Research article Special Issues

On a SEIR-type model of COVID-19 using piecewise and stochastic differential operators undertaking management strategies

  • Received: 03 August 2023 Revised: 23 August 2023 Accepted: 28 August 2023 Published: 26 September 2023
  • MSC : 03C65, 26A33, 34A08

  • In this work, an epidemic model of a susceptible, exposed, infected and recovered SEIR-type is established for the distinctive dynamic compartments and epidemic characteristics of COVID-19 as it spreads across a population with a heterogeneous rate. The proposed model is investigated using a novel approach of fractional calculus known as piecewise derivatives. The existence theory is demonstrated through the establishment of sufficient conditions. In addition, result related to Hyers-Ulam stability is also derived for the considered model. A numerical method based on modified Euler procedure is also constructed to simulate the approximate solutions of the proposed model by employing various values of fractional orders. We testified the numerical results by using real available data of Japan. In addition, some results for the SEIR-type model are also presented graphically using the stochastic process, and the obtained results are discussed.

    Citation: Mdi Begum Jeelani, Kamal Shah, Hussam Alrabaiah, Abeer S. Alnahdi. On a SEIR-type model of COVID-19 using piecewise and stochastic differential operators undertaking management strategies[J]. AIMS Mathematics, 2023, 8(11): 27268-27290. doi: 10.3934/math.20231395

    Related Papers:

  • In this work, an epidemic model of a susceptible, exposed, infected and recovered SEIR-type is established for the distinctive dynamic compartments and epidemic characteristics of COVID-19 as it spreads across a population with a heterogeneous rate. The proposed model is investigated using a novel approach of fractional calculus known as piecewise derivatives. The existence theory is demonstrated through the establishment of sufficient conditions. In addition, result related to Hyers-Ulam stability is also derived for the considered model. A numerical method based on modified Euler procedure is also constructed to simulate the approximate solutions of the proposed model by employing various values of fractional orders. We testified the numerical results by using real available data of Japan. In addition, some results for the SEIR-type model are also presented graphically using the stochastic process, and the obtained results are discussed.



    加载中


    [1] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Fractal-fractional order dynamical behavior of an HIV/AIDS epidemic mathematical model, Eur. Phys. J. Plus, 136 (2021), 36. https://doi.org/10.1140/epjp/s13360-020-00994-5 doi: 10.1140/epjp/s13360-020-00994-5
    [2] M. M. Amirian, Y. Jamali, The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: a primer, Crit. Rev. Biomed. Eng., 47 (2019), 249–276. https://doi.org/10.1615/CritRevBiomedEng.2018028368 doi: 10.1615/CritRevBiomedEng.2018028368
    [3] A. J. Arenas, G. Gonzalez-Parra, B. M. Chen-Charpentier, Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simulat., 121 (2016), 48–63. https://doi.org/10.1016/j.matcom.2015.09.001 doi: 10.1016/j.matcom.2015.09.001
    [4] M. Arfan, K. Shah, A. Ullah, Fractal-fractional mathematical model of four species comprising of prey-predation, Phys. Scripta, 96 (2021), 124053. DOI 10.1088/1402-4896/ac2f37 doi: 10.1088/1402-4896/ac2f37
    [5] J. K. K. Asamoah, M. A. Owusu, Z. Jin, F. T. Oduro, A. Abidemi, E. O. Gyasi, Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana, Chaos Soliton. Fract., 140 (2020), 110103. https://doi.org/10.1016/j.chaos.2020.110103 doi: 10.1016/j.chaos.2020.110103
    [6] J. K. K. Asamoah, E. Okyere, A. Abidemi, S. E. Moore, G. Q. Sun, Z. Jin, et al., Optimal control and comprehensive cost-effectiveness analysis for COVID-19, Results Phys., 33 (2022), 105177. https://doi.org/10.1016/j.rinp.2022.105177 doi: 10.1016/j.rinp.2022.105177
    [7] J. K. K. Asamoah, Z. Jin, G. Q. Sun, B. Seidu, E. Yankson, A. Abidemi, et al., Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions, Chaos Soliton. Fract., 146 (2021), 110885. https://doi.org/10.1016/j.chaos.2021.110885 doi: 10.1016/j.chaos.2021.110885
    [8] J. K. K. Asamoah, C. S. Bornaa, B. Seidu, Z. Jin, Mathematical analysis of the effects of controls on transmission dynamics of SARS-CoV-2, Alex. Eng. J., 59 (2020), 5069–5078. https://doi.org/10.1016/j.aej.2020.09.033 doi: 10.1016/j.aej.2020.09.033
    [9] J. K. K. Asamoah, Fatmawati, A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks, Chaos Soliton. Fract., 174 (2023), 113905. https://doi.org/10.1016/j.chaos.2023.113905 doi: 10.1016/j.chaos.2023.113905
    [10] J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. Adom-Konadu, E. Acheampong, et al., Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos Soliton. Fract., 156 (2022), 111821. https://doi.org/10.1016/j.chaos.2022.111821 doi: 10.1016/j.chaos.2022.111821
    [11] J. K. K. Asamoah, Fractal-fractional model and numerical scheme based on Newton polynomial for Q fever disease under Atangana-Baleanu derivative, Results Phys., 34 (2022), 105189. https://doi.org/10.1016/j.rinp.2022.105189 doi: 10.1016/j.rinp.2022.105189
    [12] A. Atangana, S. I. Araz, Nonlinear equations with global differential and integral operators:existence, uniqueness with application to epidemiology, Results Phys., 20 (2021), 103593. https://doi.org/10.1016/j.rinp.2020.103593 doi: 10.1016/j.rinp.2020.103593
    [13] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.48550/arXiv.1602.03408 doi: 10.48550/arXiv.1602.03408
    [14] M. A. Abdulwasaa, M. S. Abdo, K. Shah, T. A. Nofal, S. K. Panchal, S. V. Kawale, et al., Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results Phys., 20 (2021), 103702. https://doi.org/10.1016/j.rinp.2020.103702 doi: 10.1016/j.rinp.2020.103702
    [15] R. P. Agarwal, S. Arshad, D. Regan, V. Lupulescu, A Schauder fixed point theorem in semilinear spaces and applications, Fixed Point Theory Appl., 2013 (2013), 306. https://doi.org/10.1186/1687-1812-2013-306 doi: 10.1186/1687-1812-2013-306
    [16] A. Atangana, S. I. Araz, New concept in calculus: piecewise differential and integral operators, Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
    [17] A. J. Arenas, G. González-Parra, B. M. Chen-Charpentier, Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simulat., 121 (2016), 48–63. https://doi.org/10.1016/j.matcom.2015.09.001 doi: 10.1016/j.matcom.2015.09.001
    [18] M. S. Arshad, D. Baleanu, M. B. Riaz, M. Abbas, A novel 2-stage fractional Runge-Kutta method for a time fractional logistic growth model, Discrete Dyn. Nat. Soc., 2020 (2020), 1020472. https://doi.org/10.1155/2020/1020472 doi: 10.1155/2020/1020472
    [19] S. Boccaletti, W. Ditto, G. Mindlin, A. Atangana, Modeling and forecasting of epidemic spreading: The case of Covid-19 and beyond, Chaos Soliton. Fract., 135 (2020), 109794. https://doi.org/10.1016/j.chaos.2020.109794 doi: 10.1016/j.chaos.2020.109794
    [20] S. Banihashemi, H. Jafari, A. Babaei, A stable collocation approach to solve a neutral delay stochastic differential equation of fractional order, J. Comput. Appl. Math., 403 (2022), 113845. https://doi.org/10.1016/j.cam.2021.113845 doi: 10.1016/j.cam.2021.113845
    [21] I. I. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, M. U. Kraemer, K. Khan, Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel, J. Travel Med., 27 (2020), taaa008. https://doi.org/10.1093/jtm/taaa008 doi: 10.1093/jtm/taaa008
    [22] C. Celauro, C. Fecarotti, A. Pirrotta, A. C. Collop, Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures, Constr. Build. Mater., 36 (2012), 458–466. https://doi.org/10.1016/j.conbuildmat.2012.04.028 doi: 10.1016/j.conbuildmat.2012.04.028
    [23] Y. Chen, F. Liu, Q. Yu, T. Li, Review of fractional epidemic models, Appl. Math. Model., 97 (2021), 281–307. https://doi.org/10.1016/j.apm.2021.03.044 doi: 10.1016/j.apm.2021.03.044
    [24] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Vienna: Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6
    [25] C.T. Deressa, G. F. Duressa, Analysis of Atangana-Baleanu fractional-order SEAIR epidemic model with optimal control, Adv. Differ. Equ., 2021 (2021), 174. https://doi.org/10.1186/s13662-021-03334-8 doi: 10.1186/s13662-021-03334-8
    [26] Z. Dai, Y. Peng, H. A. Mansy, R. H. Sandler, T. J. Royston, A model of lung parenchyma stress relaxation using fractional viscoelasticity, Med. Eng. Phys., 37 (2015), 752–758. https://doi.org/10.1016/j.medengphy.2015.05.003 doi: 10.1016/j.medengphy.2015.05.003
    [27] Z. J. Fu, Z. C. Tang, H. T. Zhao, P. W. Li, T. Rabczuk, Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method, Eur. Phys. J. Plus, 134 (2019), 272. https://doi.org/10.1140/epjp/i2019-12786-7 doi: 10.1140/epjp/i2019-12786-7
    [28] A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, et al., Modelling strategies for controlling SARS out breaks, Proc. R. Soc. Lond. B., 271 (2004), 2223–2232. https://doi.org/10.1098/rspb.2004.2800 doi: 10.1098/rspb.2004.2800
    [29] E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation, Math. Model. Anal., 21 (2016), 188–198. https://doi.org/10.3846/13926292.2016.1145607 doi: 10.3846/13926292.2016.1145607
    [30] D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, et al., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health–The latest 2019 novel coronavirus outbreak in Wuhan, China, B. Math. Biol., 91 (2020), 264–66. https://doi.org/10.1016/j.ijid.2020.01.009 doi: 10.1016/j.ijid.2020.01.009
    [31] S. Hussain, E. N. Madi, H. Khan, H. Gulzar, S. Etemad, S. Rezapour, et al., On the stochastic modeling of COVID-19 under the environmental white noise, J. Funct. Space., 2022 (2022), 4320865. doilinkhttps://doi.org/10.1155/2022/4320865 doi: 10.1155/2022/4320865
    [32] A. A. Hamou, E. Azroul, Z. Hammouch, A. L. Alaoui, On dynamics of fractional incommensurate model of Covid-19 with nonlinear saturated incidence rate, MedRxiv, 2021 (2021), 07, https://doi.org/10.1101/2021.07.18.21260711 doi: 10.1101/2021.07.18.21260711
    [33] M. T. Hoang, O. F. Egbelowo, Dynamics of a fractional-order hepatitis B epidemic model and its solutions by nonstandard numerical schemes, In: Mathematical modelling and analysis of infectious diseases, Cham: Springer, 2020,127–153. https://doi.org/10.1007/978-3-030-49896-2_5
    [34] G. Jumarie, Stochastic differential equations with fractional Brownian motion input, Int. J. Syst. Sci., 24 (1993), 1113–1131. https://doi.org/10.1080/00207729308949547 doi: 10.1080/00207729308949547
    [35] S. Kumar, A. Kumar, B. Samet, H. Dutta, A study on fractional host-parasitoid population dynamical model to describe insect species, Numer. Meth. Part. D. E., 37 (2021), 1673–1692. https://doi.org/10.1002/num.22603 doi: 10.1002/num.22603
    [36] M. M. Khalsaraei, An improvement on the positivity results for 2-stage explicit Runge-Kutta methods, J. Comput. Appl. Math., 235 (2010), 137–143. https://doi.org/10.1016/j.cam.2010.05.020 doi: 10.1016/j.cam.2010.05.020
    [37] R. Kahn, I. Holmdahl, S. Reddy, J. Jernigan, M. J. Mina, R. B. Slayton, Mathematical modeling to inform vaccination strategies and testing approaches for voronavirus disease 2019 (COVID-19) in nursing homes, Clin. Infect. Dis., 74 (2022), 597–603. https://doi.org/10.1093/cid/ciab517 doi: 10.1093/cid/ciab517
    [38] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
    [39] M. A. Khan, A. Atangana, E. Alzahrani, E. Fatmawati, The dynamics of COVID-19 with quarantined and isolation, Adv. Differ. Equ., 2020 (2020), 425. https://doi.org/10.1186/s13662-020-02882-9 doi: 10.1186/s13662-020-02882-9
    [40] A. M. Lopes, J. T. Machado, Fractional order models of leaves, J. Vib. Control, 20 (2014), 998–1008. https://doi.org/10.1177/1077546312473323 doi: 10.1177/1077546312473323
    [41] R. Li, S. Zhong, C. Swartz, An improvement of the Arzela-Ascoli theorem, Topol. Appl., 159 (2012), 2058–2061. http://doi.org/10.1016/j.topol.2012.01.014 doi: 10.1016/j.topol.2012.01.014
    [42] R. Lewandowski, Z. Pawlak, Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractional derivatives, J. Sound Vib., 330 (2011), 923–936. https://doi.org/10.1016/j.jsv.2010.09.017 doi: 10.1016/j.jsv.2010.09.017
    [43] B. Li, H. Liang, L. Shi, Q. He, Complex dynamics of Kopel model with nonsymmetric response between oligopolists, Chaos Soliton. Fract., 156 (2022), 111860. https://doi.org/10.1016/j.chaos.2022.111860 doi: 10.1016/j.chaos.2022.111860
    [44] F. Liu, K. Burrage, Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl., 62 (2011), 822–833. https://doi.org/10.1016/j.camwa.2011.03.002 doi: 10.1016/j.camwa.2011.03.002
    [45] B. Li, H. Liang, Q. He, Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model, Chaos Soliton. Fract., 146 (2021), 110856. https://doi.org/10.1016/j.chaos.2021.110856 doi: 10.1016/j.chaos.2021.110856
    [46] J. Mondal, S. Khajanchi, Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak, Nonlinear Dyn., 109 (2022), 177–202. https://doi.org/10.1007/s11071-022-07235-7 doi: 10.1007/s11071-022-07235-7
    [47] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [48] F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004
    [49] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
    [50] R. L. Magin, Fractional Calculus in bioengineering, Redding: Begell House, 2006.
    [51] F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal., 15 (2012), 712–717. https://doi.org/10.2478/s13540-012-0048-6 doi: 10.2478/s13540-012-0048-6
    [52] I. Nesteruk, Statistics based predictions of coronavirus 2019-nCoV spreading in mainland China, MedRxiv, 4 (2020), 1988–1989. https://doi.org/10.1101/2020.02.12.20021931 doi: 10.1101/2020.02.12.20021931
    [53] O. A. Omar, R. A. Elbarkouky, H. M. Ahmed, Fractional stochastic modelling of COVID-19 under wide spread of vaccinations: Egyptian case study, Alex. Eng. J., 61 (2022), 8595–8609. https://doi.org/10.1016/j.aej.2022.02.002. doi: 10.1016/j.aej.2022.02.002
    [54] J. C. Pedjeu, G. S. Ladde, Stochastic fractional differential equations: Modeling, method and analysis, Chaos Soliton. Fract., 45 (2012), 279–293. https://doi.org/10.1016/j.chaos.2011.12.009 doi: 10.1016/j.chaos.2011.12.009
    [55] A. Y. Rossikhin, M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15–67. https://doi.org/10.1115/1.3101682 doi: 10.1115/1.3101682
    [56] A. Radulescu, C. Williams, K. Cavanagh, Management strategies in a SEIR-type model of COVID 19 community spread, Sci. Rep., 10 (2020), 21256. https://doi.org/10.1038/s41598-020-77628-4 doi: 10.1038/s41598-020-77628-4
    [57] Y. B. Sang, Critical Kirchhoff-Choquard system involving the fractional p-Laplacian operator and singular nonlinearities, Topol. Method. Nonl. An., 58 (2021), 233–274. https://doi.org/10.12775/TMNA.2020.070 doi: 10.12775/TMNA.2020.070
    [58] K. Shah, R. Din, W. Deebani, P. Kumam, Z. Shah, On nonlinear classical and fractional order dynamical system addressing COVID-19, Results Phys., 24 (2021), 104069. https://doi.org/10.1016/j.rinp.2021.104069 doi: 10.1016/j.rinp.2021.104069
    [59] M. Shimizu, W. Zhang, Fractional calculus approach to dynamic problems of viscoelastic materials, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 42 (1999), 825–837. https://doi.org/10.1299/jsmec.42.825 doi: 10.1299/jsmec.42.825
    [60] Y. B. Sang, S. H. Liang, Fractional Kirchhoff-Choquard equation involving Schrodinger term and upper critical exponent, J. Geom. Anal., 32 (2022), 5. https://doi.org/10.1007/s12220-021-00747-5 doi: 10.1007/s12220-021-00747-5
    [61] L. Stella, A. P. Martínez, D. Bauso, P. Colaneri, The role of asymptomatic infections in the COVID-19 epidemic via complex networks and stability analysis, SIAM J. Control Optim., 60 (2022), S119–S144. https://doi.org/10.1137/20M1373335 doi: 10.1137/20M1373335
    [62] D. Valério, J. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17 (2014), 552–578. https://doi.org/10.2478/s13540-014-0185-1 doi: 10.2478/s13540-014-0185-1
    [63] Y. Wang, Z. Wei, J. Cao, Epidemic dynamics of influenza-like diseases spreading in complex networks, Nonlinear Dyn., 101 (2020), 1801–1820. https://doi.org/10.1007/s11071-020-05867-1 doi: 10.1007/s11071-020-05867-1
    [64] J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395 (2020), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 doi: 10.1016/S0140-6736(20)30260-9
    [65] B. Wang, L. Li, Y. Wang, An efficient nonstandard finite difference scheme for chaotic fractional-order Chen system, IEEE Access, 8 (2020), 98410–98421. https://doi.org/10.1109/ACCESS.2020.2996271 doi: 10.1109/ACCESS.2020.2996271
    [66] G. C. Wu, M. Luo, L. L. Huang, S. Banerjee, Short memory fractional differential equations for new memristor and neural network design, Nonlinear Dyn., 100 (2020), 3611–3623. https://doi.org/10.1007/s11071-020-05572-z doi: 10.1007/s11071-020-05572-z
    [67] A. Zeb, A. Atangana, Z. A. Khan, S. Djillali, A robust study of a piecewise fractional order COVID-19 mathematical model, Alex. Eng. J., 61 (2022), 5649–5665. https://doi.org/10.1016/j.aej.2021.11.039 doi: 10.1016/j.aej.2021.11.039
    [68] S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis., 92 (2020), 214–217. https://doi.org/10.1016/j.ijid.2020.01.050 doi: 10.1016/j.ijid.2020.01.050
    [69] S. Zhao, S. S. Musa, Q. Lin, J. Ran, G. Yang, W. Wang, et al., Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-driven modelling analysis of the early outbreak, J. Clin. Med., 9 (2020), 388. http://doi.org/10.3390/jcm9020388 doi: 10.3390/jcm9020388
    [70] P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579 (2020), 270–273. https://doi.org/10.1038/s41586-020-2012-7 doi: 10.1038/s41586-020-2012-7
    [71] Y. Zhang, H. Sun, H. H. Stowell, M. Zayernouri, S. E. Hansen, A review of applications of fractional calculus in Earth system dynamics, Chaos Soliton. Fract., 102 (2017), 29–46. https://doi.org/10.1016/j.chaos.2017.03.051 doi: 10.1016/j.chaos.2017.03.051
    [72] Naming the coronavirus disease (COVID-19) and the virus that causes it, Available from: World Health Organization (WHO), 2019. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.
    [73] World Health Organization, Japan situation, 2020. Available from: https://covid19.who.int/region/wpro/country/jp.
    [74] Japan COVID coronavirus statistics, 2023. Available from: https://www.worldometers.info/coronavirus/country/japan/.
    [75] Japan COVID cases, 2021. Available from: https://www.nytimes.com/interactive/2021/world/japan-covid-cases.html.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1098) PDF downloads(56) Cited by(2)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog