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1. Introduction

We establish the notations used throughout this paper. The symbol N0 = N ∪ {0} refers to the set
of nonnegative integers. Let X be a complex Banach space and H be a complex Hilbert space. B[X]
(resp. B[H]) denotes the set of bounded linear operator on X ( resp. on H). For d ∈ N, let N =

(N1, · · · ,Nd) ∈ B[X]d be a tuple of commuting bounded linear operators. Let β = (β1, · · · , βd) ∈ Nd
0

and set |β| :=
∑

1≤ j≤d

|β j|, β! := β1! · · · βd!, Nβ := Nβ1
1 · · ·N

βd
d =

∏
1≤ j≤d

Nβ j

j . Further, the Hilbert adjoint of

the commuting d-tuple N = (N1, · · · ,Nd) ∈ B(H)d is the d-tuple N∗ = (N∗1 , · · · ,N
∗
d).

J. Agler and M. Stankus introduced the class of m-isometry on Hilbert space [1–3]. An operator
N ∈ B[H] is said to be m-isometric operator for some integer m ≥ 1 if it satisfies∑

0≤ j≤m

(−1) j

(
m
j

)
N∗m− jNm− j = 0. (1.1)

Notice that the Eq (1.1) is equivalently to∑
0≤ j≤m

(−1) j

(
m
j

)
‖Nm− jx‖2 = 0 ∀ x ∈ H .

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231393


27228

Many authors have defined new concepts related to m-isometries, such as (m, p)-isometries, (m,∞)-
isometries, (m,C)-isometries, (m, p)-isometric tuples, (m,∞)-isometric tuples and (m,C)-isometric
tuples. For the basic theory of these families of operators, the reader is referred to [8–12,15,18,21–25].

Given m ∈ N and p ∈ (0,∞), an operator N ∈ B[X] is called an (m, p)-isometry if and only if∑
0≤ j≤m

(−1) j

(
m
j

)
‖Nm− jx‖p = 0 ∀ x ∈ X,

(see [8, 22]).
The concepts of completely hyperexpansive and completely hypercontractive operators on Hilbert

space have attracted much attention from various authors. For a detailed account on these classes of
operators, the reader is referred to [4, 5, 7, 13, 19, 28].

The concept of (m, p)-expansive and (m, p)-contractive operators on a Banach space were
independently introduced and studied in the papers [16, 26, 27].

Let N ∈ B[X], and we denote

β
(p)
k (N, x) :=

∑
0≤ j≤k

(−1) j

(
k
j

)∥∥∥N jx
∥∥∥p
, ∀ x ∈ X,

where k ∈ N0 := N ∪ {0}, p ∈ (0,∞). The operator N is said to be

(i) (m, p)-expansive if β(p)
m (N, x) ≤ 0 for all x ∈ X,

(ii) (m, p)-hyperexpansive if β(p)
k (N, x) ≤ 0 for all x ∈ X and k ∈ {1, 2, · · · ,m}.

(iii) (m, p)-contractive if β(p)
m (N, x) ≥ 0, for all x ∈ X,

(iv) (m, p)-hypercontractive if β(p)
k (N, x) ≥ 0 for all x ∈ X and k ∈ {1, 2, · · · ,m}.

The study of tuples of commuting operators has attracted much attention from many authors.
Recently, several papers have been published on the study of tuples of commuting operators [6, 14,
15, 18, 20, 21, 23, 24, 29–31].

The notion of an m-isometric tuple (resp. (m, p)-isometric tuple ) is a natural higher-dimensional
generalization of the notion of an m-isometry (resp (m, p)-isometry) in a single variable operator.
J. Gleason and S. Richter in [15] extended the notion of m-isometric operators to the case of commuting
d-tuples of bounded linear operators on a Hilbert space. The defining equation for an m-isometric tuple
N = (N1, · · · ,Nd) ∈ B[H]d reads:

Sm(N) :=
∑

0≤k≤m

(−1)m−k

(
m
k

)(∑
|β|=k

k!
β!

