Research article

A computational method for investigating a quantum integrodifferential inclusion with simulations and heatmaps

  • Received: 07 August 2023 Revised: 26 August 2023 Accepted: 03 September 2023 Published: 25 September 2023
  • MSC : 34A08, 34A12

  • We aim to investigate an integro-differential inclusion using a novel computational approach in this research. The use of quantum calculus, and consequently the creation of discrete space, allows the computer and computational algorithms to solve our desired problem. Furthermore, to guarantee the existence of the solution, we use the endpoint property based on fixed point methods, which is one of the most recent techniques in fixed point theory. The above will show the novelty of our work, because most researchers use classical fixed point techniques in continuous space. Moreover, the sensitivity of the parameters involved in controlling the existence of the solution can be recognized from the heatmaps. For a better understanding of the issue and validation of the results, we presented numerical algorithms, tables and some figures in our examples that are presented at the end of the work.

    Citation: Shahram Rezapour, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Mehran Ghaderi. A computational method for investigating a quantum integrodifferential inclusion with simulations and heatmaps[J]. AIMS Mathematics, 2023, 8(11): 27241-27267. doi: 10.3934/math.20231394

    Related Papers:

  • We aim to investigate an integro-differential inclusion using a novel computational approach in this research. The use of quantum calculus, and consequently the creation of discrete space, allows the computer and computational algorithms to solve our desired problem. Furthermore, to guarantee the existence of the solution, we use the endpoint property based on fixed point methods, which is one of the most recent techniques in fixed point theory. The above will show the novelty of our work, because most researchers use classical fixed point techniques in continuous space. Moreover, the sensitivity of the parameters involved in controlling the existence of the solution can be recognized from the heatmaps. For a better understanding of the issue and validation of the results, we presented numerical algorithms, tables and some figures in our examples that are presented at the end of the work.



