 1.917 | 549.16064;255.06677;153.01819;119.04881 | C26H30O13 | Liquiritin apiroside[x] | GC |
52 | 17.73 | [M-H]- | 631.1669 | 631.1658 | 1.780 | 631.16779;491.11960;313.05685;169.01320 | C30H32O15 | Galloylpaeoniflorin* | SY |
53 | 18.82 | [M+H]+ | 465.1037 | 465.1028 | 2.102 | 465.11781;285.07422;153.12750;135.11693 | C21H20O12 | Isoquercitrin* | SY |
54 | 19.21 | [M+H]+ | 301.0709 | 301.0707 | 0.749 | 301.07056;286.04709;167.03397;105.03389 | C16H12O6 | Pratensein[x] | GC |
55 | 19.24 | [M-H]- | 433.1140 | 433.1129 | 2.440 | 433.11423;271.06122;151.00252;119.04887 | C21H22O10 | Chalconaringenin 4-O-glucoside[x] | GC |
56 | 19.73 | [M+H]+ | 579.1715 | 579.1708 | 1.171 | 579.17090;325.07077;121.02876 | C27H30O14 | Violanthin[x] | GC |
57 | 20.11 | [M+H]+ | 481.1711 | 481.1704 | 1.272 | 481.19099;197.08093;133.06490;105.03391 | C23H28O11 | Mudanpioside I | SY |
58 | 20.14 | [M-H]- | 301.0716 | 301.0707 | 2.974 | 301.07159;286.04800;191.03429;150.03105 | C16H14O6 | Hesperetin* | GC |
59 | 20.27 | [M+H]+ | 301.0708 | 301.0707 | 0.549 | 301.07059;167.03403;105.03387 | C16H12O6 | Rhamnocitrin[x] | GC |
60 | 20.53 | [M+FA-H]- | 507.1504 | 507.1497 | 1.415 | 507.15225;461.14590;339.10834;177.05472 | C23H26O10 | Lactiflorin* | SY |
61 | 20.68 | [M-H]- | 431.0982 | 431.0973 | 2.173 | 431.09805;268.03763 | C21H20O10 | kaempferol-3-rhamnoside[x] | GC |
62 | 21.55 | [M-H]- | 255.0661 | 255.0652 | 3.547 | 255.06625;153.01811;135.00746;119.04885 | C15H12O4 | Liquiritigenin* | GC |
63 | 22.01 | [M-H]- | 417.1190 | 417.1180 | 2.425 | 417.11951;255.06613;119.04876 | C21H22O9 | Isoliquiritin* | GC |
64 | 22.09 | [M-H]- | 549.1616 | 549.1603 | 1.465 | 549.16174;255.06610;135.00732 | C26H30O13 | Isoliquiritin Apioside[x] | GC |
65 | 22.22 | [M-H]- | 459.1298 | 459.1286 | 2.715 | 459.13025;255.06625;153.01826;119.04884 | C23H24O10 | 6'-Acetyliquiritin[x] | GC |
66 | 22.28 | [M+FA-H]- | 475.1245 | 475.1235 | 2.205 | 475.12463;267.06631;252.04248 | C22H22O9 | Ononin* | GC |
67 | 22.31 | [M+H]+ | 563.1763 | 563.1759 | 0.733 | 563.17450;269.08069 | C27H30O13 | Glycyroside[x] | GC |
68 | 22.57 | [M-H]- | 591.1721 | 591.1708 | 2.179 | 591.17230;549.16211;255.06621;135.00746 | C28H32O14 | Liquiritigenin-4′-O-[β-D-3-O-acetyl-apiofuranosyl-(1-2)]-β-D-glucopyranoside[x] | GC |
69 | 22.71 | [M-H]- | 285.0768 | 285.0758 | 3.613 | 285.07687;270.05347;177.01819;150.03105 | C16H14O5 | Licochalcone B* | GC |
70 | 22.88 | [M-H]- | 549.1614 | 549.1603 | 2.026 | 549.16180;417.11899;255.06616;153.01814 | C26H30O13 | Licuraside[x] | GC |
71 | 23.19 | [M-H]- | 263.1290 | 263.1278 | 4.501 | 263.12851;219.13876;104.11462;151.07529 | C15H20O4 | (+)-Asycisic acid[x] | M.H. |
72 | 23.25 | [M-H]- | 599.1773 | 599.1759 | 2.324 | 599.17773;281.06717;137.02309;93.03311 | C30H32O13 | Benzoyloxypaeoniflorin* | SY |
73 | 23.90 | [M+H]+ | 255.0653 | 255.0652 | 0.489 | 255.06505;137.02332;85.57477 | C15H10O4 | Daidzein* | GC |
74 | 24.03 | [M-H]- | 695.1986 | 695.1970 | 2.249 | 695.19916;531.15088;255.0612;135.00742 | C35 H36 O15 | Licorice-glycoside B/D1/D2[x] | GC |
75 | 24.08 | [M-H]- | 299.0559 | 299.0550 | 3.095 | 299.05618;284.03284;199.03935;147.00769 | C16H12O6 | 7, 2', 4'-Trihydroxy-5-methoxy-3-arylcoumarin[x] | GC |
76 | 25.71 | [M-H]- | 285.0768 | 285.0758 | 3.718 | 285.07684;270.05359;177.01857;150.03105 | C16H14O5 | Homobutein[x] | GC |
77 | 25.91 | [M+FA-H]- | 491.1196 | 491.1184 | 2.499 | 491.12021;329.13995;153.01823;109.02785 | C22H22O10 | Trifolirhizin[x] | GC |
78 | 26.27 | [M-H]- | 269.0819 | 269.0808 | 4.105 | 269.046 | C16H14O4 | Echinatin[x] | GC |
79 | 26.60 | [M-H]- | 725.2094 | 725.2076 | 2.398 | 725.20972;531.15088;255.06610;135.00740 | C36 H38O16 | Licorice-glycoside A/C1/C2 | GC |