N∗βNβ
)

= 0 (1.2)

or equivalently

〈Sm(N)x | x〉 =
∑

0≤k≤m

(−1)m−k

(
m
k

)(∑
|β|=k

k!
β!
‖Nβx‖2

)
= 0 for all x ∈ H . (1.3)

More recently, P. H. W. Hoffmann and M. Mackey [23] introduced the concept of (m, p)-isometric
tuples on normed space. Given m ∈ N and p ∈ (0,∞), the commuting d-tuple N = (N1, · · · ,Nd) ∈
B[X]d is an an (m, p)-isometry if∑

0≤k≤m

(−1)m−k

(
m
k

)∑
|β|=k

k!
β!
‖Nβx‖p = 0 for all x ∈ X. (1.4)

AIMS Mathematics Volume 8, Issue 11, 27227–27240.



27229

Remark 1.1. We have the following particular cases.
(i) When m = 1, then N = (N1, · · · ,Nd) ∈ B[X]d is a (1, p)-isometric tuple if

‖N1x‖p + · · · + ‖Nd x‖p = ‖x‖p, for all x ∈ X.

(ii) When m = 2, then N = (N1, · · · ,Nd) ∈ B[X]d is a (2, p)-isometric tuple if∑
1≤ j≤d

‖N jx‖p −

( ∑
1≤ j≤d

‖N2
j x‖p + 2

∑
1≤ j<k≤d

‖N jNkx‖p
)

= ‖x‖p forall x ∈ X.

(iii) When m = d = 2, then N = (N1,N2) ∈ B[X]2 be a commuting 2-tuple is a (2, p)-isometric pair if

‖x‖p − 2‖N1x‖p − 2‖N2x‖p + ‖N2
1 x‖2 + ‖N2

2 x‖p + ‖N1N2x‖p = 0 for all x ∈ X.

Our aim in this paper is to consider a generalization of the concepts of (m, p)-hyperexpansive
and (m, p)-hypercontractive of a single operator as discussed in [17, 27] to the (m, p)-hyperexpansive,
(m, p)-hypercontractive tuples of commutative operators on Banach spaces.

2. (m, p)-Hyperexpansive and (m, p)-hypercontractive tuples of commuting operators

For a d-tuple of commuting operators N := (N1, · · · ,Nd) ∈ B[X]d, m ∈ N and p > 0 being a real
number, we define

Q(p)
m (N; x) :=

∑
0≤k≤m

(−1)k

(
m
k

)( ∑
β ∈ Nd

0
|β| = k

k!
β!
‖Nβx‖p

)
.

Definition 2.1. For a commuting d-tuple N = (N1, · · · ,Nd) ∈ B[X]d, integer m ∈ N and p ∈ (0,∞).
We say:

(1) N is an (m, p)-expansive tuple if Q(p)
m (N; x) ≤ 0 for all x ∈ X,

(2) N is a (m, p)-hyperexpansive tuple if Q(p)
k (N; x) ≤ 0 for all x ∈ X and

k ∈ {1, · · · ,m},

(3) N is a completely p-hyperexpansive tuple if it is a (m, p)-hyperexpansive
tuple for every integer m ∈ N.

Definition 2.2. For a commuting d-tuple N = (N1, · · · ,Nd) ∈ B[X]d, integer m ∈ N and p ∈ (0,∞).
We say:

(1) N is an (m, p)-contractive tuple if Q(p)
m (N; x) ≥ 0 for all x ∈ X,

(2) N is a (m, p)-hypercontractive tuple if Q(p)
k (N; x) ≥ 0 for all x ∈ X and

k ∈ {1, · · · ,m},

(3) N is a completely p-hypercontractive tuple if it is a (m, p)-hypercontractive
tuple for all m ∈ N.
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Remark 2.1. When d = 1, Definitions 2.1 and 2.2 coincide with [16, Definition 1.1].