    加载中


    [1] Y. A. Rossikhin, M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results, Appl. Mech. Rev., 63 (2010), 010801. http://doi.org/10.1115/1.4000563 doi: 10.1115/1.4000563
    [2] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [3] J. A. T. Machado, M. F. Silva, R. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, et al., Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2009), 639801. https://doi.org/10.1155/2010/639801 doi: 10.1155/2010/639801
    [4] M. Nadeem, S. W. Yao, Solving the fractional heat-like and wave-like equations with variable coefficients utilizing the Laplace homotopy method, Int. J. Numer. Method. H., 31 (2021), 273–292. https://doi.org/10.1108/HFF-02-2020-0111 doi: 10.1108/HFF-02-2020-0111
    [5] S. Kumar, S. Ghosh, B. Samet, E. F. D. Goufo, An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator, Math. Meth. Appl. Sci., 43 (2020), 6062–6080. https://doi.org/10.1002/mma.6347 doi: 10.1002/mma.6347
    [6] L. Vazquez, J. J. Trujillo, M. P. Velasco, Fractional heat equation and the second law of thermodynamics, Fract. Calc. Appl. Anal., 14 (2011), 334–342. https://doi.org/10.2478/s13540-011-0021-9 doi: 10.2478/s13540-011-0021-9
    [7] R. P. Meilanov, R. A. Magomedov, Thermodynamics in fractional calculus, J. Eng. Phys. Thermophy., 87 (2014), 1521–1531. https://doi.org/10.1007/s10891-014-1158-2 doi: 10.1007/s10891-014-1158-2
    [8] M. I. Ayari, S. T. M. Thabet, Qualitative properties and approximate solutions of thermostat fractional dynamics system via a nonsingular kernel operator, Arab J. Math. Sci., 2023. https://doi.org/10.1108/AJMS-06-2022-0147
    [9] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer-Verlag, 1997.
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006).
    [11] A. Boutiara, S. Etemad, S. T. M. Thabet, S. K. Ntouyas, S. Rezapour, J. Tariboon, A mathematical theoretical study of a coupled fully hybrid ($\kappa, \phi$)-fractional order system of BVPs in generalized Banach spaces, Symmetry, 15 (2023), 1041. https://doi.org/10.3390/sym15051041 doi: 10.3390/sym15051041
    [12] R. George, M. Houas, M. Ghaderi, S. Rezapour, S. K. Elagan, On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities, Results Phys., 39 (2022), 105687. https://doi.org/10.1016/j.rinp.2022.105687 doi: 10.1016/j.rinp.2022.105687
    [13] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001
    [14] A. Alalyani, S. Saber, Stability analysis and numerical simulations of the fractional COVID-19 pandemic model, Int. J. Nonlinear Sci. Numer. Simul., 24 (2022), 989–1002. https://doi.org/10.1515/ijnsns-2021-0042 doi: 10.1515/ijnsns-2021-0042
    [15] A. Din, Y. Li, M. A. Shah, The complex dynamics of hepatitis B infected individuals with optimal control, J. Syst. Sci. Complex., 34 (2021), 1301–1323. https://doi.org/10.1007/s11424-021-0053-0 doi: 10.1007/s11424-021-0053-0
    [16] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399–408. https://doi.org/10.1016/S0301-0104(02)00670-5 doi: 10.1016/S0301-0104(02)00670-5
    [17] M. Fabrizio, C. Giorgi, V. Pata, A new approach to equations with memory, Arch. Rational Mech. Anal., 198 (2010), 189–232. https://doi.org/10.1007/s00205-010-0300-3
    [18] Z. Heydarpour, M. N. Parizi, R. Ghorbanian, M. Ghaderi, S. Rezapour, A. mosavi, A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction, AIMS Mathematics, 7 (2022), 18253–18279. https://doi.org/10.3934/math.20221004 doi: 10.3934/math.20221004
    [19] S. T. M. Thabet, M. B. Dhakne, On positive solutions of higher order nonlinear fractional integro-differential equations with boundary conditions, Malaya J. Mat., 7 (2019), 20–26. https://doi.org/10.26637/MJM0701/0005 doi: 10.26637/MJM0701/0005
    [20] M. Laoubi, Z. Odibat, B. Maayah, A Legendre-based approach of the optimized decomposition method for solving nonlinear Caputo-type fractional differential equations, Math. Meth. Appl. Sci., 45 (2022), 7307–7321. https://doi.org/10.1002/mma.8237 doi: 10.1002/mma.8237
    [21] A. Das, M. Paunović, V. Parvaneh, M. Mursaleen, Z. Bagheri, Existence of a solution to an infinite system of weighted fractional integral equations of a function with respect to another function via a measure of noncompactness, Demonstr. Math., 56 (2023), 20220192. https://doi.org/10.1515/dema-2022-0192 doi: 10.1515/dema-2022-0192
    [22] S. T. M. Thabet, M. M. Matar, M. A. Salman, M. E. Samei, M. Vivas-Cortez, I. Kedim, On coupled snap system with integral boundary conditions in the $G$-Caputo sense, AIMS Mathematics, 8 (2023), 12576–12605. https://doi.org/10.3934/math.2023632 doi: 10.3934/math.2023632
    [23] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [24] J. Hadamard, Essai sur l'étude des fonctions, données par leur développement de Taylor, J. Math. Pure. Appl., 8 (1892), 101–186.
    [25] A. Alsaedi, M. Alghanmi, B. Ahmad, B. Alharbi, Uniqueness of solutions for a $\psi$-Hilfer fractional integral boundary value problem with the p-Laplacian operator, Demonstr. Math., 56 (2023), 20220195. https://doi.org/10.1515/dema-2022-0195 doi: 10.1515/dema-2022-0195
    [26] R. George, S. M. Aydogan, F. M. Sakar, M. Ghaderi, S. Rezapour, A study on the existence of numerical and analytical solutions for fractional integrodifferential equations in Hilfer type with simulation, AIMS Mathematics, 8 (2023), 10665–10684. https://doi.org/10.3934/math.2023541 doi: 10.3934/math.2023541
    [27] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779
    [28] S. T. M. Thabet, S. Al-Sadi, I. Kedim, A. S. Rafeeq, S. Rezapour, Analysis study on multi-order $\varrho$-Hilfer fractional pantograph implicit differential equation on unbounded domains, AIMS Mathematics, 8 (2023), 18455–18473. https://doi.org/10.3934/math.2023938 doi: 10.3934/math.2023938
