Mathematics

Research article
Higher order hyperexpansivity and higher order hypercontractivity

Hadi Obaid Alshammari*

Mathematics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia

* Correspondence: Email: hahammari@ju.edu.sa.

Abstract

As a natural extension of the concept of (m, p)-hyperexpansive and (m, p)-hypercontractive of a single operator, we introduce and study the concepts of (m, p)-hyperexpansivity and (m, p)hypercontractivity for d-tuple of commuting operators acting on Banach spaces. These concepts extend the definitions of m-isometries and (m, p)-isometric tuples of bounded linear operators acting on Hilbert or Banach spaces, which have been introduced and studied by many authors.

Keywords: m-isometric tuple; (m, p)-isometric tuple; expansive operator; contractive operator Mathematics Subject Classification: 47B15, 47B20, 47A15

1. Introduction

We establish the notations used throughout this paper. The symbol $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ refers to the set of nonnegative integers. Let \mathcal{X} be a complex Banach space and \mathcal{H} be a complex Hilbert space. $\mathcal{B}[\mathcal{X}]$ (resp. $\mathcal{B}[\mathcal{H}]$) denotes the set of bounded linear operator on \mathcal{X} (resp. on \mathcal{H}). For $d \in \mathbb{N}$, let $\mathbf{N}=$ $\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[X]^{d}$ be a tuple of commuting bounded linear operators. Let $\beta=\left(\beta_{1}, \cdots, \beta_{d}\right) \in \mathbb{N}_{0}^{d}$ and set $|\beta|:=\sum_{1 \leq j \leq d}\left|\beta_{j}\right|, \beta!:=\beta_{1}!\cdots \beta_{d}!, \mathbf{N}^{\beta}:=N_{1}^{\beta_{1}} \cdots N_{d}^{\beta_{d}}=\prod_{1 \leq j \leq d} N_{j}^{\beta_{j}}$. Further, the Hilbert adjoint of the commuting d-tuple $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}(\mathcal{H})^{d}$ is the d-tuple $\mathbf{N}^{*}=\left(N_{1}^{*}, \cdots, N_{d}^{*}\right)$.
J. Agler and M. Stankus introduced the class of m-isometry on Hilbert space [1-3]. An operator $N \in \mathcal{B}[\mathcal{H}]$ is said to be m-isometric operator for some integer $m \geq 1$ if it satisfies

$$
\begin{equation*}
\sum_{0 \leq j \leq m}(-1)^{j}\binom{m}{j} N^{* m-j} N^{m-j}=0 \tag{1.1}
\end{equation*}
$$

Notice that the Eq (1.1) is equivalently to

$$
\sum_{0 \leq j \leq m}(-1)^{j}\binom{m}{j}\left\|N^{m-j} x\right\|^{2}=0 \quad \forall x \in \mathcal{H} .
$$

Many authors have defined new concepts related to m-isometries, such as (m, p)-isometries, (m, ∞) isometries, (m, C)-isometries, (m, p)-isometric tuples, (m, ∞)-isometric tuples and (m, C)-isometric tuples. For the basic theory of these families of operators, the reader is referred to [8-12, 15, 18,21-25].

Given $m \in \mathbb{N}$ and $p \in(0, \infty)$, an operator $N \in \mathcal{B}[X]$ is called an (m, p)-isometry if and only if

$$
\sum_{0 \leq j \leq m}(-1)^{j}\binom{m}{j}\left\|N^{m-j} x\right\|^{p}=0 \quad \forall x \in \mathcal{X}
$$

(see $[8,22]$).
The concepts of completely hyperexpansive and completely hypercontractive operators on Hilbert space have attracted much attention from various authors. For a detailed account on these classes of operators, the reader is referred to $[4,5,7,13,19,28]$.

The concept of (m, p)-expansive and (m, p)-contractive operators on a Banach space were independently introduced and studied in the papers [16, 26, 27].

Let $N \in \mathcal{B}[\mathcal{X}]$, and we denote

$$
\beta_{k}^{(p)}(N, x):=\sum_{0 \leq j \leq k}(-1)^{j}\binom{k}{j}\left\|N^{j} x\right\|^{p}, \quad \forall x \in \mathcal{X},
$$

where $k \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}, p \in(0, \infty)$. The operator N is said to be
(i) (m, p)-expansive if $\beta_{m}^{(p)}(N, x) \leq 0$ for all $x \in \mathcal{X}$,
(ii) (m, p)-hyperexpansive if $\beta_{k}^{(p)}(N, x) \leq 0$ for all $x \in \mathcal{X}$ and $k \in\{1,2, \cdots, m\}$.
(iii) (m, p)-contractive if $\beta_{m}^{(p)}(N, x) \geq 0$, for all $x \in \mathcal{X}$,
(iv) (m, p)-hypercontractive if $\beta_{k}^{(p)}(N, x) \geq 0$ for all $x \in \mathcal{X}$ and $k \in\{1,2, \cdots, m\}$.

The study of tuples of commuting operators has attracted much attention from many authors. Recently, several papers have been published on the study of tuples of commuting operators [6, 14, 15, 18, 20, 21, 23, 24, 29-31].

The notion of an m-isometric tuple (resp. (m, p)-isometric tuple) is a natural higher-dimensional generalization of the notion of an m-isometry (resp (m, p)-isometry) in a single variable operator. J. Gleason and S. Richter in [15] extended the notion of m-isometric operators to the case of commuting d-tuples of bounded linear operators on a Hilbert space. The defining equation for an m-isometric tuple $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{H}]^{d}$ reads:

$$
\begin{equation*}
\mathcal{S}_{m}(\mathbf{N}):=\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left(\sum_{|\beta|=k} \frac{k!}{\beta!} \mathbf{N}^{* \beta} \mathbf{N}^{\beta}\right)=0 \tag{1.2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\left\langle\mathcal{S}_{m}(\mathbf{N}) x \mid x\right\rangle=\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left(\sum_{|\beta|=k} \frac{k!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{2}\right)=0 \text { for all } x \in \mathcal{H} . \tag{1.3}
\end{equation*}
$$

More recently, P. H. W. Hoffmann and M. Mackey [23] introduced the concept of (m, p)-isometric tuples on normed space. Given $m \in \mathbb{N}$ and $p \in(0, \infty)$, the commuting d-tuple $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in$ $\mathcal{B}[\mathcal{X}]^{d}$ is an an (m, p)-isometry if

$$
\begin{equation*}
\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} \sum_{|\beta|=k} \frac{k!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p}=0 \text { for all } x \in \mathcal{X} \tag{1.4}
\end{equation*}
$$