80 | 27.02 | [M+FA-H]- | 629.1876 | 629.1865 | 1.809 | 629.18817;583.18237;121.02798 | C30H32O12 | Benzoylalbiflorin* | SY |
81 | 27.17 | [M+H]+ | 287.0552 | 287.0550 | 0.681 | 287.05493;151.03905;121.02861 | C15H10O6 | Kaempferol* | M.H. |
82 | 27.54 | [M+FA-H]- | 629.1877 | 629.1865 | 1.999 | 629.18726;583.18323;553.17212;121.02816 | C30H32O12 | Benzoylpaeoniflorin* | SY |
83 | 27.54 | [M-H]- | 301.0716 | 301.0707 | 3.173 | 301.07151;286.04802;191.03429;150.03101 | C16H14O6 | Tetrahydroxymethoxychalcone[x] | GC |
84 | 28.31 | [M-H]- | 255.0660 | 255.0652 | 3.233 | 255.06618;153.01802;135.00734;119.04870 | C15H12O4 | Isoliquiritigenin* | GC |
85 | 29.71 | [M-H]- | 267.0662 | 267.0652 | 3.650 | 267.06635;252.04263 | C16H12O4 | Formononetin* | GC |
86 | 31.54 | [M-H]- | 837.3913 | 837.3903 | 1.162 | 837.39191;775.39111;485.32816;351.05701 | C42H62O17 | Licorice saponin P2[x] | GC |
87 | 31.90 | [M-H]- | 895.3972 | 895.3958 | 1.579 | 895.39838;628.15387;351.05673;113.02299 | C44H64O19 | Uralsaponin F[x] | GC |
88 | 33.09 | [M-H]- | 853.3866 | 853.3852 | 1.592 | 853.38739;351.05695;289.05539;113.02303 | C42H62O18 | 22-Hydroxy-licorice saponin G2[x] | GC |
89 | 33.46 | [M-H]- | 819.3817 | 819.3798 | 2.377 | 819.38220;573.36359;351.05740;193.03456 | C42H60O16 | Licorice saponin E2[x] | GC |
90 | 34.04 | [M-H]- | 879.4027 | 879.4009 | 2.068 | 879.40271;581.34503;351.05740 | C44H64O18 | 22-Acetoxyl-glycyrrhizin[x] | GC |
91 | 34.42 | [M-H]- | 983.4498 | 983.4482 | 1.622 | 983.44983;821.39618;627.35510;351.05698 | C48H72O21 | Licorice saponin A3[x] | GC |
92 | 34.82 | [M-H]- | 863.4077 | 863.4060 | 1.938 | 863.40833;758.07990;351.05658;193.03439 | C44H64O17 | 22β-Acetoxyglycyrrhaldehyde[x] | GC |
93 | 35.27 | [M-H]- | 353.1030 | 353.1020 | 2.932 | 353.10287;284.03271;125.02303 | C20H18O6 | Licoisoflavone A[x] | GC |
94 | 35.46 | [M-H]- | 353.1395 | 353.1384 | 3.341 | 353.13989;173.03392;165.01820;125.02313 | C21H22O5 | Gancaonin I[x] | GC |
95 | 35.57 | [M-H]- | 837.3920 | 837.3903 | 1.962 | 837.39221;732.52264;351.05753;193.03474 | C42H62O17 | Licorice saponin Q2[x] | GC |
96 | 36.42 | [M-H]- | 367.1186 | 367.1176 | 2.575 | 367.11871;309.04059;203.07121 | C21H20O6 | Glycycoumarin[x] | GC |
97 | 37.02 | [M-H]- | 353.1031 | 353.1020 | 3.187 | 353.10321;297.04050 | C20H18O6 | Licoflavonol[x] | GC |
98 | 37.71 | [M-H]- | 837.3919 | 837.3903 | 1.819 | 837.39270;732.47290;351.05701 | C42H62O17 | Licorice saponin G2[x] | GC |
99 | 37.90 | [M-H]- | 337.1447 | 337.1434 | 3.780 | 337.10840;282.05301 | C21H22O4 | Licochalcone A* | GC |
100 | 38.15 | [M-H]- | 351.0875 | 351.0863 | 3.262 | 351.08752;333.07715;283.09756;177.01840 | C20H16O6 | Licoisoflavone B[x] | GC |
101 | 38.44 | [M-H]- | 837.3919 | 837.3903 | 1.891 | 837.39282;607.58362;351.05847;193.03423 | C42H62O17 | Uralsaponin N[x] | GC |
102 | 38.61 | [M-H]- | 967.4548 | 967.4533 | 1.560 | 967.45569;860.47540;497.11691 | C48H72O20 | Rhaoglycyrrhizin[x] | GC |
103 | 39.22 | [M-H]- | 821.3973 | 821.3954 | 2.274 | 821.39740;724.18427;589.77423;351.05710 | C42H62O16 | Glycyrrhizic acid* | GC |
104 | 39.22 | [M-H]- | 823.4035 | 823.4111 | -9.184 | 823.41315;574.30713;351.05688;113.02302 | C42H64O16 | Uralsaponin C[x] | GC |
105 | 39.64 | [M-H]- | 821.3972 | 821.3954 | 2.201 | 821.39734;351.05698;193.03477;113.02299 | C42H62O16 | Licorice saponin H2[x] | GC |
106 | 40.54 | [M-H]- | 807.4181 | 807.4161 | 2.406 | 807.41821;351.05682;193.03471;113.02308 | C42H64O15 | Licoricesaponin B2[x] | GC |
107 | 40.69 | [M-H]- | 985.4656 | 985.4639 | 1.720 | 985.46442;497.11523;321.08276;113.02301 | C48H74O21 | Yunganoside D1 or Yunganoside G1[x] | GC |
108 | 40.77 | [M-H]- | 807.4186 | 807.4161 | 2.333 | 807.41840;351.05688;193.03471;113.02303 | C42H64O15 | 22-Dehydroxyural saponin[x] | GC |
109 | 40.90 | [M-H]- | 821.3978 | 821.3954 | 2.203 | 821.39771;351.05685;193.03465;113.02307 | C42H62O16 | Licorice Saponin K2[x] | GC |
110 | 40.96 | [M-H]- | 823.4038 | 823.4111 | -8.880 | 823.41223;351.05713;193.03426;113.02285 | C42H64O16 | Licorice Saponin SJ2[x] | GC |
111 | 42.81 | [M-H]- | 255.2327 | 255.2319 | 3.461 | 255.13889;149.09576;119.04839;93.03307 | C16H32O2 | Palmitic Acid[x] | M.H. |
*Note: * means that the ingredient was confirmed by the reference substance (Supplementary material); [x] means that ingredient was confirmed by the reference literature "Chinese Journal of Natural Medicines, 19 (2021), 305–320. https://doi.org/10.1016/S1875-5364(21)60031-6"; [y] means that ingredient was confirmed by the reference literature "Journal of Chinese Mass Spectrometry Society, 35 (2014), 269–278. https://doi.org/10.7538/zpxb.2014.35.03.0269"; SY: Paeonia lactiflora Pall., GC:Glycyrrhiza uralensis Fisch., M.H.:SY and GC. |
Identification | GI absorption | Lipinski # violations | Ghose # violations | MW | Rotatable bonds | H-bond acceptors | H-bond donors | TPSA |
Hordenine | High | 0 | 0 | 165.23 | 3 | 2 | 1 | 23.47 |
Methyl Gallate | High | 0 | 0 | 184.15 | 2 | 5 | 3 | 86.99 |
Phloretic acid | High | 0 | 0 | 166.17 | 3 | 3 | 2 | 57.53 |
(+)-Catechin | High | 0 | 0 | 290.27 | 1 | 6 | 5 | 110.38 |
Caffeic acid | High | 0 | 0 | 180.16 | 2 | 4 | 3 | 77.76 |
Paeonilactone B | High | 0 | 0 | 196.2 | 0 | 4 | 1 | 63.6 |
Paeoniflorigenone | High | 0 | 0 | 318.32 | 4 | 6 | 1 | 82.06 |
p-Coumaric acid | High | 0 | 0 | 164.16 | 2 | 3 | 2 | 57.53 |
Ethyl Gallate | High | 0 | 0 | 198.17 | 3 | 5 | 3 | 86.99 |
Ferulic acid | High | 0 | 0 | 194.18 | 3 | 4 | 2 | 66.76 |
Pratensein | High | 0 | 0 | 300.26 | 2 | 6 | 3 | 100.13 |
Hesperetin | High | 0 | 0 | 302.28 | 2 | 6 | 3 | 96.22 |
Rhamnocitrin | High | 0 | 0 | 300.26 | 2 | 6 | 3 | 100.13 |
Liquiritigenin | High | 0 | 0 | 256.25 | 1 | 4 | 2 | 66.76 |
Ononin | High | 0 | 0 | 430.4 | 5 | 9 | 4 | 138.82 |
Licochalcone B | High | 0 | 0 | 286.28 | 4 | 5 | 3 | 86.99 |
Daidzein | High | 0 | 0 | 254.24 | 1 | 4 | 2 | 70.67 |
7, 2', 4'-Trihydroxy-5-methoxy -3-arylcoumarin | High | 0 | 0 | 300.26 | 2 | 6 | 3 | 100.13 |
Homobutein | High | 0 | 0 | 286.28 | 4 | 5 | 3 | 86.99 |
Trifolirhizin | High | 0 | 0 | 446.4 | 3 | 10 | 4 | 136.3 |
Echinatin | High | 0 | 0 | 270.28 | 4 | 4 | 2 | 66.76 |
Kaempferol | High | 0 | 0 | 286.24 | 1 | 6 | 4 | 111.13 |
Tetrahydroxymethoxy chalcone | High | 0 | 0 | 302.28 | 4 | 6 | 4 | 107.22 |
Isoliquiritigenin | High | 0 | 0 | 256.25 | 3 | 4 | 3 | 77.76 |
Formononetin | High | 0 | 0 | 270.28 | 2 | 4 | 1 | 55.76 |
Licoisoflavone A | High | 0 | 0 | 354.35 | 3 | 6 | 4 | 111.13 |
Gancaonin I | High | 0 | 0 | 354.4 | 5 | 5 | 2 | 72.06 |
Glycycoumarin | High | 0 | 0 | 368.38 | 4 | 6 | 3 | 100.13 |
Licoflavonol | High | 0 | 0 | 354.35 | 3 | 6 | 4 | 111.13 |
Licochalcone A | High | 0 | 0 | 338.4 | 6 | 4 | 2 | 66.76 |
Licoisoflavone B | High | 0 | 0 | 352.34 | 1 | 6 | 3 | 100.13 |
Palmitic Acid | High | 1 | 0 | 256.42 | 14 | 2 | 1 | 37.3 |
Ligand | Group | AURKB (4af3) | KIF11 (6hky) | PLG (4cik) |
VX6_AURKB | control | -8.8 | - | - |
GCE_KIF11 | - | -9.5 | - | |
XO3_PLG | - | - | -7 | |
Echinatin | SYGC | -8.4 | -8.2 | -6.4 |
Ethyl Gallate | -6.3 | -6.1 | -5.4 | |
Glycycoumarin | -9.3 | -7.9 | -6.3 | |
Hesperetin | -8.7 | -8.6 | -5.9 | |
Homobutein | -8.2 | -8.2 | -6.4 | |
Kaempferol | -8.8 | -8.8 | -6.3 | |
Licoflavonol | -9.1 | -7.5 | -6.4 | |
Methyl Gallate | -6.2 | -6.2 | -5.4 | |
Palmitic Acid | -6.3 | -6.2 | -5 | |
Rhamnocitrin | -8.3 | -9 | -6.3 |
Gene name | Forward | Reverse |
Serpine1 | TGGTGGTGACTACTACGACATCCTG | GAATGCTGGTGATGGCGGAGAG |
Mmp9 | GTGAAGACGCAGACGGTGGATC | TAGAAGCGGTCCTGGCAGAAGTAG |
Plg | GTGGCGTTACCTGTCAGAAGTGG | CCTGTTGGTCGTTGTCTGGATTCC |
Ccnb1 | GTGATGTGGATGCGGAAGATGGAG | GGCTCTCATGTTTCCAGTGACCTC |
Cacna2d2 | ACTACTCCAATCGCCCCTCT | GAGTAGGAGATGGAGCGTGC |
Rad51 | TGCGTATGCTCGTGGGTTCAAC | AGCGGTGGCACTGTCTACAATAAG |
Prkcb | AAACCATCAAGTGCTCCCTTAACCC | CCCAAATCTCCACGGACAGTCTTC |
Alox5 | TCACCATCGCCATCAACACCAAG | AGCACAGTGAGGTATAGGTCAGGTC |
Adora2a | GCCTATCGCATCCGTGAGTTCC | GTGCCTCCTGCCTTGAAGAGTTC |
Chrnb4 | GCCGATGGAACCTATGAAGTGTCTG | GGGAAGTGCCTGACCTCAATCTTG |
Aurkb | AGAAAGTGGATCTGTGGTGCATTGG | CGCCTGTAAGTCTCGTTGTGTGAG |
Top2a | ATGTTGAATGGCACCGAGAAGACC | CGGCTCTCTCCACCTCTGACAG |
Tyms | TGCCCTTCAACATTGCCAGCTAC | GTGTGCGTCTCCCAGTGTATGC |
Kif11 | CGGAAAGCTAACGCCCACTCAG | TCTTATCAGCCAGTCCTCCAGTTCG |
Kcnq1 | GACGATTGCCTCCTGCTTCTCTG | GCCTCTGCTTCTGCTGGACTTTC |
Casq2 | ACAACACCAACAATCCTGACCTGAG | GTCTTCTCCCAGTAGGCAACAAGC |
Bard1 | AGGCAAACAGGGCTCTCAGAAAAC | GAAGGTAGTGGACAAGGCGAATGG |
Lck | AGCATAACGGTGAATGGTGGAAGG | CTTGCGGCTCAGGCTCTTGAAG |
Jak3 | GTGCTGCTCAAGGTGCTGGATG | ACACGAGATGCGGGTAGGACAC |
Rasgrp3 | CACGCCTCAAAGAGACCCATTCC | TGAAACCATCACAGTCGGCAAAGG |
Adipoq | TTTGTGTACCGCTCAGCCTTCAG | GTGGTGCCATCGTAGTGGTTCTG |
Gh1 | GCTGATGCGGGAACTAGAAGATGG | TCGTTGCTGCGTAAGTTGGTGTC |
C-kit | GGCAAGATTTGTGTGTTGTCT | AGATGAAGGGAGAAACTGCTC |
Gapdh | CATGTCTGGCAAAGTGGATAT | CGTGGGTAGAATCATACTGGA |
No. | RT/min | Ion mode | Measured mass /Da | Calculated mass /Da | Error/ppm | MS/MS | Molecular formula | Identification | Source |
1 | 0.84 | [M-H]- | 173.1034 | 173.1033 | 0.681 | 173.10339;156.07675;131.08128 | C6H14N4O2 | Arginine* | M.H. |
2 | 0.88 | [M+FA-H]- | 195.0501 | 195.0499 | 1.030 | 195.05022;177.03963;129.01799;99.00733 | C5H10O5 | Arabinose[x] | M.H. |
3 | 0.89 | [M+H]+ | 118.0867 | 118.0863 | 3.598 | 118.08656;100.07622;72.08146 | C5H11NO2 | Valine[x] | M.H. |
4 | 0.89 | [M+H]+ | 138.0551 | 138.0550 | 1.267 | 138.05498;110.06044;94.06567 | C7H7NO2 | Trigonelline[x] | M.H. |
5 | 0.90 | [M-H]- | 179.0550 | 179.0550 | 0.142 | 179.055 | C6H12O6 | Glucose* | M.H. |
6 | 0.90 | [M+FA-H]- | 549.1670 | 549.1661 | 1.547 | 549.16809;503.16235;341.10956;179.05505 | C18H32O16 | Raffinose[x] | M.H. |
7 | 0.96 | [M-H]- | 341.1087 | 341.1078 | 2.616 | 341.10913;179.05518;119.03361;89.02291 | C12H22O11 | Sucrose* | M.H. |
8 | 0.98 | [M-H]- | 191.0552 | 191.0550 | 1.023 | 191.01898;111.00737;87.00727 | C7H12O6 | Quinic acid* | M.H. |
9 | 1.01 | [M-H]- | 149.0080 | 149.0081 | -0.633 | 149.09593;92.92764 | C4H6O6 | Tartaric acid[x] | M.H. |
10 | 1.09 | [M-H]- | 133.0128 | 133.0131 | -2.404 | 133.01285;115.00210;89.02249;71.01216 | C4H6O5 | Malic acid[x] | M.H. |
11 | 1.09 | [M-H]- | 115.0022 | 115.0026 | -3.175 | 115.00217;71.01230 | C4H4O4 | Maleic acid[x] | M.H. |
12 | 1.29 | [M+H]+ | 123.0557 | 123.0553 | 3.093 | 123.05553;108.05737;95.08607;80.05014 | C6H6N2O | Nicotinamide[x] | M.H. |
13 | 1.33 | [M+H]+ | 144.1020 | 144.1019 | 0.797 | 144.10194;100.35320;84.08141 | C7H13NO2 | Stachydrine* | GC |
14 | 1.42 | [M-H]- | 191.0187 | 191.0186 | 0.581 | 191.01889;173.00797;111.00725;87.00718 | C6H8O7 | Citric acid[x] | M.H. |
15 | 1.46 | [M+H]+ | 130.0501 | 130.0499 | 1.848 | 130.05000;84.04503 | C5H7NO3 | Pyroglutamic acid[x] | M.H. |
16 | 1.58 | [M+H]+ | 182.0814 | 182.0812 | 1.374 | 182.13684;165.05475;136.07573;119.04947 | C9H11NO3 | Tyrosine* | M.H. |
17 | 2.01 | [M-H]- | 169.0131 | 169.0131 | -0.235 | 169.0133;125.0231 | C7H6O5 | Gallic acid* | M.H. |
18 | 2.08 | [M+H]+ | 152.0569 | 152.0567 | 1.273 | 152.05675;135.03027;110.03525 | C5H5N5O | Guanine* | M.H. |
19 | 2.09 | [M-H]- | 282.0843 | 282.0833 | 3.527 | 282.08444;150.04097;133.01430;108.01913 | C10H13N5O5 | Guanosine* | M.H. |
20 | 2.13 | [M+H]+ | 166.1229 | 166.1226 | 1.681 | 166.12270;149.09624;121.10149;93.07048 | C10H15NO | Hordenine[x] | GC |