Notice that for N = (N1, · · · ,Nd) ∈ B[H]d,

〈Sm(N)x | x〉 = Q(2)
m (N; x) ;∀ x ∈ H .

Remark 2.2. When p = 2 and X = H , Definition 2.1 coincides with [5, Definition 2.1].

Remark 2.3. (i) Let N = (N1, · · · ,Nd) ∈ B[X]d be a commuting tuple of operators. Then N is a
(1, p)-expansive tuple if

‖x‖p ≤
∑

1≤ j≤d

‖N jx‖p, (∀ x ∈ X) (2.1)

and it is a (1, p)-contractive tuple if

‖x‖p ≥
∑

1≤ j≤d

‖N jx‖p, (∀ x ∈ X). (2.2)

(ii) If d = 2, let N = (N1,N2) ∈ B[X]2 be a commuting pair of operators. Then N is a (2, p)-expansive
pair if

‖x‖p ≤ 2(‖N1x‖p + ‖N2x‖p) − (‖N2
1 x‖p + ‖N2

2 x‖p + 2‖N1N2x‖p) ∀ x ∈ X, (2.3)

and it is a (2, p)-contractive pair if

‖x‖p ≥ 2(‖N1x‖p + ‖N2x‖p) − (‖N2
1 x‖p + ‖N2

2 x‖p + 2‖N1N2x‖p) ∀ x ∈ X. (2.4)

(iii) Let N = (N1, · · · ,Nd) ∈ B[X]d be a commuting tuple of operators. Then N is a (2, p)-expansive
tuple if

‖x‖p ≤ 2
∑

1≤ j≤d

‖N jx‖p −

( ∑
1≤ j≤d

‖N2
j x‖p + 2

∑
1≤ j<k≤d

‖N jNkx‖p
)
∀ x ∈ X, (2.5)

and it is a (2, p)-contractive tuple if

‖x‖p ≥ 2
∑

1≤ j≤d

‖N jx‖p −

( ∑
1≤ j≤d

‖N2
j x‖p + 2

∑
1≤ j<k≤d

‖N jNkx‖p
)
∀ x ∈ X. (2.6)

Remark 2.4. Since the operators N1, · · · ,Nd are commuting, every permutation of an (m, p)-expansive
tuple or a (m, p)-contractive tuple is also an (m, p)-expansive tuple or a (m, p)-contractive tuple .

Example 2.1. (1) Every (m, p)-isometric tuple of operators on a Banach space is an (m, p)-expansive
tuple and a (m, p)-contractive tuple of operators.

(2) Every (1, p)-isometric tuple is a completely p-hyperexpansive tuple and it is also completely p-
hypercontractive.

The following examples show that there exists a (m, p)-expansive tuple (resp. (m, p)-contractive tuple)
of operators that is not an (m, p)-isometric tuple for some positive integer m.
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Example 2.2. Let X = C3 be equipped with the Euclidean norm ‖ . ‖2. Consider

N1 =


1 1 1
1 1 1
1 1 1

 ∈ B[C3] and N2 =


0 0 1
0 1 0
1 0 0

 ∈ B[C3].

Then, the pair N = (N1,N2) is (2, p)-contractive pair for e p ∈ (0, 1) on (X = C3, ‖.‖2).
In fact, it is easy to verify that N1N2 = N2N1. By direct computation, we have N1N2 = N1,N2

1 = 3N1

and N2
2 = I3. Furthermore, for any vector x =


u
v
w

, direct computation yields

‖N1x‖p
2 = ‖N1N2x‖p

2

‖N2x‖p
2 = ‖x‖p

2 = ‖N2
2 x‖p

2

‖N2
1 x‖p

2 = ‖3N1x‖p
2 = 3p‖N1x‖p

2 .

Hence,

2
(
‖N1x‖p

2 + ‖N2x‖p
2

)
−

(
‖N2

1 x‖p
2 + ‖N2

2 x‖p
2 + 2‖N1N2x‖p

2

)
= 2

(
‖N1x‖p

2 + ‖x‖p
2

)
−

(
3p‖N1x‖p

2 + ‖x‖p
2 + 2‖N1x‖p

2

)
= 2‖N1x‖p

2 + 2‖x‖p
2 −

(
3p‖N1x‖p

2 − ‖x‖
p
2 − 2‖N1x‖p

2

)
= ‖x‖p

2 − 3p‖N1x‖p
2

≤ ‖x‖p
2 .

Hence, N = (N1,N2) is (2, p)-contractive tuple for p ∈ (0, 1).

Example 2.3. Let X be a normed space and IX be the identity operator. Then, (5IX, IX, IX) ∈ B[X]3 is
a (2, p)-contractive tuple of operators which is not a (2, p)-isometric tuple.

Example 2.4. Let p ∈ (0,∞) and N ∈ B[X] be an (m, p)-hyperexpansive (resp. (m, p)-
hypercontractive) operator (see [29, Definition 1.3]) and γ = (γ1, · · · , γd) ∈ (Cd, ‖.‖p) with

‖γ‖p
p =

∑
1≤ j≤d

|γ j|
p = 1.

Then, the operator tuple N = (N1, · · · ,Nd) with N j = γ jN for j = 1, 2, · · · , d is an (m, p)-
hyperexpansive tuple (resp. (m, p)-hypercontractive tuple).

In fact, it is clair that NiN j = N jNi for all 1 ≤ i; j ≤ d. Furthermore, by the multinomial expansion,
we get (

|γ1|
p + |γ2|

p + · · · + |γd|
p
) j

=
∑

β1+β2+···+βd= j

(
j

β1, β2, · · · , βd

) ∏
1≤i≤d

|γi|
pβi
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=
∑
|β|= j

j!
β!
|γβ|p.

On the other hand, we have for all k ∈ {1, · · · ,m} and x ∈ X

Q
(p)
k (N; x) =

∑
0≤ j≤k

(−1) j

(
k
j

)(∑
|β|= j

j!
β!
‖Nβx‖p

)
=

∑
0≤ j≤k

(−1) j

(
k
j

)(∑
|β|= j

j!
β!
‖γβN |β|x‖p

)
=

∑
0≤ j≤k

(−1) j

(
k
j

)
‖N jx‖p.

It follows that if N is (m, p)-hyperexpansive then Q(p)
k (N, x) ≤ 0 and if N is (m, p)-hypercontractive

then Q(p)
k (N, x) ≥ 0.

The following Proposition generalizes [16, Lemma 2.1].

Proposition 2.1. Let N = (N1, · · · ,Nd) ∈ B[X]d be a commuting tuple of operators. The following
identities hold for all x ∈ X and m ∈ N.

Q
(p)
m+1(N, x) = Q(p)

m (N, x) −
∑

1≤ j≤d

Q(p)
m (N, N jx). (2.7)

Q(p)
m (N; x) = (−1)m

∑
|α|=m

m!
α!
‖Nαx‖p −

∑
0≤k≤m−1

(−1)m−k

(
m
k

)
Q

(p)
k (N, x). (2.8)

∑
1≤ j≤d

( ∑
0≤k≤m−1

(−1)k

(
n
k

)
Q

(p)
k (N, N jx)

)
=

∑
0≤k≤m−1

(−1)k

(
n + 1

k

)
Q

(p)
k (N, x) + (−1)m

(
n

m − 1

)
Q(p)

m (N, x). (2.9)

Proof. The identity in (2.7) follows from [23, Proposition 3.1] after noting the slight differences in
notation, and so its proof is omitted.

We prove the equality (2.8) by induction on m ≥ 1. For m = 1, it is true, since

Q(p)
m (N, x) =

∑
0≤k≤m

(−1)k

(
m
k

)∑
|β|=k

k!
β!
‖Nαx‖p, where Q(p)

0 (N, x) = ‖x‖p.

Assume that the induction hypothesis for some integer m ≥ 1. By (2.7) we have

Q
(p)
m+1N, x) = Q(p)

m (N, x) −
∑

1≤ j≤d

Q(p)
m (N, N jx) for all integers m ≥ 1.

By the induction hypothesis and in view of (2.8) we have that

Q
(p)
m+1(N, x)

AIMS Mathematics Volume 8, Issue 11, 27227–27240.
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= (−1)m
∑
|β|=m

m!
β!
‖Nβx‖p −

∑
0≤k≤m−1

(−1)m−k

(
m
k

)
Q

(p)
k (N, x)

−
∑

1≤ j≤d

(
(−1)m

∑
|β|=m

m!
β!
‖NβN jx‖p −

∑
0≤k≤m−1

(−1)m−k

(
m
k

)
Q

(p)
k (N, N jx)

)
= (−1)m+1

∑
|α|=m+1

(m + 1)!
β!

‖Nβx‖p

+(−1)m
∑
|β|=m

m!
β!
‖Nβx‖p +

∑
1≤k≤m

(−1)m−k

(
m

k − 1

)
Q

(p)
k (N, x)

= (−1)m+1
∑
|α|=m+1

(m + 1)!
β!

‖Nβx‖p + Q(p)
m (N, x)+

∑
0≤k≤m−1

(−1)m−k

(
m
k

)
Q

(p)
k (N, x)

+
∑

1≤k≤m

(−1)m−k

(
m

k − 1

)
Q

(p)
k (N, x)

= (−1)m+1
∑
|β|=m+1

(m + 1)!
β!

‖Nβx‖p + Q(p)
m (N, x)+

∑
1≤k≤m−1

(−1)m−k(( m
k − 1

)
+

(
m
k

))
Q

(p)
k (N, x)

+(−1)mQ
(p)
0 (N, x) +

(
m

m − 1

)
Q(p)

m (N, x)

= (−1)m+1
∑
|β|=m+1

(m + 1)!
β!

‖Nβx‖p −
∑

0≤k≤m

(−1)m+1−k

(
m + 1

k

)
Q

(p)
k (N, x).

The conclusion of (2.8) for (m + 1) is now immediate.

To prove (2.9), we have by (2.7)∑
1≤k≤m

(−1)k

(
n

k − 1

)
Q

(p)
k (N, x)

=
∑

1≤k≤m

(−1)k

(
n

k − 1

)(
Q

(p)
k−1(N, x) −

∑
1≤ j≤d

Q
(p)
k−1(N, N jx)

)
= −

∑
0≤k≤m−1

(−1)k

(
n
k

)
Q

(p)
k (N, x) +

∑
1≤ j≤d

∑
0≤k≤m−1

(−1)k

(
n
k

)
Q

(p)
k (N, N jx)

and therefore ∑
1≤ j≤d

∑
0≤k≤m−1

(−1)k

(
n
k

)
Q

(p)
k (N; N jx)

=
∑

1≤k≤m

(−1)k

(
n

k − 1

)
Q

(p)
k (N; x) +

∑
0≤k≤m−1

(−1)k

(
n
k

)
Q

(p)
k (N, x)

= (−1)m

(
n

m − 1

)
Q(p)

m (N, x) +
∑

1≤k≤m−1

(−1)k
(( n

k − 1

)
+

(
n
k

))
Q

(p)
k (N; x)
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+Q
(p)
0 (N, x)

=
∑

0≤k≤m−1

(−1)k

(
n + 1

k

)
Q

(p)
k (N, x) + (−1)m

(
n

m − 1

)
Q(p)

m (N; x).

This completes the proof of the proposition. �

It is well-known that the class of (m, p)-isometric tuples is a subset of the class of (m+1, p)-isometric
tuples. The following example shows that the class of (m, p)-expansive tuples and (m + 1, p)-expansive
tuples are independent.

Example 2.5. Let N = (IX, IX, IX) ∈ B[X]3. A simple computation shows that

(1) N is a (1, p)-expansive tuple but not a (2, p)-expansive tuple.

(2) N is a (2, p)-contractive but not a (1, p)-contractive.

The following Lemma generalizes [17, Proposition 5.3].

Lemma 2.1. Let N = (N1, · · · ,Nd) ∈ B[X]d be a commuting tuple that is a (2, p)-expansive tuple.
Then the following statements hold.∑

|β|=n

n!
β!
‖Nβx‖p

X
≤ (1 − n)‖x‖p

X
+ n

( ∑
1≤ j≤d

‖N jx‖
p
X

)
, ∀ x ∈ X, ∀ n ∈ N. (2.10)

∑
1≤ j≤d

‖N jx‖p ≥
n

n − 1
‖x‖p ∀ x ∈ X, n ∈ N, n , 1. (2.11)

∑
1≤ j≤d

‖N jx‖p ≥ ‖x‖p ∀ x ∈ X. (2.12)

Proof. We shall prove the inequality (2.10) by induction on n. For n = 0 or n = 1 it is clear. Assume
that (2.10) is true for n and prove it for n + 1. Indeed, in view of [23, Lemma 2.1 ], it follows that∑

|β|=n+1

(n + 1)!
β!

‖Nαx‖p =
∑

1≤k≤d

(∑
|β|=n

n!
β!
‖NβNkx‖p

)
.

Therefore, by the induction hypothesis, we get∑
|β|=n+1

(n + 1)!
β!

‖Nβx‖p

≤ (1 − n)
∑

1≤k≤d

‖Nkx‖p + n
∑

1≤k≤d

( ∑
1≤ j≤d

‖N jNkx‖p
)

= (1 − n)
∑

1≤k≤d

‖Nkx‖p + n
∑

1≤ j≤d

‖N2
j x‖p + 2n

( ∑
1≤ j<k≤d

‖N jNkx‖p
)
.

Since N is a (2, p)-expansive tuple, it follows from (2.5)∑
|β|=n+1

(n + 1)!
β!

‖Nβx‖p
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≤ (1 − n)
∑

1≤k≤d

‖Nkx‖p
X

+ n
(
− ‖x‖p − 2

∑
1≤k≤d

‖Nkx‖p
)

≤ −n‖x‖p + (n + 1)
( ∑

1≤k≤d

‖Nkx‖p
)
,

so that (2.10) holds for n + 1.

The inequality (2.11) follows from (2.10) and the inequality (2.12) follows from (2.11) by taking
n −→ ∞. �

Remark 2.5. There is an immediate related consequence of this result. If N is a (2, p)-expansive tuple,
then N is a (1, p)-expansive tuple i.e., N is a (2, p)-hyperexpansive tuple.

Lemma 2.2. Let N = (N1, · · · ,Nd) ∈ B[X]d be a commuting tuple that is a (2, p)-contractive tuple.
Then ∑

|β|=n

n!
β!
‖Nβx‖p ≥ (1 − n)‖x‖p + n

( ∑
1≤ j≤d

‖N jx‖p
)
, ∀ x ∈ X, ∀ n ∈ N. (2.13)

Proof. We omit the proof since it is similar to the one of Lemma 2.1. �

Remark 2.6. Let N = (N1, · · · ,Nd) ∈ B[X]d be a commuting tuple of operators. The null space of N
is defined by

N(N) := {x ∈ X / N1x = ... = Nd x = 0} =
⋂

1≤ j≤d

N(N j).

The rang of N is given by

R(N) := {z ∈ X /∃ x1, · · · , xd ∈ X : z = N1x1 + · · · + Nd xd } =
∑

1≤ j≤d

R(N j).

We discuss below several consequences of Proposition 2.1.

Proposition 2.2. Let N = (N1, · · · ,Nd) ∈ B[X]d be commuting tuple of operators such that N/R(N) :=
(N1/R(N), · · · ,Nd/R(N))-is an (m − 1, p)-isometric tuple. Then following properties hold.
(1) N is an (m, p)-expansive tuple if and only if N is a (m − 1, p)-expansive tuple on X.
(2) N is a (m, p)-contractive tuple if and only if N is a (m − 1, p)-contractive tuple.

Proof. In the first step, we note that R(N j) ⊂ R(N) for all j = 1, · · · , d. In view of (2.7), we get

Q(p)
m (N; x) = Q

(p)
m−1(N; x) −

∑
1≤ j≤d

Q
(p)
m−1(N; N jx), ∀ x ∈ X.

Since N is an (m − 1, p)-isometric tuple on N/R(N), we deduce that

Q(p)
m (N; x) = Q

(p)
m−1(N; x), ∀ x ∈ X.

The desired results in the statements (1) and (2) follow immediately. �
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Proposition 2.3. Let N = (N1, · · · ,Nd) ∈ B[X]d be commuting tuple of operators such that N/R(N) :=
(N1/R(N), · · · ,Nd/R(N)) is a (1, p)-isometric tuple. The following properties hold.
(1) If N is an (m, p)-expansive tuple, then N is an (m, p)-hyperexpansive tuple.
(2) If N is an (m, p)-contractive tuple, then N is an (m, p)-hypercontractive tuple.

Proof. By (2.7), we have for all k ∈ {1, 2, · · · ,m}

Q
(p)
k (N; x) = Q

(p)
k−1(N; x) −

∑
1≤ j≤d

Q
(p)
k−1(N; N jx), ∀ x ∈ X.

If N is an (1, p)-isometric tuple on R(N), it is well known that N is an (k, p)-isometric tuple on R(N)
for k = 1, · · · ,m. Consequently,

Q
(p)
1 (N; x) = Q

(p)
2 (N; x) = ... = Q

(p)
m−1(N; x) = Q(p)

m (N; x).

If N is a (m, p)-expansive tuple, it follows that (1) is valid.
By the same argument as above, (2) is obtained. �

The next theorem shows that certain (m, p)-expansive (resp. (m, p)-contractive) tuples are (m, p)-
hyperexpansive (resp. (m, p)-hypercontractive) tuples.

Theorem 2.1. Let N = (N1, · · · ,Nd) ∈ B[X]d be a tuple of commuting operators. The following
statements hold.
(1) If N is an (m, p)-expansive tuple and sup

n

(∑
|β|=n

n!
β!
‖Nβx‖p

)
< ∞ for all x ∈ X, then N is an (m, p)-

hyperexpansive tuple.

(2) If N is an (m, p)-contractive tuple and sup
n

( ∑
|α|=n

n!
α!
‖Nαx‖p

)
< ∞ for all x ∈ X, then N is a (m, p)-

hypercontractive tuple.

Proof. Assume that N is an (m, p)-expansive tuple. From (2.7), it is clear that

Q(p)
m (N, x) ≤ 0 ∀ x ∈ X ⇐⇒ Q

(p)
m−1(N, x) ≤

∑
1≤ j≤d

Q
(p)
m−1(N,N jx) ∀ x ∈ X.

It can easily be established that

Q
(p)
m−1(N, x) ≤

∑
1≤k1≤d

Q
(p)
m−1(N,Nk1 x) ≤ · · · ≤

∑
1≤k1, ··· ,kd≤d

Q
(p)
m−1(N,Nkd · · ·Nk1 x)

≤ · · · · · ·

≤ · · · · · ·

≤
∑

1≤k1, ··· ,kd≤d

Q
(p)
m−1(N,Nnd

kd
· · ·Nn1

k1
x).

Since for any N = (N1, · · · ,Nd) ∈ B(X)d,

Q
(p)
m−1(N,Nnd

kd
· · ·Nn1

k1
x) = Q

(p)
m−2(N,Nnd

kd
· · ·Nn1

k1
x) −

∑
1≤ j≤d

Q
(p)
m−2(N,N jN

nd
kd
· · ·Nn1

k1
x),
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it is now easy to see that for 1 ≤ k1, · · · ; kd ≤ d,

Q
(p)
m−1(N,Nnd

kd
· · ·Nn1

k1
x)

=

{ ∑
0≤k≤m−2

(−1)k

(
m − 2

k

)(∑
|β|=k

k!
β!

(
‖NβNnd

kd
· · ·Nn1

k1
x‖p −

∑
1≤ j≤d

‖NβN jN
nd
kd
· · ·Nn1

k1
x‖p

)}
=

{ ∑
0≤k≤m−2

(−1)k

(
m − 2

k

)(∑
|β|=k

k!
β!
‖NβNnd

kd
· · ·Nn1

k1
x‖p −

∑
1≤ j≤d

∑
|β|=k

k!
β!
‖NβN jN

nd
kd
· · ·Nn1

k1
x‖p

)}
.

Set
an1,··· ,nd =

∑
|β|=k

k!
β!
‖NβNnd

kd
· · ·Nn1

k1
x‖p −

∑
1≤ j≤d

∑
|β|=k

k!
β!
‖NβN jN

nd
kd
· · ·Nn1

k1
x‖p.

Under the assumption that sup
n

(∑
|β|=n

n!
α!
‖Nβx‖p

)
< ∞, it follows that the sequence

(
an1,··· ,nd

)
n1,···nd

is

bounded. Hence, there is a subsequence
(
ank1 ,··· ,nnkd

)
nk1 ,···nkd

which converges. By a direct calculation we
get

Q
(p)
m−1(N,Nnkd

kd
· · ·N

nk1
k1

x) −→ 0 as nk j −→ ∞, j = 1, · · · , d.

This means that Q(p)
m−1(N, x) ≤ 0. Consequently, N is an (m − 1, p)-expansive tuple.

By repeating this process, we reach the following inequalities Q(p)
k (N, x) ≤ 0 for k = 1, · · · ,m, from

which N is a (m, p)-hyperexpansive tuple as desired.
(2) Using the fact that N is an (m, p)-contractive tuple and together with (2.7), we obtain

Q(p)
m (N, x) ≥ 0 ∀ x ∈ X ⇐⇒ Q

(p)
m−1(N, x) ≥

∑
1≤ j≤d

Q
(p)
m−1(N,N jx) ∀ x ∈ X.

It can easily be established that

Q
(p)
m−1(N, x) ≥

∑
1≤k1≤d

Q
(p)
m−1(N,Nk1 x) ≥ · · · ≥

∑
1≤k1, ··· ,kd≤d

Q
(p)
m−1(N,Nkd · · ·Nk1 x)

≥ · · · · · ·

≥ · · · · · ·

≥
∑

1≤k1, ··· ,kd≤d

Q
(p)
m−1(N,Nnd

kd
· · ·Nn1

k1
x).

Now, using the line of argument from the proof of statement (1), one can prove that

Q
(p)
m−1(N,Nnkd

kd
· · ·N

nk1
k1

x) −→ 0 as nk j −→ ∞, j = 1, · · · , d.

Thus, Q(p)
m−1(N, x) ≥ 0, and hence, N is an (m − 1, p)-contractive tuple. By repeating this process, we

reach the following inequalities

Q
(p)
k (N, x) ≥ 0, 1 ≤ k ≤ m,

from which N is an (m, p)-hypercontractive tuple. �
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3. Conclusions

In the work, we have introduced a new classes of operators known as (m, p)-hyperexpensive
tuple and (m, p)-hypercontractive tuple. Several properties are proved by exploiting the special
kind of structure of single operator. In the course of our investigation, we find some properties of
(m, p)-hyperexpensive and (m, p)-hypercontractive for single operators which are retained by (m, p)-
hyperexpensive tuple and (m, p)-hypercontractive tuple.
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