Remark 1.1. We have the following particular cases.
(i) When $m=1$, then $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[X]^{d}$ is a $(1, p)$-isometric tuple if

$$
\left\|N_{1} x\right\|^{p}+\cdots+\left\|N_{d} x\right\|^{p}=\|x\|^{p}, \quad \text { for all } x \in \mathcal{X}
$$

(ii) When $m=2$, then $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{X}]^{d}$ is a (2,p)-isometric tuple if

$$
\sum_{1 \leq j \leq d}\left\|N_{j} x\right\|^{p}-\left(\sum_{1 \leq j \leq d}\left\|N_{j}^{2} x\right\|^{p}+2 \sum_{1 \leq j<k \leq d}\left\|N_{j} N_{k} x\right\|^{p}\right)=\|x\|^{p} \text { forall } x \in \mathcal{X} .
$$

(iii) When $m=d=2$, then $\mathbf{N}=\left(N_{1}, N_{2}\right) \in \mathcal{B}[\mathcal{X}]^{2}$ be a commuting 2-tuple is a (2,p)-isometric pair if

$$
\|x\|^{p}-2\left\|N_{1} x\right\|^{p}-2\left\|N_{2} x\right\|^{p}+\left\|N_{1}^{2} x\right\|^{2}+\left\|N_{2}^{2} x\right\|^{p}+\left\|N_{1} N_{2} x\right\|^{p}=0 \text { for all } x \in \mathcal{X}
$$

Our aim in this paper is to consider a generalization of the concepts of (m, p)-hyperexpansive and (m, p)-hypercontractive of a single operator as discussed in [17,27] to the (m, p)-hyperexpansive, (m, p)-hypercontractive tuples of commutative operators on Banach spaces.

2. (m, p)-Hyperexpansive and (m, p)-hypercontractive tuples of commuting operators

For a d-tuple of commuting operators $\mathbf{N}:=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{X}]^{d}, m \in \mathbb{N}$ and $p>0$ being a real number, we define

$$
Q_{m}^{(p)}(\mathbf{N} ; x):=\sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k}\left(\sum_{\substack{\beta \in \mathbb{N}_{0}^{d} \\|\beta|=k}} \frac{k!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p}\right) .
$$

Definition 2.1. For a commuting d-tuple $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{X}]^{d}$, integer $m \in \mathbb{N}$ and $p \in(0, \infty)$. We say:
(1) \mathbf{N} is an (m, p)-expansive tuple if $Q_{m}^{(p)}(\mathbf{N} ; x) \leq 0$ for all $x \in \mathcal{X}$,
(2) \mathbf{N} is a (m, p)-hyperexpansive tuple if $Q_{k}^{(p)}(\mathbf{N} ; x) \leq 0$ for all $x \in \mathcal{X}$ and $k \in\{1, \cdots, m\}$,
(3) \mathbf{N} is a completely p-hyperexpansive tuple if it is a (m, p)-hyperexpansive tuple for every integer $m \in \mathbb{N}$.

Definition 2.2. For a commuting d-tuple $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{X}]^{d}$, integer $m \in \mathbb{N}$ and $p \in(0, \infty)$. We say:
(1) \mathbf{N} is an (m, p)-contractive tuple if $\mathcal{Q}_{m}^{(p)}(\mathbf{N} ; x) \geq 0$ for all $x \in \mathcal{X}$,
(2) \mathbf{N} is a (m, p)-hypercontractive tuple if $\mathcal{Q}_{k}^{(p)}(\mathbf{N} ; x) \geq 0$ for all $x \in \mathcal{X}$ and $k \in\{1, \cdots, m\}$,
(3) \mathbf{N} is a completely p-hypercontractive tuple if it is a (m, p)-hypercontractive tuple for all $m \in \mathbb{N}$.

Remark 2.1. When $d=1$, Definitions 2.1 and 2.2 coincide with [16, Definition 1.1].
Notice that for $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{H}]^{d}$,

$$
\left\langle\mathcal{S}_{m}(\mathbf{N}) x \mid x\right\rangle=Q_{m}^{(2)}(\mathbf{N} ; x) ; \forall x \in \mathcal{H} .
$$

Remark 2.2. When $p=2$ and $\mathcal{X}=\mathcal{H}$, Definition 2.1 coincides with [5, Definition 2.1].
Remark 2.3. (i) Let $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{X}]^{d}$ be a commuting tuple of operators. Then \mathbf{N} is a $(1, p)$-expansive tuple if

$$
\begin{equation*}
\|x\|^{p} \leq \sum_{1 \leq j \leq d}\left\|N_{j} x\right\|^{p}, \quad(\forall x \in \mathcal{X}) \tag{2.1}
\end{equation*}
$$

and it is a ($1, p$)-contractive tuple if

$$
\begin{equation*}
\|x\|^{p} \geq \sum_{1 \leq j \leq d}\left\|N_{j} x\right\|^{p}, \quad(\forall x \in \mathcal{X}) . \tag{2.2}
\end{equation*}
$$

(ii) If $d=2$, let $\mathbf{N}=\left(N_{1}, N_{2}\right) \in \mathcal{B}[\mathcal{X}]^{2}$ be a commuting pair of operators. Then \mathbf{N} is a $(2, p)$-expansive pair if

$$
\begin{equation*}
\|x\|^{p} \leq 2\left(\left\|N_{1} x\right\|^{p}+\left\|N_{2} x\right\|^{p}\right)-\left(\left\|N_{1}^{2} x\right\|^{p}+\left\|N_{2}^{2} x\right\|^{p}+2\left\|N_{1} N_{2} x\right\|^{p}\right) \forall x \in \mathcal{X}, \tag{2.3}
\end{equation*}
$$

and it is a $(2, p)$-contractive pair if

$$
\begin{equation*}
\|x\|^{p} \geq 2\left(\left\|N_{1} x\right\|^{p}+\left\|N_{2} x\right\|^{p}\right)-\left(\left\|N_{1}^{2} x\right\|^{p}+\left\|N_{2}^{2} x\right\|^{p}+2\left\|N_{1} N_{2} x\right\|^{p}\right) \quad \forall x \in \mathcal{X} . \tag{2.4}
\end{equation*}
$$

(iii) Let $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[X]^{d}$ be a commuting tuple of operators. Then \mathbf{N} is a $(2, p)$-expansive tuple if

$$
\begin{equation*}
\|x\|^{p} \leq 2 \sum_{1 \leq j \leq d}\left\|N_{j} x\right\|^{p}-\left(\sum_{1 \leq j \leq d}\left\|N_{j}^{2} x\right\|^{p}+2 \sum_{1 \leq j<k \leq d}\left\|N_{j} N_{k} x\right\|^{p}\right) \forall x \in \mathcal{X}, \tag{2.5}
\end{equation*}
$$

and it is a $(2, p)$-contractive tuple if

$$
\begin{equation*}
\|x\|^{p} \geq 2 \sum_{1 \leq j \leq d}\left\|N_{j} x\right\|^{p}-\left(\sum_{1 \leq j \leq d}\left\|N_{j}^{2} x\right\|^{p}+2 \sum_{1 \leq j<k \leq d}\left\|N_{j} N_{k} x\right\|^{p}\right) \forall x \in \mathcal{X} . \tag{2.6}
\end{equation*}
$$

Remark 2.4. Since the operators N_{1}, \cdots, N_{d} are commuting, every permutation of an (m, p)-expansive tuple or a (m, p)-contractive tuple is also an (m, p)-expansive tuple or a (m, p)-contractive tuple .

Example 2.1. (1) Every (m, p)-isometric tuple of operators on a Banach space is an (m, p)-expansive tuple and a (m, p)-contractive tuple of operators.
(2) Every ($1, p$)-isometric tuple is a completely p-hyperexpansive tuple and it is also completely p hypercontractive.

The following examples show that there exists a (m, p)-expansive tuple (resp. (m, p)-contractive tuple) of operators that is not an (m, p)-isometric tuple for some positive integer m.

Example 2.2. Let $\mathcal{X}=\mathbb{C}^{3}$ be equipped with the Euclidean norm $\|.\|_{2}$. Consider

$$
N_{1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \in \mathcal{B}\left[\mathbb{C}^{3}\right] \text { and } N_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \in \mathcal{B}\left[\mathbb{C}^{3}\right]
$$

Then, the pair $\mathbf{N}=\left(N_{1}, N_{2}\right)$ is $(2, p)$-contractive pair for e $p \in(0,1)$ on $\left(X=\mathbb{C}^{3},\|.\|_{2}\right)$.
In fact, it is easy to verify that $N_{1} N_{2}=N_{2} N_{1}$. By direct computation, we have $N_{1} N_{2}=N_{1}, N_{1}^{2}=3 N_{1}$ and $N_{2}^{2}=I_{3}$. Furthermore, for any vector $x=\left(\begin{array}{c}u \\ v \\ w\end{array}\right)$, direct computation yields

$$
\begin{gathered}
\left\|N_{1} x\right\|_{2}^{p}=\left\|N_{1} N_{2} x\right\|_{2}^{p} \\
\left\|N_{2} x\right\|_{2}^{p}=\|x\|_{2}^{p}=\left\|N_{2}^{2} x\right\|_{2}^{p} \\
\left\|N_{1}^{2} x\right\|_{2}^{p}=\left\|3 N_{1} x\right\|_{2}^{p}=3^{p}\left\|N_{1} x\right\|_{2}^{p} .
\end{gathered}
$$

Hence,

$$
\begin{aligned}
& 2\left(\left\|N_{1} x\right\|_{2}^{p}+\left\|N_{2} x\right\|_{2}^{p}\right)-\left(\left\|N_{1}^{2} x\right\|_{2}^{p}+\left\|N_{2}^{2} x\right\|_{2}^{p}+2\left\|N_{1} N_{2} x\right\|_{2}^{p}\right) \\
= & 2\left(\left\|N_{1} x\right\|_{2}^{p}+\|x\|_{2}^{p}\right)-\left(3^{p}\left\|N_{1} x\right\|_{2}^{p}+\|x\|_{2}^{p}+2\left\|N_{1} x\right\|_{2}^{p}\right) \\
= & 2\left\|N_{1} x\right\|_{2}^{p}+2\|x\|_{2}^{p}-\left(3^{p}\left\|N_{1} x\right\|_{2}^{p}-\|x\|_{2}^{p}-2\left\|N_{1} x\right\|_{2}^{p}\right) \\
= & \|x\|_{2}^{p}-3^{p}\left\|N_{1} x\right\|_{2}^{p} \\
\leq & \|x\|_{2}^{p} .
\end{aligned}
$$

Hence, $\mathbf{N}=\left(N_{1}, N_{2}\right)$ is $(2, p)$-contractive tuple for $p \in(0,1)$.
Example 2.3. Let \mathcal{X} be a normed space and $I_{\mathcal{X}}$ be the identity operator. Then, $\left(5 I_{\mathcal{X}}, I_{X}, I_{X}\right) \in \mathcal{B}[\mathcal{X}]^{3}$ is a $(2, p)$-contractive tuple of operators which is not a $(2, p)$-isometric tuple.

Example 2.4. Let $p \in(0, \infty)$ and $N \in \mathcal{B}[\mathcal{X}]$ be an (m, p)-hyperexpansive (resp. (m, p)hypercontractive) operator (see [29, Definition 1.3]) and $\gamma=\left(\gamma_{1}, \cdots, \gamma_{d}\right) \in\left(\mathbb{C}^{d},\|.\| \|_{p}\right)$ with

$$
\|\gamma\|_{p}^{p}=\sum_{1 \leq j \leq d}\left|\gamma_{j}\right|^{p}=1
$$

Then, the operator tuple $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right)$ with $N_{j}=\gamma_{j} N$ for $j=1,2, \cdots, d$ is an (m, p)hyperexpansive tuple (resp. (m, p)-hypercontractive tuple).

In fact, it is clair that $N_{i} N_{j}=N_{j} N_{i}$ for all $1 \leq i ; j \leq d$. Furthermore, by the multinomial expansion, we get

$$
\left(\left|\gamma_{1}\right|^{p}+\left|\gamma_{2}\right|^{p}+\cdots+\left|\gamma_{d}\right|^{p}\right)^{j}=\sum_{\beta_{1}+\beta_{2}+\cdots+\beta_{d}=j}\binom{j}{\beta_{1}, \beta_{2}, \cdots, \beta_{d}} \prod_{1 \leq i \leq d}\left|\gamma_{i}\right|^{p \beta_{i}}
$$

$$
=\sum_{|\beta|=j} \frac{j!}{\beta!}\left|\gamma^{\beta}\right|^{p}
$$

On the other hand, we have for all $k \in\{1, \cdots, m\}$ and $x \in \mathcal{X}$

$$
\begin{aligned}
\boldsymbol{Q}_{k}^{(p)}(\mathbf{N} ; x) & =\sum_{0 \leq j \leq k}(-1)^{j}\binom{k}{j}\left(\sum_{|\beta|=j} \frac{j!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p}\right) \\
& =\sum_{0 \leq j \leq k}(-1)^{j}\binom{k}{j}\left(\sum_{|\beta|=j} \frac{j!}{\beta!}\left\|\gamma^{\beta} N^{|\beta|} x\right\|^{p}\right) \\
& =\sum_{0 \leq j \leq k}(-1)^{j}\binom{k}{j}\left\|N^{j} x\right\|^{p} .
\end{aligned}
$$

It follows that if N is (m, p)-hyperexpansive then $Q_{k}^{(p)}(\mathbf{N}, x) \leq 0$ and if N is (m, p)-hypercontractive then $Q_{k}^{(p)}(\mathbf{N}, x) \geq 0$.

The following Proposition generalizes [16, Lemma 2.1].
Proposition 2.1. Let $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{X}]^{d}$ be a commuting tuple of operators. The following identities hold for all $x \in \mathcal{X}$ and $m \in \mathbb{N}$.

$$
\begin{gather*}
Q_{m+1}^{(p)}(\mathbf{N}, x)=Q_{m}^{(p)}(\mathbf{N}, x)-\sum_{1 \leq j \leq d} Q_{m}^{(p)}\left(\mathbf{N}, N_{j} x\right) . \tag{2.7}\\
\boldsymbol{Q}_{m}^{(p)}(\mathbf{N} ; x)=(-1)^{m} \sum_{|\alpha|=m} \frac{m!}{\alpha!}\left\|\mathbf{N}^{\alpha} x\right\|^{p}-\sum_{0 \leq k \leq m-1}(-1)^{m-k}\binom{m}{k} Q_{k}^{(p)}(\mathbf{N}, x) . \tag{2.8}\\
=\sum_{1 \leq j \leq d}\left(\sum_{0 \leq k \leq m-1}(-1)^{k}\binom{n}{k} Q_{k}^{(p)}\left(\mathbf{N}, N_{j} x\right)\right) \\
(-1)^{k}\binom{n+1}{k} Q_{k}^{(p)}(\mathbf{N}, x)+(-1)^{m}\binom{n}{m-1} Q_{m}^{(p)}(\mathbf{N}, x) . \tag{2.9}
\end{gather*}
$$

Proof. The identity in (2.7) follows from [23, Proposition 3.1] after noting the slight differences in notation, and so its proof is omitted.

We prove the equality (2.8) by induction on $m \geq 1$. For $m=1$, it is true, since

$$
Q_{m}^{(p)}(\mathbf{N}, x)=\sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} \sum_{|\beta|=k} \frac{k!}{\beta!}\left\|\mathbf{N}^{\alpha} x\right\|^{p}, \quad \text { where } \quad Q_{0}^{(p)}(\mathbf{N}, x)=\|x\|^{p}
$$

Assume that the induction hypothesis for some integer $m \geq 1$. By (2.7) we have

$$
\left.Q_{m+1}^{(p)} \mathbf{N}, x\right)=Q_{m}^{(p)}(\mathbf{N}, x)-\sum_{1 \leq j \leq d} Q_{m}^{(p)}\left(\mathbf{N}, N_{j} x\right) \text { for all integers } m \geq 1
$$

By the induction hypothesis and in view of (2.8) we have that

$$
Q_{m+1}^{(p)}(\mathbf{N}, x)
$$

$$
\left.\begin{array}{rl}
= & (-1)^{m} \sum_{|\beta|=m} \frac{m!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p}-\sum_{0 \leq k \leq m-1}(-1)^{m-k}\binom{m}{k} Q_{k}^{(p)}(\mathbf{N}, x) \\
& -\sum_{1 \leq j \leq d}\left((-1)^{m} \sum_{|\beta|=m} \frac{m!}{\beta!}\left\|\mathbf{N}^{\beta} N_{j} x\right\|^{p}-\sum_{0 \leq k \leq m-1}(-1)^{m-k}\binom{m}{k} Q_{k}^{(p)}\left(\mathbf{N}, N_{j} x\right)\right) \\
= & (-1)^{m+1} \sum_{|\alpha|=m+1} \frac{(m+1)!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p} \\
& +(-1)^{m} \sum_{|\beta|=m} \frac{m!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p}+\sum_{1 \leq k \leq m}(-1)^{m-k}\binom{m}{k-1} Q_{k}^{(p)}(\mathbf{N}, x) \\
= & (-1)^{m+1} \sum_{|\alpha|=m+1} \frac{(m+1)!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p}+Q_{m}^{(p)}(\mathbf{N}, x)+\sum_{0 \leq k \leq m-1}(-1)^{m-k}\binom{m}{k} Q_{k}^{(p)}(\mathbf{N}, x) \\
& +\sum_{1 \leq k \leq m}(-1)^{m-k}\binom{m}{k-1} Q_{k}^{(p)}(\mathbf{N}, x) \\
= & (-1)^{m+1} \sum_{|\beta|=m+1} \frac{(m+1)!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p}+Q_{m}^{(p)}(\mathbf{N}, x)+\sum_{1 \leq k \leq m-1}(-1)^{m-k}\left(\binom{m}{k-1}\right. \\
& \left.+\binom{m}{k}\right)^{(p)}(\mathbf{N}, x) \\
& +(-1)^{m} \mathbf{Q}_{0}^{(p)}(\mathbf{N}, x)+\binom{m}{m-1} Q_{m}^{(p)}(\mathbf{N}, x) \\
= & (-1)^{m+1} \sum_{|\beta|=m+1} \frac{(m+1)!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p}-\sum_{0 \leq k \leq m}(-1)^{m+1-k}(m+1 \\
k
\end{array}\right) Q_{k}^{(p)}(\mathbf{N}, x) .
$$

The conclusion of (2.8) for $(m+1)$ is now immediate.
To prove (2.9), we have by (2.7)

$$
\begin{aligned}
& \sum_{1 \leq k \leq m}(-1)^{k}\binom{n}{k-1} Q_{k}^{(p)}(\mathbf{N}, x) \\
= & \sum_{1 \leq k \leq m}(-1)^{k}\binom{n}{k-1}\left(Q_{k-1}^{(p)}(\mathbf{N}, x)-\sum_{1 \leq j \leq d} Q_{k-1}^{(p)}\left(\mathbf{N}, N_{j} x\right)\right) \\
= & -\sum_{0 \leq k \leq m-1}(-1)^{k}\binom{n}{k} Q_{k}^{(p)}(\mathbf{N}, x)+\sum_{1 \leq j \leq d} \sum_{0 \leq k \leq m-1}(-1)^{k}\binom{n}{k} Q_{k}^{(p)}\left(\mathbf{N}, N_{j} x\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \sum_{1 \leq j \leq d} \sum_{0 \leq k \leq m-1}(-1)^{k}\binom{n}{k} Q_{k}^{(p)}\left(\mathbf{N} ; N_{j} x\right) \\
= & \sum_{1 \leq k \leq m}(-1)^{k}\binom{n}{k-1} Q_{k}^{(p)}(\mathbf{N} ; x)+\sum_{0 \leq k \leq m-1}(-1)^{k}\binom{n}{k} Q_{k}^{(p)}(\mathbf{N}, x) \\
= & (-1)^{m}\binom{n}{m-1} Q_{m}^{(p)}(\mathbf{N}, x)+\sum_{1 \leq k \leq m-1}(-1)^{k}\left(\binom{n}{k-1}+\binom{n}{k}\right) Q_{k}^{(p)}(\mathbf{N} ; x)
\end{aligned}
$$

$$
\begin{aligned}
& +Q_{0}^{(p)}(\mathbf{N}, x) \\
= & \sum_{0 \leq k \leq m-1}(-1)^{k}\binom{n+1}{k} Q_{k}^{(p)}(\mathbf{N}, x)+(-1)^{m}\binom{n}{m-1} Q_{m}^{(p)}(\mathbf{N} ; x) .
\end{aligned}
$$

This completes the proof of the proposition.
It is well-known that the class of (m, p)-isometric tuples is a subset of the class of $(m+1, p)$-isometric tuples. The following example shows that the class of (m, p)-expansive tuples and $(m+1, p)$-expansive tuples are independent.

Example 2.5. Let $\mathbf{N}=\left(I_{X}, I_{X}, I_{X}\right) \in \mathcal{B}[X]^{3}$. A simple computation shows that
(1) \mathbf{N} is a $(1, p)$-expansive tuple but not a $(2, p)$-expansive tuple.
(2) \mathbf{N} is a $(2, p)$-contractive but not a $(1, p)$-contractive.

The following Lemma generalizes [17, Proposition 5.3].
Lemma 2.1. Let $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[X]^{d}$ be a commuting tuple that is a $(2, p)$-expansive tuple. Then the following statements hold.

$$
\begin{gather*}
\sum_{|\beta|=n} \frac{n!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|_{\mathcal{X}}^{p} \leq(1-n)\|x\|_{\mathcal{X}}^{p}+n\left(\sum_{1 \leq j \leq d}\left\|N_{j} x\right\|_{X}^{p}\right), \quad \forall x \in \mathcal{X}, \forall n \in \mathbb{N} . \tag{2.10}\\
\sum_{1 \leq j \leq d}\left\|N_{j} x\right\|^{p} \geq \frac{n}{n-1}\|x\|^{p} \quad \forall x \in \mathcal{X}, n \in \mathbb{N}, n \neq 1 \tag{2.11}\\
\sum_{1 \leq j \leq d}\left\|N_{j} x\right\|^{p} \geq\|x\|^{p} \quad \forall x \in \mathcal{X} . \tag{2.12}
\end{gather*}
$$

Proof. We shall prove the inequality (2.10) by induction on n. For $n=0$ or $n=1$ it is clear. Assume that (2.10) is true for n and prove it for $n+1$. Indeed, in view of [23, Lemma 2.1], it follows that

$$
\sum_{|\beta|=n+1} \frac{(n+1)!}{\beta!}\left\|\mathbf{N}^{\alpha} x\right\|^{p}=\sum_{1 \leq k \leq d}\left(\sum_{|\beta|=n} \frac{n!}{\beta!}\left\|\mathbf{N}^{\beta} N_{k} x\right\|^{p}\right) .
$$

Therefore, by the induction hypothesis, we get

$$
\begin{aligned}
& \sum_{|\beta|=n+1} \frac{(n+1)!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p} \\
\leq & (1-n) \sum_{1 \leq k \leq d}\left\|N_{k} x\right\|^{p}+n \sum_{1 \leq k \leq d}\left(\sum_{1 \leq j \leq d}\left\|N_{j} N_{k} x\right\|^{p}\right) \\
= & (1-n) \sum_{1 \leq k \leq d}\left\|N_{k} x\right\|^{p}+n \sum_{1 \leq j \leq d}\left\|N_{j}^{2} x\right\|^{p}+2 n\left(\sum_{1 \leq j<k \leq d}\left\|N_{j} N_{k} x\right\|^{p}\right) .
\end{aligned}
$$

Since \mathbf{N} is a $(2, p)$-expansive tuple, it follows from (2.5)

$$
\sum_{|\beta|=n+1} \frac{(n+1)!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p}
$$

$$
\begin{aligned}
& \leq(1-n) \sum_{1 \leq k \leq d}\left\|N_{k} x\right\|_{X}^{p}+n\left(-\|x\|^{p}-2 \sum_{1 \leq k \leq d}\left\|N_{k} x\right\|^{p}\right) \\
& \leq-n\|x\|^{p}+(n+1)\left(\sum_{1 \leq k \leq d}\left\|N_{k} x\right\|^{p}\right),
\end{aligned}
$$

so that (2.10) holds for $n+1$.
The inequality (2.11) follows from (2.10) and the inequality (2.12) follows from (2.11) by taking $n \longrightarrow \infty$.

Remark 2.5. There is an immediate related consequence of this result. If \mathbf{N} is a $(2, p)$-expansive tuple, then \mathbf{N} is a $(1, p)$-expansive tuple i.e., \mathbf{N} is a $(2, p)$-hyperexpansive tuple.

Lemma 2.2. Let $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[X]^{d}$ be a commuting tuple that is a $(2, p)$-contractive tuple. Then

$$
\begin{equation*}
\sum_{|\beta|=n} \frac{n!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p} \geq(1-n)\|x\|^{p}+n\left(\sum_{1 \leq j \leq d}\left\|N_{j} x\right\|^{p}\right), \quad \forall x \in \mathcal{X}, \forall n \in \mathbb{N} . \tag{2.13}
\end{equation*}
$$

Proof. We omit the proof since it is similar to the one of Lemma 2.1.
Remark 2.6. Let $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{X}]^{d}$ be a commuting tuple of operators. The null space of \mathbf{N} is defined by

$$
\mathcal{N}(\mathbf{N}):=\left\{x \in \mathcal{X} / N_{1} x=\ldots=N_{d} x=0\right\}=\bigcap_{1 \leq j \leq d} \mathcal{N}\left(N_{j}\right) .
$$

The rang of \mathbf{N} is given by

$$
\mathcal{R}(\mathbf{N}):=\left\{z \in \mathcal{X} / \exists x_{1}, \cdots, x_{d} \in \mathcal{X}: z=N_{1} x_{1}+\cdots+N_{d} x_{d}\right\}=\sum_{1 \leq j \leq d} \mathcal{R}\left(N_{j}\right) .
$$

We discuss below several consequences of Proposition 2.1.
Proposition 2.2. Let $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{X}]^{d}$ be commuting tuple of operators such that $\mathbf{N}_{\overline{\mathcal{R}(\mathbf{N})}}:=$ $\left(N_{1 / \overline{\mathcal{R}(\mathbf{N}})}, \cdots, N_{d / \overline{\mathcal{R}(\mathbf{N})}}\right)$-is an ($m-1, p$)-isometric tuple. Then following properties hold.
(1) \mathbf{N} is an (m, p)-expansive tuple if and only if \mathbf{N} is a $(m-1, p)$-expansive tuple on \mathcal{X}.
(2) \mathbf{N} is a (m, p)-contractive tuple if and only if \mathbf{N} is a $(m-1, p)$-contractive tuple.

Proof. In the first step, we note that $\overline{\mathcal{R}\left(N_{j}\right)} \subset \overline{\mathcal{R}(\mathbf{N})}$ for all $j=1, \cdots, d$. In view of (2.7), we get

$$
Q_{m}^{(p)}(\mathbf{N} ; x)=Q_{m-1}^{(p)}(\mathbf{N} ; x)-\sum_{1 \leq j \leq d} Q_{m-1}^{(p)}\left(\mathbf{N} ; N_{j} x\right), \quad \forall x \in \mathcal{X} .
$$

Since \mathbf{N} is an $(m-1, p)$-isometric tuple on $\mathbf{N}_{/ \overline{\mathcal{R}(\mathbf{N})}}$, we deduce that

$$
Q_{m}^{(p)}(\mathbf{N} ; x)=Q_{m-1}^{(p)}(\mathbf{N} ; x), \forall x \in \mathcal{X} .
$$

The desired results in the statements (1) and (2) follow immediately.

Proposition 2.3. Let $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{X}]^{d}$ be commuting tuple of operators such that $\mathbf{N}_{\overline{\mathcal{R}(\mathbf{N})}}:=$ $\left(N_{1 / \overline{\mathcal{R}(N)}}, \cdots, N_{d / \overline{\mathcal{R}(\mathbf{N})}}\right)$ is a $(1, p)$-isometric tuple. The following properties hold.
(1) If \mathbf{N} is an (m, p)-expansive tuple, then \mathbf{N} is an (m, p)-hyperexpansive tuple.
(2) If \mathbf{N} is an (m, p)-contractive tuple, then \mathbf{N} is an (m, p)-hypercontractive tuple.

Proof. By (2.7), we have for all $k \in\{1,2, \cdots, m\}$

$$
Q_{k}^{(p)}(\mathbf{N} ; x)=Q_{k-1}^{(p)}(\mathbf{N} ; x)-\sum_{1 \leq j \leq d} Q_{k-1}^{(p)}\left(\mathbf{N} ; N_{j} x\right), \quad \forall x \in \mathcal{X} .
$$

If \mathbf{N} is an $(1, p)$-isometric tuple on $\overline{\mathcal{R}(\mathbf{N})}$, it is well known that \mathbf{N} is an (k, p)-isometric tuple on $\overline{\mathcal{R}(\mathbf{N})}$ for $k=1, \cdots, m$. Consequently,

$$
Q_{1}^{(p)}(\mathbf{N} ; x)=Q_{2}^{(p)}(\mathbf{N} ; x)=\ldots=Q_{m-1}^{(p)}(\mathbf{N} ; x)=Q_{m}^{(p)}(\mathbf{N} ; x) .
$$

If \mathbf{N} is a (m, p)-expansive tuple, it follows that (1) is valid.
By the same argument as above, (2) is obtained.
The next theorem shows that certain (m, p)-expansive (resp. (m, p)-contractive) tuples are (m, p)hyperexpansive (resp. (m, p)-hypercontractive) tuples.

Theorem 2.1. Let $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}[\mathcal{X}]^{d}$ be a tuple of commuting operators. The following statements hold.
(1) If \mathbf{N} is an (m, p)-expansive tuple and $\sup _{n}\left(\sum_{|\beta|=n} \frac{n!}{\beta!}\left\|\mathbf{N}^{\beta} x\right\|^{p}\right)<\infty$ for all $x \in \mathcal{X}$, then \mathbf{N} is an (m,p)hyperexpansive tuple.
(2) If \mathbf{N} is an (m,p)-contractive tuple and $\sup _{n}\left(\sum_{|\alpha|=n} \frac{n!}{\alpha!}\left\|\mathbf{N}^{\alpha} x\right\|^{p}\right)<\infty$ for all $x \in \mathcal{X}$, then \mathbf{N} is a (m, p) hypercontractive tuple.

Proof. Assume that \mathbf{N} is an (m, p)-expansive tuple. From (2.7), it is clear that

$$
Q_{m}^{(p)}(\mathbf{N}, x) \leq 0 \quad \forall x \in \mathcal{X} \Longleftrightarrow Q_{m-1}^{(p)}(\mathbf{N}, x) \leq \sum_{1 \leq j \leq d} Q_{m-1}^{(p)}\left(\mathbf{N}, N_{j} x\right) \quad \forall x \in \mathcal{X} .
$$

It can easily be established that

$$
\begin{aligned}
Q_{m-1}^{(p)}(\mathbf{N}, x) \leq \sum_{1 \leq k_{1} \leq d} Q_{m-1}^{(p)}\left(\mathbf{N}, N_{k_{1}} x\right) \leq \cdots & \leq \sum_{1 \leq k_{1}, \cdots, k_{d} \leq d} Q_{m-1}^{(p)}\left(\mathbf{N}, N_{k_{d}} \cdots N_{k_{1}} x\right) \\
& \leq \cdots \cdots \\
& \leq \cdots \cdots \\
& \leq \sum_{1 \leq k_{1}, \cdots, k_{d} \leq d} Q_{m-1}^{(p)}\left(\mathbf{N}, N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right) .
\end{aligned}
$$

Since for any $\mathbf{N}=\left(N_{1}, \cdots, N_{d}\right) \in \mathcal{B}(\mathcal{X})^{d}$,

$$
Q_{m-1}^{(p)}\left(\mathbf{N}, N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right)=Q_{m-2}^{(p)}\left(\mathbf{N}, N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right)-\sum_{1 \leq j \leq d} Q_{m-2}^{(p)}\left(\mathbf{N}, N_{j} N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right),
$$

it is now easy to see that for $1 \leq k_{1}, \cdots ; k_{d} \leq d$,

$$
\begin{aligned}
& Q_{m-1}^{(p)}\left(\mathbf{N}, N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right) \\
= & \left\{\sum_{0 \leq k \leq m-2}(-1)^{k}\binom{m-2}{k}\left(\sum_{|\beta|=k} \frac{k!}{\beta!}\left(\left\|\mathbf{N}^{\beta} N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right\|^{p}-\sum_{1 \leq j \leq d}\left\|\mathbf{N}^{\beta} N_{j} N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right\|^{p}\right)\right\}\right. \\
= & \left\{\sum_{0 \leq k \leq m-2}(-1)^{k}\binom{c-2}{k}\left(\sum_{|\beta|=k} \frac{k!}{\beta!}\left\|\mathbf{N}^{\beta} N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right\|^{p}-\sum_{1 \leq j \leq d} \sum_{|\beta|=k} \frac{k!}{\beta!}\left\|\mathbf{N}^{\beta} N_{j} N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right\|^{p}\right)\right\} .
\end{aligned}
$$

Set

$$
a_{n_{1}, \cdots, n_{d}}=\sum_{|\beta \beta|=k} \frac{k!}{\beta!}\left\|\mathbf{N}^{\beta} N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right\|^{p}-\sum_{1 \leq j \leq d} \sum_{\beta \beta \mid=k} \frac{k!}{\beta!}\left\|\mathbf{N}^{\beta} N_{j} N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right\|^{p} .
$$

Under the assumption that $\sup _{n}\left(\sum_{|\beta|=n} \frac{n!}{\alpha!}\left\|\mathbf{N}^{\beta} x\right\|^{p}\right)<\infty$, it follows that the sequence $\left(a_{n_{1}, \cdots, n_{d}}\right)_{n_{1}, \cdots n_{d}}$ is bounded. Hence, there is a subsequence $\left(a_{n_{k_{1}}, \cdots, n_{n_{k_{d}}}}\right)_{n_{k_{1}}, \cdots n_{k_{d}}}$ which converges. By a direct calculation we get

$$
Q_{m-1}^{(p)}\left(\mathbf{N}, N_{k_{d}}^{n_{k_{d}}} \cdots N_{k_{1}}^{n_{k_{1}}} x\right) \longrightarrow 0 \text { as } n_{k_{j}} \longrightarrow \infty, j=1, \cdots, d .
$$

This means that $\boldsymbol{Q}_{m-1}^{(p)}(\mathbf{N}, x) \leq 0$. Consequently, \mathbf{N} is an $(m-1, p)$-expansive tuple.
By repeating this process, we reach the following inequalities $Q_{k}^{(p)}(\mathbf{N}, x) \leq 0$ for $k=1, \cdots, m$, from which \mathbf{N} is a (m, p)-hyperexpansive tuple as desired.
(2) Using the fact that \mathbf{N} is an (m, p)-contractive tuple and together with (2.7), we obtain

$$
Q_{m}^{(p)}(\mathbf{N}, x) \geq 0 \quad \forall x \in \mathcal{X} \Longleftrightarrow Q_{m-1}^{(p)}(\mathbf{N}, x) \geq \sum_{1 \leq j \leq d} Q_{m-1}^{(p)}\left(\mathbf{N}, N_{j} x\right) \quad \forall x \in \mathcal{X} .
$$

It can easily be established that

$$
\begin{aligned}
Q_{m-1}^{(p)}(\mathbf{N}, x) \geq \sum_{1 \leq k_{1} \leq d} Q_{m-1}^{(p)}\left(\mathbf{N}, N_{k_{1}} x\right) \geq \cdots & \geq \sum_{1 \leq k_{1}, \cdots, k_{d} \leq d} Q_{m-1}^{(p)}\left(\mathbf{N}, N_{k_{d}} \cdots N_{k_{1}} x\right) \\
& \geq \cdots \cdots \\
& \geq \cdots \cdots \\
& \geq \sum_{1 \leq k_{1}, \cdots, k_{d} \leq d} Q_{m-1}^{(p)}\left(\mathbf{N}, N_{k_{d}}^{n_{d}} \cdots N_{k_{1}}^{n_{1}} x\right) .
\end{aligned}
$$

Now, using the line of argument from the proof of statement (1), one can prove that

$$
Q_{m-1}^{(p)}\left(\mathbf{N}, N_{k_{d}}^{n_{k_{d}}} \cdots N_{k_{1}}^{n_{k_{1}}} x\right) \longrightarrow 0 \text { as } n_{k_{j}} \longrightarrow \infty, j=1, \cdots, d .
$$

Thus, $Q_{m-1}^{(p)}(\mathbf{N}, x) \geq 0$, and hence, \mathbf{N} is an $(m-1, p)$-contractive tuple. By repeating this process, we reach the following inequalities

$$
Q_{k}^{(p)}(\mathbf{N}, x) \geq 0, \quad 1 \leq k \leq m,
$$

from which \mathbf{N} is an (m, p)-hypercontractive tuple.

3. Conclusions

In the work, we have introduced a new classes of operators known as (m, p)-hyperexpensive tuple and (m, p)-hypercontractive tuple. Several properties are proved by exploiting the special kind of structure of single operator. In the course of our investigation, we find some properties of (m, p)-hyperexpensive and (m, p)-hypercontractive for single operators which are retained by (m, p) hyperexpensive tuple and (m, p)-hypercontractive tuple.

Use of AI tools declaration

The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was funded by the Deanship of Scientific Research at Jouf University under grant No (DSR-2021-03-03190).

Conflict of interest

The author declares no conflict of interest.

References

1. J. Agler, M. Stankus, m-Isometric transformations of Hilbert space I, Integr. Equat. Oper. Th., 21 (1995), 383-429. https://doi.org/10.1007/BF01222016
2. J. Agler, M. Stankus, m-Isometric transformations of Hilbert space II, Integr. Equat. Oper. Th., 23 (1995), 1-48. https://doi.org/10.1007/BF01261201
3. J. Agler, M. Stankus, m-Isometric transformations of Hilbert space III, Integr. Equat. Oper. Th., 24 (1996), 379-421.
4. J. Agler, Hypercontractions and subnormality, J. Operat. Theor, 13 (1985), 203-217. https://doi.org/10.1007/BF01191619
5. N. Ahmad, On m-expansive and m-contractive tuple of operatros in Hilbert spaces, Ann. Commun. Math., 3 (2020), 199-207.
6. R. Aron, J. Bés, F. León, A. Peris, Operators with common hypercyclic subspaces, J. Operat. Theor., 54 (2005), 251-260.
7. A. Athavale, On completely hyperexpansive operators, Proc. Math. Soc., 124 (1996), 3745-3752. https://doi.org/10.1090/S0002-9939-96-03609-X
8. F. Bayart, m-Isometries on Banach spaces, Math. Nachr., 284 (2011), 2141-2147. https://doi.org/10.1002/mana. 200910029
9. T. Bermúdez, H. Zaway, On (m, ∞)-isometries: Examples, Results Math., 74 (2019), 108. https://doi.org/10.1007/s00025-019-1018-7
10. T. Bermúdez, A. Martinôn, V. Müller, (m, q)-isometries on metric spaces, J. Operat. Theor, 72 (2014), 313-329. http://dx.doi.org/10.7900/jot.2013jan29.1996
11. T. Bermúdez, A. Martinón, J. A. Noda, Products of m-isometries, Linear Algebra Appl., 438 (2013), 80-86. https://doi.org/10.1016/j.laa.2012.07.011
12. F. Botelho, On the existence of n-isometries on \mathfrak{f}_{p}-spaces, Acta Sci. Math., 76 (2010), 183-192. https://doi.org/10.1007/BF03549829
13. G. Exner, I. B. Jung, C. Li, k-hyperexpansive operators, J. Math. Anal. Appl., 323 (2006), 569-582. https://doi.org/10.1016/j.jmaa.2005.10.061
14. L. S. Fernando, V. Müler, Hypercyclic sequences of operators, Stud. Math., 175 (2006), 1-18.
15. J. Gleason, S. Richter, m-Isometric commuting tuples of operators on a Hilbert space, Integr. Equat. Oper. Th., 56 (2006), 181-196. https://doi.org/10.1007/s00020-006-1424-6
16. C. Gu, On (m, p)-expansive and (m, p)-contractive operators on Hilbert and Banach spaces, J. Math. Anal. Appl., 426 (2015), 893-916. https://doi.org/10.1016/j.jmaa.2015.01.067
17. C. Gu, Functional calculus for m-isometries and related operators on Hilbert spaces and Banach spaces, Acta Sci. Math., 81 (2015), 605-641. https://doi.org/10.14232/actasm-014-550-3
18. C. Gu, Examples of m-isometric tuples of operatprs on a Hilbert spaces, J. Korean Math. Soc., $\mathbf{5 5}$ (2020), 225-251. https://doi.org/10.4134/JKMS.j170183
19. Z. Jablonski, Complete hyperexpansivity, subnormality and inverted boundedness conditions, Integr. Equat. Oper. Th., 44 (2002), 316-336. https://doi.org/10.1007/BF01212036
20. A. O. Hadi, O. A. M. S. Ahmed, (m, ∞)-Expansive and (m, ∞)-contractive commuting tuple of operators on a Banach space, Filomat, 36 (2022), 1113-1123.
21. K. Hedayatian, A. M. Moghaddam, Some proprties of the spherical m-isometries, J. Operat. Theor., 79 (2018), 55-77. https://doi.org/10.7900/jot.2016oct31.2149
22. P. Hoffman, M. Mackey, M. Ó. Searcóid, On the second parameter of an (m, p)-isometry, Integr. Equat. Oper. Th., 71 (2011), 389-405. https://doi.org/10.1007/s00020-011-1905-0
23. P. H. W. Hoffmann, M. Mackey, (m, p) and (m, ∞)-isometric operator tuples on normed spaces, Asian-Eur. J. Math., 8 (2015). https://doi.org/10.1142/S1793557115500229
24. O. A. M. S. Ahmed, M. Cho, J. E. Lee, On (m, C)-isometric commuting tuples of operators on a Hilbert space, Results Math., 73 (2018), 1-31. https://doi.org/10.1007/s00025-018-0810-0
25. O. A. M. S. Ahmed, On the joint (m, q)-partial isometries and the joint m-invertible tuples of commuting operators on a Hilbert space, Ital. J. Pure Appl. Math., 40 (2018), 438-463.
26. O. A. M. S. Ahmed, m-Isometric operators on Banach spaces, Asian-Eur. J. Math., 3 (2010), 1-19. https://doi.org/10.1142/S1793557110000027
27. O. A. M. S. Ahmed, On $A(m, p)$-expansive and $A(m, p)$-hyperexpansive operators on Banach spaces-I, Aljouf Sci. Eng. J., 1 (2014), 23-43. https://doi.org/10.12816/0011028
28. O. A. M. S. Ahmed, On $A(m, p)$-expansive and $A(m, p)$-hyperexpansive operators on Banach spaces-II, J. Math. Comput. Sci., 5 (2015), 123-148.
29. O. A. M. S. Ahmed, On (m, p)-(Hyper) expansive and (m, p)-(Hyper) contractive mappings on a metric space, J. Inequal. Spec. Funct., 7 (2016), 73-87.
30. V. Müller, On p-dilations of commuting operators, Oper. Theor., 78 (2017), 3-20.
31. V. Müller, P. Marek, Spherical isometries are hyporefiexive, Rocky Mt. J. Math., 29 (1999), 677683.
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
