As a natural extension of the concept of $ (m, p) $-hyperexpansive and $ (m, p) $-hypercontractive of a single operator, we introduce and study the concepts of $ (m, p) $-hyperexpansivity and $ (m, p) $-hypercontractivity for $ d $-tuple of commuting operators acting on Banach spaces. These concepts extend the definitions of $ m $-isometries and $ (m, p) $-isometric tuples of bounded linear operators acting on Hilbert or Banach spaces, which have been introduced and studied by many authors.
Citation: Hadi Obaid Alshammari. Higher order hyperexpansivity and higher order hypercontractivity[J]. AIMS Mathematics, 2023, 8(11): 27227-27240. doi: 10.3934/math.20231393
As a natural extension of the concept of $ (m, p) $-hyperexpansive and $ (m, p) $-hypercontractive of a single operator, we introduce and study the concepts of $ (m, p) $-hyperexpansivity and $ (m, p) $-hypercontractivity for $ d $-tuple of commuting operators acting on Banach spaces. These concepts extend the definitions of $ m $-isometries and $ (m, p) $-isometric tuples of bounded linear operators acting on Hilbert or Banach spaces, which have been introduced and studied by many authors.
[1] | J. Agler, M. Stankus, $m$-Isometric transformations of Hilbert space Ⅰ, Integr. Equat. Oper. Th., 21 (1995), 383–429. https://doi.org/10.1007/BF01222016 doi: 10.1007/BF01222016 |
[2] | J. Agler, M. Stankus, $m$-Isometric transformations of Hilbert space Ⅱ, Integr. Equat. Oper. Th., 23 (1995), 1–48. https://doi.org/10.1007/BF01261201 doi: 10.1007/BF01261201 |
[3] | J. Agler, M. Stankus, $m$-Isometric transformations of Hilbert space Ⅲ, Integr. Equat. Oper. Th., 24 (1996), 379–421. |
[4] | J. Agler, Hypercontractions and subnormality, J. Operat. Theor., 13 (1985), 203–217. https://doi.org/10.1007/BF01191619 doi: 10.1007/BF01191619 |
[5] | N. Ahmad, On $m$-expansive and $m$-contractive tuple of operatros in Hilbert spaces, Ann. Commun. Math., 3 (2020), 199–207. |
[6] | R. Aron, J. Bés, F. León, A. Peris, Operators with common hypercyclic subspaces, J. Operat. Theor., 54 (2005), 251–260. |
[7] | A. Athavale, On completely hyperexpansive operators, Proc. Math. Soc., 124 (1996), 3745–3752. https://doi.org/10.1090/S0002-9939-96-03609-X doi: 10.1090/S0002-9939-96-03609-X |
[8] | F. Bayart, $m$-Isometries on Banach spaces, Math. Nachr., 284 (2011), 2141–2147. https://doi.org/10.1002/mana.200910029 doi: 10.1002/mana.200910029 |
[9] | T. Bermúdez, H. Zaway, On $(m, \infty)$-isometries: Examples, Results Math., 74 (2019), 108. https://doi.org/10.1007/s00025-019-1018-7 doi: 10.1007/s00025-019-1018-7 |
[10] | T. Bermúdez, A. Martinôn, V. Müller, $(m, q)$-isometries on metric spaces, J. Operat. Theor., 72 (2014), 313–329. http://dx.doi.org/10.7900/jot.2013jan29.1996 doi: 10.7900/jot.2013jan29.1996 |
[11] | T. Bermúdez, A. Martinón, J. A. Noda, Products of $m$-isometries, Linear Algebra Appl., 438 (2013), 80–86. https://doi.org/10.1016/j.laa.2012.07.011 doi: 10.1016/j.laa.2012.07.011 |
[12] | F. Botelho, On the existence of $n$-isometries on $ł_p$-spaces, Acta Sci. Math., 76 (2010), 183–192. https://doi.org/10.1007/BF03549829 doi: 10.1007/BF03549829 |
[13] | G. Exner, I. B. Jung, C. Li, $k$-hyperexpansive operators, J. Math. Anal. Appl., 323 (2006), 569–582. https://doi.org/10.1016/j.jmaa.2005.10.061 doi: 10.1016/j.jmaa.2005.10.061 |
[14] | L. S. Fernando, V. Müler, Hypercyclic sequences of operators, Stud. Math., 175 (2006), 1–18. |
[15] | J. Gleason, S. Richter, $m$-Isometric commuting tuples of operators on a Hilbert space, Integr. Equat. Oper. Th., 56 (2006), 181–196. https://doi.org/10.1007/s00020-006-1424-6 doi: 10.1007/s00020-006-1424-6 |
[16] | C. Gu, On $(m, p)$-expansive and $(m, p)$-contractive operators on Hilbert and Banach spaces, J. Math. Anal. Appl., 426 (2015), 893–916. https://doi.org/10.1016/j.jmaa.2015.01.067 doi: 10.1016/j.jmaa.2015.01.067 |
[17] | C. Gu, Functional calculus for $m$-isometries and related operators on Hilbert spaces and Banach spaces, Acta Sci. Math., 81 (2015), 605–641. https://doi.org/10.14232/actasm-014-550-3 doi: 10.14232/actasm-014-550-3 |
[18] | C. Gu, Examples of $m$-isometric tuples of operatprs on a Hilbert spaces, J. Korean Math. Soc., 55 (2020), 225–251. https://doi.org/10.4134/JKMS.j170183 doi: 10.4134/JKMS.j170183 |
[19] | Z. Jablonski, Complete hyperexpansivity, subnormality and inverted boundedness conditions, Integr. Equat. Oper. Th., 44 (2002), 316–336. https://doi.org/10.1007/BF01212036 doi: 10.1007/BF01212036 |
[20] | A. O. Hadi, O. A. M. S. Ahmed, $(m, \infty)$-Expansive and $(m, \infty)$-contractive commuting tuple of operators on a Banach space, Filomat, 36 (2022), 1113–1123. |
[21] | K. Hedayatian, A. M. Moghaddam, Some proprties of the spherical $m$-isometries, J. Operat. Theor., 79 (2018), 55–77. https://doi.org/10.7900/jot.2016oct31.2149 doi: 10.7900/jot.2016oct31.2149 |
[22] | P. Hoffman, M. Mackey, M. Ó. Searcóid, On the second parameter of an $(m, p)$-isometry, Integr. Equat. Oper. Th., 71 (2011), 389–405. https://doi.org/10.1007/s00020-011-1905-0 doi: 10.1007/s00020-011-1905-0 |
[23] | P. H. W. Hoffmann, M. Mackey, $(m, p)$ and $(m, \infty)$-isometric operator tuples on normed spaces, Asian-Eur. J. Math., 8 (2015). https://doi.org/10.1142/S1793557115500229 |
[24] | O. A. M. S. Ahmed, M. Cho, J. E. Lee, On $(m, C$)-isometric commuting tuples of operators on a Hilbert space, Results Math., 73 (2018), 1–31. https://doi.org/10.1007/s00025-018-0810-0 doi: 10.1007/s00025-018-0810-0 |
[25] | O. A. M. S. Ahmed, On the joint $(m, q)$-partial isometries and the joint $m$-invertible tuples of commuting operators on a Hilbert space, Ital. J. Pure Appl. Math., 40 (2018), 438–463. |
[26] | O. A. M. S. Ahmed, $m$-Isometric operators on Banach spaces, Asian-Eur. J. Math., 3 (2010), 1–19. https://doi.org/10.1142/S1793557110000027 doi: 10.1142/S1793557110000027 |
[27] | O. A. M. S. Ahmed, On $A(m, p)$-expansive and $A(m, p)$-hyperexpansive operators on Banach spaces-Ⅰ, Aljouf Sci. Eng. J., 1 (2014), 23–43. https://doi.org/10.12816/0011028 doi: 10.12816/0011028 |
[28] | O. A. M. S. Ahmed, On $A(m, p)$-expansive and $A(m, p)$-hyperexpansive operators on Banach spaces-Ⅱ, J. Math. Comput. Sci., 5 (2015), 123–148. |
[29] | O. A. M. S. Ahmed, On $(m, p)$-(Hyper) expansive and $(m, p)$-(Hyper) contractive mappings on a metric space, J. Inequal. Spec. Funct., 7 (2016), 73–87. |
[30] | V. Müller, On $p$-dilations of commuting operators, Oper. Theor., 78 (2017), 3–20. |
[31] | V. Müller, P. Marek, Spherical isometries are hyporefiexive, Rocky Mt. J. Math., 29 (1999), 677–683. |