21 | 3.59 | [M+H]+ | 166.0865 | 166.0863 | 1.233 | 166.0862;148.11176;124.03969;106.06532 | C9H11NO2 | L-Phenylalanine* | M.H. |
22 | 6.51 | [M-H]- | 183.0290 | 183.0288 | 0.984 | 183.02908;168.00549;139.03885;124.01530 | C8H8O5 | Methyl Gallate* | SY |
23 | 6.66 | [M-H]- | 203.0819 | 203.0815 | 1.703 | 203.08202;159.09161;142.06496;116.04915 | C11H12N2O2 | Tryptophan[x] | M.H. |
24 | 7.42 | [M-H]- | 285.0615 | 285.0605 | 3.600 | 285.06174;152.01036;108.02022 | C12H14O8 | Uralenneoside[x] | GC |
25 | 7.69 | [M-H]- | 165.0546 | 165.0546 | -0.307 | 165.05461;141.78123;121.06437;93.03300 | C9 H10O3 | Phloretic acid[x] | GC |
26 | 8.40 | [M+FA-H]- | 389.1455 | 389.1442 | 3.229 | 389.14597;343.14001;181.08600;151.07516 | C16H24O8 | Mudanpioside F[y] | SY |
27 | 8.44 | [M-H]- | 289.0718 | 289.0707 | 3.755 | 289.07199;245.08183;203.07066;109.02801 | C15H14O6 | (+)-Catechin* | SY |
28 | 8.73 | [M-H]- | 121.0281 | 121.0284 | -2.280 | 121.02818;119.04868;94.02834 | C7H6O2 | 4-Hydroxybenzaldehyde[x] | GC |
29 | 9.64 | [M-H]- | 179.0340 | 179.0339 | 0.362 | 179.03398;135.04384;107.04886 | C9H8O4 | Caffeic acid* | M.H. |
30 | 9.70 | [M-H]- | 543.1178 | 543.1167 | 2.057 | 543.15491;255.06639;135.00732;119.04897 | C23H28O13S | Paeoniflorin Sulfite[y] | SY |
31 | 9.88 | [M-H]- | 495.1507 | 495.1497 | 2.014 | 495.15140;281.06665;137.02313;93.03300 | C23H28O12 | Oxypaeoniflorin* | SY |
32 | 12.53 | [M-H]- | 121.0279 | 121.0284 | -4.511 | 121.02815;119.04897;93.03310 | C7H6O2 | 3-Hydroxybenzaldehyde* | SY |
33 | 12.54 | [M+H]+ | 197.0810 | 197.0808 | 0.632 | 197.08055;179.07030;133.06485;105.07025 | C10H12O4 | Paeonilactone B[y] | SY |
34 | 12.55 | [M+FA-H]- | 525.1610 | 525.1603 | 1.414 | 525.16180;479.15598;283.08264;121.02814 | C23H28O11 | Albiflorin* | SY |
35 | 12.74 | [M+H]+ | 319.1180 | 319.1176 | 1.050 | 319.11862;197.08090;151.07539;105.03388 | C17H18O6 | Paeoniflorigenone* | SY |
36 | 12.87 | [M-H]- | 163.0389 | 163.0390 | -0.678 | 163.03896;119.04886 | C9H8O3 | p-Coumaric acid[x] | M.H. |
37 | 13.01 | [M-H]- | 197.0447 | 197.0445 | 1.219 | 197.04483;182.02116;166.99760;123.00723 | C9H10O5 | Ethyl Gallate* | SY |
38 | 14.02 | [M+H]+ | 195.0654 | 195.0652 | 1.306 | 195.06525;180.04169;135.04424 | C10H10O4 | Ferulic acid* | SY |
39 | 14.10 | [M+FA-H]- | 525.1611 | 525.1603 | 1.529 | 525.16205;449.14566;327.10876;121.02717 | C23H28O11 | Paeoniflorin* | SY |
40 | 14.12 | [M-H]- | 121.0272 | 121.0284 | -9.964 | 121.02805;119.04849;93.03285 | C7H6O2 | 2-Hydroxybenzaldehyde | SY |
41 | 14.58 | [M-H]- | 593.1513 | 593.1501 | 2.046 | 593.15198;473.10907;383.07767;353.06711 | C27H30O15 | Vcenin-II[x] | GC |
42 | 14.88 | [M+H]+ | 179.0341 | 179.0339 | 1.367 | 179.07022;151.07547;133.06494;105.07031 | C9H6O4 | 5, 7-Dihydroxycoumarin[x] | GC |
43 | 15.89 | [M-H]- | 417.1193 | 417.1180 | 3.072 | 417.11948;255.06616;153.01817;119.04880 | C21H22O9 | Neoliquiritin* | GC |
44 | 16.29 | [M-H]- | 563.1405 | 563.1395 | 1.719 | 563.14099;443.09879;383.07742;353.06689 | C26H28O14 | Schaftoside[x] | GC |
45 | 16.58 | [M-H]- | 137.0231 | 137.0233 | -1.683 | 137.0232; 93.0332 | C7H6O3 | 3, 4-Dihydroxybenzaldehyde* | M.H. |
46 | 16.60 | [M-H]- | 563.1405 | 549.1603 | 1.719 | 549.16174;429.10385;255.06619;135.00745 | C26H30O13 | Naringenin 7-O-(2-β-D-Apiofuranosyl)-β-D-glucopyranoside[x] | GC |
47 | 16.64 | [M-H]- | 563.1404 | 563.1395 | 1.613 | 563.14105;473.10779;383.07770;353.06702 | C26H28O14 | Isoschaftoside[x] | GC |
48 | 16.73 | [M-H]- | 417.1190 | 417.1180 | 2.281 | 417.11957;255.06628;153.01817;135.00742 | C21H22O9 | Liquiritin* | GC |
49 | 17.03 | [M+H]+ | 581.1873 | 581.1865 | 1.339 | 581.18451;419.13376;257.08060;137.02328 | C27H32O14 | Isoliquiritigenin-4, 4'-diglucoside[x] | GC |
50 | 17.34 | [M+H]+ | 465.1036 | 465.1028 | 1.715 | 465.11786;333.18991;135.11693;107.08585 | C21H20O12 | Hyperin* | SY |
51 | 17.52 | [M-H]- | 549.1613 | 549.1603 | 1.917 | 549.16064;255.06677;153.01819;119.04881 | C26H30O13 | Liquiritin apiroside[x] | GC |
52 | 17.73 | [M-H]- | 631.1669 | 631.1658 | 1.780 | 631.16779;491.11960;313.05685;169.01320 | C30H32O15 | Galloylpaeoniflorin* | SY |
53 | 18.82 | [M+H]+ | 465.1037 | 465.1028 | 2.102 | 465.11781;285.07422;153.12750;135.11693 | C21H20O12 | Isoquercitrin* | SY |
54 | 19.21 | [M+H]+ | 301.0709 | 301.0707 | 0.749 | 301.07056;286.04709;167.03397;105.03389 | C16H12O6 | Pratensein[x] | GC |
55 | 19.24 | [M-H]- | 433.1140 | 433.1129 | 2.440 | 433.11423;271.06122;151.00252;119.04887 | C21H22O10 | Chalconaringenin 4-O-glucoside[x] | GC |
56 | 19.73 | [M+H]+ | 579.1715 | 579.1708 | 1.171 | 579.17090;325.07077;121.02876 | C27H30O14 | Violanthin[x] | GC |
57 | 20.11 | [M+H]+ | 481.1711 | 481.1704 | 1.272 | 481.19099;197.08093;133.06490;105.03391 | C23H28O11 | Mudanpioside I | SY |
58 | 20.14 | [M-H]- | 301.0716 | 301.0707 | 2.974 | 301.07159;286.04800;191.03429;150.03105 | C16H14O6 | Hesperetin* | GC |
59 | 20.27 | [M+H]+ | 301.0708 | 301.0707 | 0.549 | 301.07059;167.03403;105.03387 | C16H12O6 | Rhamnocitrin[x] | GC |
60 | 20.53 | [M+FA-H]- | 507.1504 | 507.1497 | 1.415 | 507.15225;461.14590;339.10834;177.05472 | C23H26O10 | Lactiflorin* | SY |
61 | 20.68 | [M-H]- | 431.0982 | 431.0973 | 2.173 | 431.09805;268.03763 | C21H20O10 | kaempferol-3-rhamnoside[x] | GC |
62 | 21.55 | [M-H]- | 255.0661 | 255.0652 | 3.547 | 255.06625;153.01811;135.00746;119.04885 | C15H12O4 | Liquiritigenin* | GC |
63 | 22.01 | [M-H]- | 417.1190 | 417.1180 | 2.425 | 417.11951;255.06613;119.04876 | C21H22O9 | Isoliquiritin* | GC |
64 | 22.09 | [M-H]- | 549.1616 | 549.1603 | 1.465 | 549.16174;255.06610;135.00732 | C26H30O13 | Isoliquiritin Apioside[x] | GC |
65 | 22.22 | [M-H]- | 459.1298 | 459.1286 | 2.715 | 459.13025;255.06625;153.01826;119.04884 | C23H24O10 | 6'-Acetyliquiritin[x] | GC |
66 | 22.28 | [M+FA-H]- | 475.1245 | 475.1235 | 2.205 | 475.12463;267.06631;252.04248 | C22H22O9 | Ononin* | GC |
67 | 22.31 | [M+H]+ | 563.1763 | 563.1759 | 0.733 | 563.17450;269.08069 | C27H30O13 | Glycyroside[x] | GC |
68 | 22.57 | [M-H]- | 591.1721 | 591.1708 | 2.179 | 591.17230;549.16211;255.06621;135.00746 | C28H32O14 | Liquiritigenin-4′-O-[β-D-3-O-acetyl-apiofuranosyl-(1-2)]-β-D-glucopyranoside[x] | GC |
69 | 22.71 | [M-H]- | 285.0768 | 285.0758 | 3.613 | 285.07687;270.05347;177.01819;150.03105 | C16H14O5 | Licochalcone B* | GC |
70 | 22.88 | [M-H]- | 549.1614 | 549.1603 | 2.026 | 549.16180;417.11899;255.06616;153.01814 | C26H30O13 | Licuraside[x] | GC |
71 | 23.19 | [M-H]- | 263.1290 | 263.1278 | 4.501 | 263.12851;219.13876;104.11462;151.07529 | C15H20O4 | (+)-Asycisic acid[x] | M.H. |
72 | 23.25 | [M-H]- | 599.1773 | 599.1759 | 2.324 | 599.17773;281.06717;137.02309;93.03311 | C30H32O13 | Benzoyloxypaeoniflorin* | SY |
73 | 23.90 | [M+H]+ | 255.0653 | 255.0652 | 0.489 | 255.06505;137.02332;85.57477 | C15H10O4 | Daidzein* | GC |
74 | 24.03 | [M-H]- | 695.1986 | 695.1970 | 2.249 | 695.19916;531.15088;255.0612;135.00742 | C35 H36 O15 | Licorice-glycoside B/D1/D2[x] | GC |
75 | 24.08 | [M-H]- | 299.0559 | 299.0550 | 3.095 | 299.05618;284.03284;199.03935;147.00769 | C16H12O6 | 7, 2', 4'-Trihydroxy-5-methoxy-3-arylcoumarin[x] | GC |
76 | 25.71 | [M-H]- | 285.0768 | 285.0758 | 3.718 | 285.07684;270.05359;177.01857;150.03105 | C16H14O5 | Homobutein[x] | GC |
77 | 25.91 | [M+FA-H]- | 491.1196 | 491.1184 | 2.499 | 491.12021;329.13995;153.01823;109.02785 | C22H22O10 | Trifolirhizin[x] | GC |
78 | 26.27 | [M-H]- | 269.0819 | 269.0808 | 4.105 | 269.046 | C16H14O4 | Echinatin[x] | GC |
79 | 26.60 | [M-H]- | 725.2094 | 725.2076 | 2.398 | 725.20972;531.15088;255.06610;135.00740 | C36 H38O16 | Licorice-glycoside A/C1/C2 | GC |
80 | 27.02 | [M+FA-H]- | 629.1876 | 629.1865 | 1.809 | 629.18817;583.18237;121.02798 | C30H32O12 | Benzoylalbiflorin* | SY |
81 | 27.17 | [M+H]+ | 287.0552 | 287.0550 | 0.681 | 287.05493;151.03905;121.02861 | C15H10O6 | Kaempferol* | M.H. |
82 | 27.54 | [M+FA-H]- | 629.1877 | 629.1865 | 1.999 | 629.18726;583.18323;553.17212;121.02816 | C30H32O12 | Benzoylpaeoniflorin* | SY |
83 | 27.54 | [M-H]- | 301.0716 | 301.0707 | 3.173 | 301.07151;286.04802;191.03429;150.03101 | C16H14O6 | Tetrahydroxymethoxychalcone[x] | GC |
84 | 28.31 | [M-H]- | 255.0660 | 255.0652 | 3.233 | 255.06618;153.01802;135.00734;119.04870 | C15H12O4 | Isoliquiritigenin* | GC |
85 | 29.71 | [M-H]- | 267.0662 | 267.0652 | 3.650 | 267.06635;252.04263 | C16H12O4 | Formononetin* | GC |
86 | 31.54 | [M-H]- | 837.3913 | 837.3903 | 1.162 | 837.39191;775.39111;485.32816;351.05701 | C42H62O17 | Licorice saponin P2[x] | GC |
87 | 31.90 | [M-H]- | 895.3972 | 895.3958 | 1.579 | 895.39838;628.15387;351.05673;113.02299 | C44H64O19 | Uralsaponin F[x] | GC |
88 | 33.09 | [M-H]- | 853.3866 | 853.3852 | 1.592 | 853.38739;351.05695;289.05539;113.02303 | C42H62O18 | 22-Hydroxy-licorice saponin G2[x] | GC |
89 | 33.46 | [M-H]- | 819.3817 | 819.3798 | 2.377 | 819.38220;573.36359;351.05740;193.03456 | C42H60O16 | Licorice saponin E2[x] | GC |
90 | 34.04 | [M-H]- | 879.4027 | 879.4009 | 2.068 | 879.40271;581.34503;351.05740 | C44H64O18 | 22-Acetoxyl-glycyrrhizin[x] | GC |
91 | 34.42 | [M-H]- | 983.4498 | 983.4482 | 1.622 | 983.44983;821.39618;627.35510;351.05698 | C48H72O21 | Licorice saponin A3[x] | GC |
92 | 34.82 | [M-H]- | 863.4077 | 863.4060 | 1.938 | 863.40833;758.07990;351.05658;193.03439 | C44H64O17 | 22β-Acetoxyglycyrrhaldehyde[x] | GC |
93 | 35.27 | [M-H]- | 353.1030 | 353.1020 | 2.932 | 353.10287;284.03271;125.02303 | C20H18O6 | Licoisoflavone A[x] | GC |
94 | 35.46 | [M-H]- | 353.1395 | 353.1384 | 3.341 | 353.13989;173.03392;165.01820;125.02313 | C21H22O5 | Gancaonin I[x] | GC |
95 | 35.57 | [M-H]- | 837.3920 | 837.3903 | 1.962 | 837.39221;732.52264;351.05753;193.03474 | C42H62O17 | Licorice saponin Q2[x] | GC |
96 | 36.42 | [M-H]- | 367.1186 | 367.1176 | 2.575 | 367.11871;309.04059;203.07121 | C21H20O6 | Glycycoumarin[x] | GC |
97 | 37.02 | [M-H]- | 353.1031 | 353.1020 | 3.187 | 353.10321;297.04050 | C20H18O6 | Licoflavonol[x] | GC |
98 | 37.71 | [M-H]- | 837.3919 | 837.3903 | 1.819 | 837.39270;732.47290;351.05701 | C42H62O17 | Licorice saponin G2[x] | GC |
99 | 37.90 | [M-H]- | 337.1447 | 337.1434 | 3.780 | 337.10840;282.05301 | C21H22O4 | Licochalcone A* | GC |
100 | 38.15 | [M-H]- | 351.0875 | 351.0863 | 3.262 | 351.08752;333.07715;283.09756;177.01840 | C20H16O6 | Licoisoflavone B[x] | GC |
101 | 38.44 | [M-H]- | 837.3919 | 837.3903 | 1.891 | 837.39282;607.58362;351.05847;193.03423 | C42H62O17 | Uralsaponin N[x] | GC |
102 | 38.61 | [M-H]- | 967.4548 | 967.4533 | 1.560 | 967.45569;860.47540;497.11691 | C48H72O20 | Rhaoglycyrrhizin[x] | GC |
103 | 39.22 | [M-H]- | 821.3973 | 821.3954 | 2.274 | 821.39740;724.18427;589.77423;351.05710 | C42H62O16 | Glycyrrhizic acid* | GC |
104 | 39.22 | [M-H]- | 823.4035 | 823.4111 | -9.184 | 823.41315;574.30713;351.05688;113.02302 | C42H64O16 | Uralsaponin C[x] | GC |
105 | 39.64 | [M-H]- | 821.3972 | 821.3954 | 2.201 | 821.39734;351.05698;193.03477;113.02299 | C42H62O16 | Licorice saponin H2[x] | GC |
106 | 40.54 | [M-H]- | 807.4181 | 807.4161 | 2.406 | 807.41821;351.05682;193.03471;113.02308 | C42H64O15 | Licoricesaponin B2[x] | GC |
107 | 40.69 | [M-H]- | 985.4656 | 985.4639 | 1.720 | 985.46442;497.11523;321.08276;113.02301 | C48H74O21 | Yunganoside D1 or Yunganoside G1[x] | GC |
108 | 40.77 | [M-H]- | 807.4186 | 807.4161 | 2.333 | 807.41840;351.05688;193.03471;113.02303 | C42H64O15 | 22-Dehydroxyural saponin[x] | GC |
109 | 40.90 | [M-H]- | 821.3978 | 821.3954 | 2.203 | 821.39771;351.05685;193.03465;113.02307 | C42H62O16 | Licorice Saponin K2[x] | GC |
110 | 40.96 | [M-H]- | 823.4038 | 823.4111 | -8.880 | 823.41223;351.05713;193.03426;113.02285 | C42H64O16 | Licorice Saponin SJ2[x] | GC |
111 | 42.81 | [M-H]- | 255.2327 | 255.2319 | 3.461 | 255.13889;149.09576;119.04839;93.03307 | C16H32O2 | Palmitic Acid[x] | M.H. |
*Note: * means that the ingredient was confirmed by the reference substance (Supplementary material); [x] means that ingredient was confirmed by the reference literature "Chinese Journal of Natural Medicines, 19 (2021), 305–320. https://doi.org/10.1016/S1875-5364(21)60031-6"; [y] means that ingredient was confirmed by the reference literature "Journal of Chinese Mass Spectrometry Society, 35 (2014), 269–278. https://doi.org/10.7538/zpxb.2014.35.03.0269"; SY: Paeonia lactiflora Pall., GC:Glycyrrhiza uralensis Fisch., M.H.:SY and GC. |
Identification | GI absorption | Lipinski # violations | Ghose # violations | MW | Rotatable bonds | H-bond acceptors | H-bond donors | TPSA |
Hordenine | High | 0 | 0 | 165.23 | 3 | 2 | 1 | 23.47 |
Methyl Gallate | High | 0 | 0 | 184.15 | 2 | 5 | 3 | 86.99 |
Phloretic acid | High | 0 | 0 | 166.17 | 3 | 3 | 2 | 57.53 |
(+)-Catechin | High | 0 | 0 | 290.27 | 1 | 6 | 5 | 110.38 |
Caffeic acid | High | 0 | 0 | 180.16 | 2 | 4 | 3 | 77.76 |
Paeonilactone B | High | 0 | 0 | 196.2 | 0 | 4 | 1 | 63.6 |
Paeoniflorigenone | High | 0 | 0 | 318.32 | 4 | 6 | 1 | 82.06 |
p-Coumaric acid | High | 0 | 0 | 164.16 | 2 | 3 | 2 | 57.53 |
Ethyl Gallate | High | 0 | 0 | 198.17 | 3 | 5 | 3 | 86.99 |
Ferulic acid | High | 0 | 0 | 194.18 | 3 | 4 | 2 | 66.76 |
Pratensein | High | 0 | 0 | 300.26 | 2 | 6 | 3 | 100.13 |
Hesperetin | High | 0 | 0 | 302.28 | 2 | 6 | 3 | 96.22 |
Rhamnocitrin | High | 0 | 0 | 300.26 | 2 | 6 | 3 | 100.13 |
Liquiritigenin | High | 0 | 0 | 256.25 | 1 | 4 | 2 | 66.76 |
Ononin | High | 0 | 0 | 430.4 | 5 | 9 | 4 | 138.82 |
Licochalcone B | High | 0 | 0 | 286.28 | 4 | 5 | 3 | 86.99 |
Daidzein | High | 0 | 0 | 254.24 | 1 | 4 | 2 | 70.67 |
7, 2', 4'-Trihydroxy-5-methoxy -3-arylcoumarin | High | 0 | 0 | 300.26 | 2 | 6 | 3 | 100.13 |
Homobutein | High | 0 | 0 | 286.28 | 4 | 5 | 3 | 86.99 |
Trifolirhizin | High | 0 | 0 | 446.4 | 3 | 10 | 4 | 136.3 |
Echinatin | High | 0 | 0 | 270.28 | 4 | 4 | 2 | 66.76 |
Kaempferol | High | 0 | 0 | 286.24 | 1 | 6 | 4 | 111.13 |
Tetrahydroxymethoxy chalcone | High | 0 | 0 | 302.28 | 4 | 6 | 4 | 107.22 |
Isoliquiritigenin | High | 0 | 0 | 256.25 | 3 | 4 | 3 | 77.76 |
Formononetin | High | 0 | 0 | 270.28 | 2 | 4 | 1 | 55.76 |
Licoisoflavone A | High | 0 | 0 | 354.35 | 3 | 6 | 4 | 111.13 |
Gancaonin I | High | 0 | 0 | 354.4 | 5 | 5 | 2 | 72.06 |
Glycycoumarin | High | 0 | 0 | 368.38 | 4 | 6 | 3 | 100.13 |
Licoflavonol | High | 0 | 0 | 354.35 | 3 | 6 | 4 | 111.13 |
Licochalcone A | High | 0 | 0 | 338.4 | 6 | 4 | 2 | 66.76 |
Licoisoflavone B | High | 0 | 0 | 352.34 | 1 | 6 | 3 | 100.13 |
Palmitic Acid | High | 1 | 0 | 256.42 | 14 | 2 | 1 | 37.3 |
Ligand | Group | AURKB (4af3) | KIF11 (6hky) | PLG (4cik) |
VX6_AURKB | control | -8.8 | - | - |
GCE_KIF11 | - | -9.5 | - | |
XO3_PLG | - | - | -7 | |
Echinatin | SYGC | -8.4 | -8.2 | -6.4 |
Ethyl Gallate | -6.3 | -6.1 | -5.4 | |
Glycycoumarin | -9.3 | -7.9 | -6.3 | |
Hesperetin | -8.7 | -8.6 | -5.9 | |
Homobutein | -8.2 | -8.2 | -6.4 | |
Kaempferol | -8.8 | -8.8 | -6.3 | |
Licoflavonol | -9.1 | -7.5 | -6.4 | |
Methyl Gallate | -6.2 | -6.2 | -5.4 | |
Palmitic Acid | -6.3 | -6.2 | -5 | |
Rhamnocitrin | -8.3 | -9 | -6.3 |