    [29] S. T. M. Thabet, I. Kedim, J. Gao, Study of nonlocal multiorder implicit differential equation involving Hilfer fractional derivative on unbounded domains, J. Math., 2023 (2023), 866832. https://doi.org/10.1155/2023/8668325 doi: 10.1155/2023/8668325
    [30] I. Podlubny, Fractional differential equations, Elsevier, 198 (1999), 1–340.
    [31] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [32] M. Nadeem, J. H. He, H. M. Sedighi, Numerical analysis of multi-dimensional time-fractional diffusion problems under the Atangana-Baleanu caputo derivative, Math. Biosci. Eng., 20 (2023), 8190–8207. https://doi.org/10.3934/mbe.2023356 doi: 10.3934/mbe.2023356
    [33] K. M. Owolabi, Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus, 133 (2018). https://doi.org/10.1140/epjp/i2018-11863-9
    [34] T. Abdeljawad, S. T. M. Thabet, I. Kedim, M. I. Ayari, A. Khan, A higher-order extension of Atangana-Baleanu fractional operators with respect to another function and a Gronwall-type inequality, Bound. Value Probl., 2023 (2023), 49. https://doi.org/10.1186/s13661-023-01736-z doi: 10.1186/s13661-023-01736-z
    [35] R. George, F. Al-shammari, M. Ghaderi, S. Rezapour, On the boundedness of the solution set for the $\psi$-Caputo fractional pantograph equation with a measure of non-compactness via simulation analysis, AIMS Mathematics, 8 (2023), 20125–20142. https://doi.org/10.3934/math.20231025 doi: 10.3934/math.20231025
    [36] F. H. Jackson, $q$-difference equation, Amer. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183
    [37] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [38] Z. G. Liu, On the $q$-derivative and $q$-series expansions, Int. J. Number Theory, 9 (2013), 2069–2089. https://doi.org/10.1142/S1793042113500759 doi: 10.1142/S1793042113500759
    [39] S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of $q$-starlike functions associated with conic domain defined by q-derivative, J. Funct. Space., 2018 (2018), 8492072. https://doi.org/10.1155/2018/8492072 doi: 10.1155/2018/8492072
    [40] H. Akca, J. Benbourenane, H. Eleuch, The q-derivative and differential equation, J. Phys.: Conf. Ser., 1411 (2019), 012002. https://doi.org/10.1088/1742-6596/1411/1/012002 doi: 10.1088/1742-6596/1411/1/012002
    [41] F. Guo, S. Kang, F. Chen, Existence and uniqueness results to positive solutions of integral boundary value problem for fractional $q$-derivatives, Adv. Differ. Equ., 2018 (2018), 379. https://doi.org/10.1186/s13662-018-1796-3 doi: 10.1186/s13662-018-1796-3
    [42] C. Yu, J. Wang, Existence of solutions for nonlinear second-order $q$-difference equations with first-order q-derivatives, Adv. Diff. Equ., 2013 (2013), 124. https://doi.org/10.1186/1687-1847-2013-124 doi: 10.1186/1687-1847-2013-124
    [43] Y. Zhao, H. Chen, Q. Zhang, Existence and multiplicity of positive solutions for nonhomogeneous boundary value problems with fractional $q$-derivatives, Bound. Value Probl., 2013 (2013), 103. https://doi.org/10.1186/1687-2770-2013-103 doi: 10.1186/1687-2770-2013-103
    [44] A. Boutiara, J. Alzabut, M. Ghaderi, S. Rezapour, On a coupled system of fractional $(p, q)$-differential equation with Lipschitzian matrix in generalized metric space, AIMS Mathematics, 8 (2023), 1566–1591. https://doi.org/10.3934/math.2023079 doi: 10.3934/math.2023079
    [45] K. Wlodarczyk, D. Klim, R. Plebaniak, Existence and uniqueness of endpoints of closed set-valued asymptotic contractions in metric spaces, J. Math. Anal. Appl., 328 (2007), 46–57. https://doi.org/10.1016/j.jmaa.2006.05.029 doi: 10.1016/j.jmaa.2006.05.029
    [46] D. Wardowski, Endpoints and fixed points of set-valued contractions in cone metric spaces, Nonlinear Anal-Theor., 71 (2009), 512–516. https://doi.org/10.1016/j.na.2008.10.089 doi: 10.1016/j.na.2008.10.089
    [47] A. Amini-Harandi, Endpoints of set-valued contractions in metric spaces, Nonlinear Anal-Theor., 72 (2010), 132–134. https://doi.org/10.1016/j.na.2009.06.074 doi: 10.1016/j.na.2009.06.074
    [48] B. Ahmad, A. Alsaedi, S. K. Ntouyas, A study of second-order q-difference equations with boundary conditions, Adv. Differ. Equ., 2012 (2012), 35. https://doi.org/10.1186/1687-1847-2012-35 doi: 10.1186/1687-1847-2012-35
    [49] R. P. Agarwal, B. Ahmad, A. Alsaedi, N. Shahzad, Existence and dimension of the set of mild solutions to semilinear fractional differential inclusions, Adv. Differ. Equ., 2012 (2012), 74. https://doi.org/10.1186/1687-1847-2012-74 doi: 10.1186/1687-1847-2012-74
    [50] Y. Zhao, H. Chen, Q. Zhang, Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions, Adv. Differ. Equ., 2013 (2013), 48. https://doi.org/10.1186/1687-1847-2013-48 doi: 10.1186/1687-1847-2013-48
    [51] C. R. Adams, The general theory of a class of linear partial $q$-difference equations, T. Am. Math. Soc., 26 (1924), 283–312. https://doi.org/10.2307/1989141 doi: 10.2307/1989141
    [52] J. R. Graef, L. Kong, Positive solutions for a class of higher order boundary value problems with fractional q-derivatives, Appl. Math. Comput., 218 (2012), 9682–9689. https://doi.org/10.1016/j.amc.2012.03.006 doi: 10.1016/j.amc.2012.03.006
    [53] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional $q$-difference quation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
    [54] H. Covitz, S. B. Nadler, Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. https://doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(954) PDF downloads(53) Cited by(2)

Article outline

Figures and Tables

Figures(9)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog