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Abstract: In this work, an epidemic model of a susceptible, exposed, infected and recovered SEIR-
type is established for the distinctive dynamic compartments and epidemic characteristics of COVID-
19 as it spreads across a population with a heterogeneous rate. The proposed model is investigated
using a novel approach of fractional calculus known as piecewise derivatives. The existence theory is
demonstrated through the establishment of sufficient conditions. In addition, result related to Hyers-
Ulam stability is also derived for the considered model. A numerical method based on modified
Euler procedure is also constructed to simulate the approximate solutions of the proposed model by
employing various values of fractional orders. We testified the numerical results by using real available
data of Japan. In addition, some results for the SEIR-type model are also presented graphically using
the stochastic process, and the obtained results are discussed.
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1. Introduction

The deadly COVID-19 disease broke out at the tail end of 2019 in Wuhan, a prominent Chinese
metropolis. The aforementioned disease has rapidly spread around the world. By the end of March
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2020, the World Health Organization (WHO) proclaimed it a global pandemic [30, 68, 72]. Globally,
more than six million deaths linked to COVID-19 have been recorded. Infected individuals in the same
queue number from 600 to 700. People’s health, the way of life and the situation of the economy
have all been significantly disturbed. To find the best cure for the aforementioned illness, experts and
researchers are working around the clock [69]. The COVID-19 is a persistent major health problem
and concern with a global focus. Breakout poses a new type of worldwide threat, regardless of the
fact that there are major gaps in our knowledge of COVID-19 epidemiology, transmission dynamics,
research techniques and management. For instance, several US states and other countries around the
world adopted lockdown and reopening procedures. Hence, various management strategies have been
used to control the epidemic’s development.

Technology has advanced epidemiology to the point where several infectious diseases are now
examined for treatment, control, curing and other outcomes [52]. It should be mentioned that the
study of many diseases also heavily incorporates mathematical biology. As a result, over the past
several decades, there has been a tremendous advancement in the mathematical modeling of infectious
diseases [58, 63] and mathematical modeling has become more common in research. In order to
successfully control a variety of diseases, such as those listed in citations [35, 36], secure public
health approaches are developed with the help of mathematical models. The dynamic behaviour
of infections can be studied using these mathematical models, as well as spatiotemporal patterns,
academics have studied COVID-19 from a variety of angles during the past three years, with the
help of mathematical models. To create effective methods for managing this illness, researchers in
this field are taking a range of approaches (several recent studies are included as [9, 21, 28, 70]). A
mathematical model was recently used to examine the effects of vaccinations in nursing homes [37].
Researchers [46] examined mathematical modeling and practical COVID-19 epidemic intervention
approaches. It is worth mentioning that the area devoted to model COVID-19 using various analysis
and tools to investigate the transmission dynamics of the said disease has attracted very well in the last
three years. For instance, global stability and cost-effectiveness analysis of COVID-19 with impact of
the environment by using data from Ghana has been studied [5]. In the same way, authors [6] have
studied optimal control and comprehensive cost-effectiveness analysis for COVID-19. Proceeding with
the same process, sensitivity and optimal control analysis have been performed [7, 8] for COVID-19
mathematical models. Different numerical results have been presented there. Moreover, authors [61]
have studied the role of asymptomatic infections in the COVID-19 epidemic via complex networks
and stability analysis. Also, authors [31] have used stochastic concepts along with environmental
white noise to investigate a COVID-19 mathematical model. Researchers [64] have used mathematical
models for forecasting the potential domestic and international spread of the 2019-nCoV outbreak
originating in Wuhan. In all the mentioned studies researchers have used classical or stochastic type
models for their study.

As far as we are aware, the concept of the classical derivative has been intensively investigated
in the subject of epidemiology. As we know, the classical differential operators have local nature
and a number of inherited, long-term and short-term memory processes. To better comprehend the
aforementioned process, fractional calculus has therefore attracted a lot more interest in recent years.
It has grown in popularity as a result of the dynamic properties that have shown a variety of uses in
practical contexts, including biological and physical processes [64]. Like normal calculus, fractional
calculus has a lengthy history [47]. Several authors have explored the topic from various perspectives
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[48, 49, 62] and it has been found that it has numerous applications in science and technology [50, 55].
The fractional order derivative has a higher degree of freedom [24] due to its non-locality. Therefore, in
the mathematical modeling of infectious diseases, the aforementioned derivative might be preferred to
the standard order derivative. In the past, a number of authors have produced insightful work, such as
the existence theory of solutions to fractional differential equations [4] and qualitative findings [51,59],
respectively. In order to investigate fractional order differential and integral equations (FODIEs) for
approximate or analytical results, a variety of tools and methods have been developed (such as the
fractional visco-elasticity model in [2, 26], the fractional calculus in mechanical system modeling [1]
and the fractional model for creep/recovery testing of asphalt mixtures [22].

It is authenticating that the area devoted to fractional order epidemiological models has been
extensively considered in the last two decades. Researchers have investigated numerous diseases
including dengue infection, malaria disease, TB, HBV and HCV, AIDS, cancer and so on. Researchers
have extended classical susceptible, infected and recovered (SIR), susceptible, exposed, infected and
recovered (SEIR), susceptible, exposed, infected, asymptomatic and recovered (SEIAR) type models
to fractional orders [23]. For recent work in fractional orders models of infectious diseases, we refer
to [3, 25]. In addition, problems devoted to describe some physical phenomenons have also been well
investigated using the concept of fractional order derivatives [57, 60].

The majority of real-world issues are unpredictable to some extent, which traditional mathematical
models are unable to account for. The idea of stochastic mathematical differential equations has been
put forth and used extensively in recent decades, with remarkable outcomes. Other issues, however,
demonstrate non-locality tendencies instead of randomness, including long-range dependence, fractal
processes, power law processes and crossover behaviors, suggesting that physical occurrences exhibit
a variety of behaviors. A class of fractional derivatives was proposed to overcome these problems.
However, these operators still do a poor job of describing crossover behavior. The idea of short
memory with a real or complex order derivative was developed to characterize the aforementioned
behavior for the first time. The piecewise idea has been proved to be more powerful than the
stated, despite the fact that fractional derivatives have extended memory capability [66]. Various
concepts including fractal-fractional derivative, fractional order derivative with singular and non-
singular kernels and various additional derivative operator have been defined recently to look at
the crossover qualities and important work on nonlocal operators and their applications [13, 29, 40]
refers to fractional dynamics of cellulose degradation, [10] refers to existence and uniqueness with
applications to epidemiology and [12] refers to local and nonlocal operators. The crossover dynamical
behavior has not been addressed, despite the fact that stochastic equation considerations lead to more
realistic conclusions [11]. This behavior is seen in a lot of real-world process models, including
heat flow, fluid flow, and many complex advection problems [71]. In fractional calculus, the timing
of crossovers cannot be determined using the exponential or Mittag-Leffler mappings because the
typical fractional order derivative fails to accurately describe crossover behavior that is common in
real-world problems. The phenomena such as earthquakes, pendulum motion, the current economic
instability in less developed nations, etc are few examples have crossover behavior. This crossover
behavior is exemplified by piecewise equations with fractional order derivatives. Through the analysis
of numerous models, certain crucial elements in this regard have recently been discovered [16]. Along
with several applications, the authors created classical and global piecewise derivatives. As shown in
papers [19, 38, 39, 43, 45, 67], a number of infectious illness models have lately been studied using
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non-singular and power-law type operators.

With the aforementioned significance in mind, we planned to concentrate on these fundamental
issues in our work by using a model motivated from [56] that has been specially tailored to reflect the
dynamics of said disease as well as the curbs of human response to it. A usual SEIR model that allows
for lengthy incubation, we first recreated the epidemic dynamics within a single community with a
particular social pattern. Here, using piecewise derivative, we formulated our model by including birth
rate and natural death rate in the model investigated as

PCC
0 Dr

t(S )(t) = a −
βS (I + qE)

N
− dS

PCC
0 Dr

t(E)(t) =
βS (I + qE)

N
−

E
δ
− dE

PCC
0 Dr

t(I)(t) =
E
δ
−

I
γ
− dI

PCC
0 Dr

t(R)(t) =
I
γ
− dR,

(1.1)

where PCC
0 Dr

t stands for piecewise Caputo derivative, which can be described for any function say y as

PCC
0 Dr

t(y(t)) =


C
0 Dt(y(t)) =

dy
dt
, 0 < t ≤ t1,

C
0 Dr

t(y(t)) =
1

Γ(1 − r)

∫ t

t1
(t − η)−ry′(η)dη, t1 < t ≤ T,

(1.2)

where 0Dr
t represents the usual Caputo fractional order derivative. The flow chart of our model is given

in Figure 1 and the parameters are described in Table 1.

Figure 1. Flow chart of our established model (1.1).
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Table 1. Nomenclature and their discerption.
Nomenclature Description

S Compartment of uninfected population
E Compartment of exposed population
I Compartment of infected population
R Compartment of recovered population
N0 Total initial papulation
N Total population at time t

a Recruitment (birth) rate
β is the typical number of contacts made by each person each time
γ is the time required for a person to pass away or recover after entering the infectious stage
δ is the typical time for a person who has been exposed to an infection
q is contact rate
d natural death rate

The birth rate is a, and the carrier can either be infected or exposed. The fractions S I
N and S E

N
indicate the probability of a random contact between a susceptible person and an infected person, and
the probability of a contact between a susceptible person and an exposed person respectively. The
scaling factor q in the model is used for the rate of interaction with an exposed person, which results
in a different likelihood of transmission than contact with an infected person. Following the transition
state, individuals may contract an infectious class at a rate determined by 1

δ
. The same way, 1

γ
represents

the rate at which people pass away or recover from an infection.
It is notable that such dynamical concerns are given some unique perspectives by existence theory

with piecewise derivatives of fractional orders. The hypothesis suggests that such physical problems
can be resolved. In recent years, a variety of numerical techniques have proven to be particularly
successful for classical fractional order systems [32]. For instance, the Range-Kutta method was
used to address a number of fractional order problems [18], and the authors [44] also took use of a
groundbreaking parameter estimate method, according to researchers. Problems of fractional order
were solved by a novel numerical method in [33], and in [27] studied a fractional order system by
using the finite difference approach. For a different set of non-integer order problems, improved finite-
difference techniques were also used [17, 42, 65]. We used actual data of Japan for infected, recovered
cases whose sources have listed as [73–75] and a numerical approach to elaborate the numerical
analysis of the model under consideration at various fractional orders. In fact, it was stated that the
memory rate was highlighted by the order of the time derivative, and the memory function was the
kernel of the fractional-order derivative [14]. The boundedness were established for the existence of
solution and feasible region was determined. The existence and uniqueness of approximation solutions
were then investigated for the aforementioned model using the Banach and Schauder fixed point
theorems. In addition, the results devoted to Hyers-Ulam stability were also derived. The concerned
stability was investigated about the best approximate or exact solution. For the existence theory, we
used research from Arzelá-Ascoli [41] and the Schauder fixed point theorem [15].

It is remarkable that in the actual world, everything is susceptible to chance, including people and
animal movement. Stochastic models are used to mathematically interpret this effect. Mathematical
models have been investigated by using the afore said concepts. It is worth mentioning that there
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are significant applications in modeling real world process by using stochastic calculus. Hence, due
to this fact, researchers have recently investigated COVID-19 mathematical models by using the
aforementioned area. The said differential equations have been increasingly used to model other
infectious disease as well. Here we referenced to articles [20, 34, 54]. Motivated from the said
importance of stochastic calculus, we attempted to simulate the proposed model (1.1) under the
stochastic white noise as

dr(S )(t) =
[
a −

βS (I + qE)
N

− dS
]
dtr + ρ1S db1(t)

dr(E)(t) =
[
βS (I + qE)

N
−

E
δ
− dE

]
dtr + ρ2Edb2(t)

dr(I)(t) =
[E
δ
−

I
γ
− dI
]
dtr + ρ3Idb3(t)

dr(R)(t) =
[ I
γ
− dR
]
dtr + ρ4Rdb4(t),

(1.3)

where bi denotes Brownian motion with bi(0) = 0. Further, ρi > 0, for i = 1, 2, 3, 4 and denotes the
intensity of white noise. Here, it should be kept in mind that we simulated our model (1.3) using the
numerical scheme developed in [53].

This manuscript is arranged as follows: A substantial introduction to our work is contained in
Part one, and crucial results that we need for this work are given in Section two. We established the
existence theory for a rough solution to the proposed model using the fixed point theory in Section
three. Section four discusses the numerical approach for a rough solution to the suggested model.
Section five is devoted to illustrating our conclusions. Finally, Section six offers a brief summary and
explanation of the numerical outcomes.

2. Elementary results

Recollecting some basic results as follows:

Definition 2.1. [16] Ifϖ is a differentiable function with r > 0, then the piecewise integral is described
by considering I = [0,T ], I1 = [0, t1], I2 = (t1,T ] as

PC
0 Ir

tϖ(t) =


∫ t1

0
ϖ(ℓ)dℓ, t ∈ I1,

1
Γ(r)

∫ t

t1
(t − ℓ)r−1ϖ(ℓ)d(ℓ), t ∈ I2,

where PC
0 It stands for classical integration in I1 and represents Riemann-Liouville integration in I2.

Definition 2.2. [16] Let 0 < r ≤ 1, and if ϖ ∈ C(I) is differentiable, then the classical and fractional
order piecewise derivative is defined as

PCC
0 Dr

tϖ(t) =

ϖ′(t), t ∈ I1,
C
0 Dr

tϖ(t), t ∈ I2.
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Lemma 2.3. [16] Let ϖ ∈ L(I) ∩C(I) and ψ ∈ L(I), then the solution of the given problem

PCC
0 Dr

tϖ(t) = ψ(t), 0 < r ≤ 1

is derived as

ϖ(t) =


ϖ0 +

∫ t

0
ψ(ℓ)dℓ, t ∈ I1,

ϖ(t1) +
1
Γ(r)

∫ t

t1
(t − ℓ)r−1ψ(ℓ)d(ℓ), t ∈ I2.

2.1. Some fundamental results about the model (1.1)

For (1.1), we derived some axillary results. The feasible region is given in Remark 2.4.

Remark 2.4. Let N be the total papulation at any time t, we have

N = S + E + I + R. (2.1)

Applying the piecewise derivative defined in (2.1) w.r.t ‘t’ from model (1.1), we get

PCC
0 Dr

t N(t) = a − dN, (2.2)

which on taking Laplace transform and using t → ∞ yields

N(t) ≤
a
d
.

Hence, the feasible region is described as

Φ = {(S , E, I,R) ∈ R4
+ : N ≤

a
d
}.

2.2. Equilibrium points and basic reproduction number

Putting left hand sides of model (1.1) equal to zero and solving the equations, the disease free
equilibrium is obtained as follows [32]. From the first two equations of (1.1), one has

a −
βS (I + qE)

N
− dS = 0

βS (I + qE)
N

−
E
δ
− dE = 0

E
δ
−

I
γ
− dI = 0

I
γ
− dR = 0,

and on solving at disease free equilibrium state when I0 = 0, we have S 0 = a
d , E0 = 0, R0 = 0. Hence,

local equilibrium is given by

E0 = (S 0, 0, 0, 0) =
(a
d
, 0, 0, 0

)
.
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In the same line, we can also compute the endemic equilibria as

S ∗ =
aδγ − d(1 − dδ)(1 + γd)I∗

dδγ

E∗(t) =
1 + γd
γ

I∗

I∗ =
γ[βaδ(γ + q(1 + γd)) − d(1 − δd)(1 + γd)]

β(1 − δd)(1 + γd)(γ + q(1 + γd))
R∗ =

I∗

dγ
.

In addition, the fundamental reproductive number can be computed as R0 =
βqδ

1+δd .Clearly, if R0 < 1,
the local equilibrium point will be locally asymptotically stable. Further, the 3D profile of the said
number is given in the following Figure 2.
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Figure 2. 3D profile of R0 for (1.1).

3. Existence theory

Here, we developed sufficient results for the qualitative theory of existence and uniqueness using
the fixed point approach. Assume that F : I × R → R is a nonlinear continuous function. In view of
Lemma 2.3, the solution of

PCC
0 Dr

tϖ(t) = F(t, ϖ), 0 < r ≤ 1, (3.1)
ϖ(0) = ϖ0

is given as

ϖ(t) =


ϖ0 +

∫ t

0
F(ℓ,ϖ(ℓ))dℓ, t ∈ I1,

ϖ(t1) +
1
Γ(r)

∫ t

t1
(t − ℓ)r−1F(ℓ,ϖ(ℓ))d(ℓ), t ∈ I2,

(3.2)
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where

ϖ(t) =


S (t)
E(t)
I(t)
R(t)

, ϖ0 =


S 0

E0

I0

R0

, ϖ(t1) =


S (t1)
E(t1)
I(t1)
R(t1)

, F(t, ϖ(t)) =



F1(t, ϖ(t)) =

F1(t, ϖ(t)), t ∈ I1,

F1(t, ϖ(t)), t ∈ I2,

F2(t, ϖ(t)) =

F2(t, ϖ(t)), t ∈ I1,

F2(t, ϖ(t)), t ∈ I2,

F3(t, ϖ(t)) =

F3(t, ϖ(t)), t ∈ I1,

F3(t, ϖ(t)), t ∈ I2,

F4(t, ϖ(t)) =

F4(t, ϖ(t)), t ∈ I1,
F4(t, ϖ(t)), t ∈ I2.

(3.3)

Let∞ > t2 ≥ t > t1 > 0 with Banach space defined as H = C(I)×C(I)×C(I)×C(I) under the norm

∥ϖ∥ = max
t∈I
|ϖ(t)|.

These hypotheses hold for further results.

(C1) If LF > 0 is real number and ϖ, ϖ̄ ∈ H, then

|F(t, ϖ) − F(t, ϖ̄)| ≤ LF|ϖ − ϖ̄|.

(C2) For real values CF > 0 and MF > 0, we have

|F(t, ϖ(t))| ≤ CF|ϖ| + MF.

Theorem 3.1. Under the hypotheses (C1) and (C2), if there exists a closed bounded subset B = {ϖ ∈
H : ∥ϖ∥ ≤ R1,2, R1,2 > 0} of H, where

R1,2 ≥ max


|ϖ0| + t1MF

1 − t1CF

, t ∈ I1,

|ϖ(t1)|Γ(r + 1) + T rMF

(Γ(r + 1) − T rCF

, t ∈ I2,

then (3.11) has at least one solution. Consequently, (1.1) has at least one solution.

Proof. Considering B ⊂ H is closed and bounded, such that

B = {ϖ ∈ H : ∥ϖ∥ ≤ R1,2, R1,2 > 0}.

If Q : B → B, then the operator is defined as

Q(ϖ) =


ϖ0 +

∫ t

0
F(ℓ,ϖ(ℓ))dℓ, t ∈ I1,

ϖ(t1) +
1
Γr

∫ t

t1
(t − ℓ)σ−1F(ℓ,ϖ(ℓ))d(ℓ), t ∈ I2.

(3.4)

AIMS Mathematics Volume 8, Issue 11, 27268–27290.



27277

For ϖ ∈ B we have

|Q(ϖ)(t)| ≤


|ϖ0| +

∫ t1

0
|F(ℓ,ϖ(ℓ))|dℓ,

|ϖ(t1)| +
1
Γ(r)

∫ t

t1
(t − ℓ)r−1|F(ℓϖ(ℓ))|d(ℓ),

≤


|ϖ0| +

∫ t1

0
[CG|ϖ| + MF]dℓ,

|ϖ(t1)| +
1
Γ(r)

∫ t

t1
(t − ℓ)r−1[CF|ϖ| + MF]d(ℓ),

≤


|ϖ0| + t1[CFR1,2 + MF] ≤ R1,2, t ∈ I1,

|ϖ(t1)| +
T r

Γ(r + 1)
[CFR1,2 + MF] ≤ R1,2, t ∈ I2,

where for t ∈ I2, we put |(t1 − ℓ)r − (t2 − ℓ)r| ≤ T r. Hence, we have that ∥Q(ϖ)∥ ≤ R1,2 which yields that
Q(B) ⊂ B. Thus, Q maps bounded set to bounded and Q is bounded operator. Since F is continuous
function, Q is also continuous operator. Next, for complete continuity, consider tm < tn ∈ I1, then

|Q(ϖ)(tn) − Q(ϖ)(tm)| =
∣∣∣∣∣ ∫ tn

0
F(ℓ,ϖ(ℓ))dℓ −

∫ tm

0
F(ℓ,ϖ(ℓ))dℓ

∣∣∣∣∣
≤

∫ tn

tm
|F(ℓ,ϖ(ℓ))|dℓ

≤

∫ tn

tm
[CF|ϖ| + MF]dℓ

≤ (CFR1,2 + MF)[tn − tm]. (3.5)

From (3.5), we see that tm → tn, then

|Q(ϖ)(tn) − Q(ϖ)(tm)| → 0, as tm → tn.

Also Q is bounded operator. So,

∥Q(ϖ)(tn) − Q(ϖ)(tm)∥ → 0, as tm → tn.

Hence, Q is equi-continuous in this case. In addition, take tm < tn ∈ I2 and consider

|Q(ϖ)(tn) − Q(ϖ)(tm)| =
∣∣∣∣∣ 1
Γ(r)

∫ tn

0
(tn − ℓ)r−1F(ℓ,ϖ(ℓ))dℓ −

1
Γ(r)

∫ tm

0
(tm − ℓ)r−1F(ℓ,ϖ(ℓ))dℓ

∣∣∣∣∣
≤

1
Γ(r)

∫ tm

0
[(tm − ℓ)r−1 − (tn − ℓ)r−1]|G(ℓ,ϖ(ℓ))|dℓ

+
1
Γ(r)

∫ tn

tm
(tn − ℓ)r−1|F(ℓ,ϖ(ℓ))|dℓ

≤
1
Γ(r)

[ ∫ tm

0
[(tm − ℓ)r−1 − (tn − ℓ)r−1]dℓ
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+

∫ tn

tm
(tn − ℓ)r−1dℓ

]
(CF|ϖ| + MF)

≤
(CFR1,2 + MF)
Γ(r + 1)

[tr
n − tr

m + 2(tn − tm)r]. (3.6)

Further from (3.6), we see that

|Q(ϖ)(tn) − Q(ϖ)(tm)| → 0, as tm → tn.

Additionally, Q is bounded over I2 so it is uniformly continuous. Hence,

∥Q(ϖ)(tn) − Q(ϖ)(tm)∥ → 0, as tm → tn.

Therefore, Q is equi-continuous in the I2 interval and Q is equi-continuous mapping over I1 ∪ I2.
Thus Q is a relatively compact operator. By using the Arzelá-Ascoli theorem stated in [41], operator
Q is completely continuous. In view of the Schauder’s fixed point theorem [15], (3.11) has at least one
solution, meaning that (1.1) has at least one solution. □

Theorem 3.2. Inview of Hypothesis (C1), and if max
{
T LF, T r

Γ(r+1) LF
}
< 1 holds, then (1.1) has a unique

solution.

Proof. Let Q : H→ H be the mapping defined as

Q(ϖ) =


ϖ0 +

∫ t

0
F(ℓ,ϖ(ℓ))dℓ, t ∈ I1,

ϖ(t1) +
1
Γr

∫ t

t1
(t − ℓ)σ−1F(ℓ,ϖ(ℓ))d(ℓ), t ∈ I2.

Let ϖ, ϖ̄ ∈ H, then over I1, one has

∥Q(ϖ) − Q(ϖ̄)∥ = max
t∈I1

∣∣∣∣∣ ∫ t

0
F(ℓ,ϖ(ℓ))dℓ −

∫ t1

0
F(ℓ, ϖ̄(ℓ))dℓ

∣∣∣∣∣
≤ T LF∥ϖ − ϖ̄∥. (3.7)

From (3.7), we have

∥Q(ϖ) − Q(ϖ̄)∥ ≤ T LF∥ϖ − ϖ̄∥. (3.8)

By the same fashion for t ∈ I2, we have

∥Q(ϖ) − Q(ϖ̄)∥ = max
t∈I2

∣∣∣∣∣ 1
Γ(r)

∫ t

t1
(t − ℓ)r−1F(ℓ,ϖ(ℓ))dℓ −

1
Γ(r)

∫ t

t1
(t − ℓ)r−1F(ℓ, ϖ̄(ℓ))dℓ

∣∣∣∣∣
≤

T r

Γ(r + 1)
LF∥ϖ − ϖ̄∥. (3.9)

From (3.9), we have

∥Q(ϖ) − Q(ϖ̄)∥ ≤
T r

Γ(r + 1)
LF∥ϖ − ϖ̄∥. (3.10)

Hence, from (3.8) and (3.10), we see that Q is a contraction operator and (3.11) has a unique solution.
Consequently, (1.1) has a unique solution. □
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Remark 3.3. Let there exist a non-decreasing function ς ∈ C[0,T ], such that

(i) |ς(t)| ≤ ε, t ∈ I.

In addition, the solution of the problem

PCC
0 Dr

tϖ(t) = F(t, ϖ) + ς(t), 0 < r ≤ 1, (3.11)
ϖ(0) = ϖ0

is given as

ϖ(t) =


ϖ0 +

∫ t

0
F(ℓ,ϖ(ℓ))dℓ +

∫ t

0
ς(ℓ)dℓ, t ∈ I1,

ϖ(t1) +
1
Γ(r)

∫ t

t1
(t − ℓ)r−1F(ℓ,ϖ(ℓ))d(ℓ) +

1
Γ(r)

∫ t

t1
(t − ℓ)r−1ς(ℓ)d(ℓ), t ∈ I2,

(3.12)

In view of (i), we have from (3.12) that∣∣∣ϖ(t) −
(
ϖ0 +

∫ t

0
F(ℓ,ϖ(ℓ))dℓ

)∣∣∣∣∣ ≤ εt1, if t ∈ I1, (3.13)

and ∣∣∣ϖ(t) −
(
ϖ(t1) +

1
Γ(r)

∫ t

t1
(t − ℓ)r−1F(ℓ,ϖ(ℓ))d(ℓ)

)∣∣∣∣∣ ≤ + εt1

Γ(r + 1)
, if t ∈ I2. (3.14)

Theorem 3.4. Under the hypothesis (C1), and Remark 3.3, the solution of problem (3.11) is Hyers-

Ulam stable if max
{
LFt1,

εt1LF
Γ(r+1)

}
< 1.

Proof. Let ϖ be any solution of (3.11), for which we have a unique solution ϖ̂. Then for t ∈ I1 we
have

|ϖ(t) − ϖ̂(t)| =
∣∣∣∣∣ϖ(t) −

(
ϖ0 +

∫ t

0
F(ℓ, ϖ̂(ℓ))dℓ

)∣∣∣∣∣
≤

∣∣∣∣∣ϖ(t) −
(
ϖ0 +

∫ t

0
F(ℓ,ϖ(ℓ))dℓ

)∣∣∣∣∣ + ∣∣∣∣∣ ∫ t

0
F(ℓ,ϖ(ℓ))dℓ −

∫ t

0
F(ℓ, ϖ̂(ℓ))dℓ

∣∣∣∣∣
≤ εt1 + LFt1∥ϖ − ϖ̂∥,

which further yields that

∥ϖ − ϖ̂∥ ≤
εt1

1 − LFt1
. (3.15)

In the same way, if t ∈ I2, repeating the same process, one has

∥ϖ − ϖ̂∥ ≤

εt1
Γ(r+1)

1 − εt1LF
Γ(r+1)

. (3.16)

Hence, from (3.15) and (3.16), we have that the solution is Hyers-Ulam stable. Consequently, the
solution of (1.1) is Hyers-Ulam stable. □
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4. Numerical scheme

For numerical presentation of (1.1), we constructed a numerical method for the two sub-intervals
of I. The numerical scheme for the piecewise problem is like an integer order numerical scheme as
established in [14] by using ϖ = (S , E, I,R) as

S(tn+1) =


Sn−1(tn−1) +

h
2

F1

[
tn−1 +

h
2
, ϖn−1(tn−1) +

K1

2

]
, t ∈ I1,

Sn(tn) +
hr

Γ(r + 1)
F1(tn, ϖn(tn)) +

hr

2Γ(r + 1)

[
K2 + K3

]
, t ∈ I2,

(4.1)

where h = tn+1 − tn, and

K1 = F1(tn−1, yn−1(tn−1)), K2 = F1(tn, ϖn(tn)),

K3 = F1

(
tn +

2hrΓ(r + 1)
Γ(2r + 1)

, ϖ(tn) +
2hrΓ(r + 1)
Γ(2r + 1)

F1(tn, yn(tn))
)
. (4.2)

In the same way, we established for other compartments as given by

E(tn+1) =


Sn−1(tn−1) +

h
2

F1

[
tn−1 +

h
2
, ϖn−1(tn−1) +

K1

2

]
, t ∈ I1,

En(tn) +
hr

γ(r + 1)
F1(tn, ϖn(tn)) +

hr

2Γ(r + 1)

[
K2 + K3

]
, t ∈ I2,

(4.3)

I(tn+1) =


Sn−1(tn−1) +

h
2

F1

[
tn−1 +

h
2
, ϖn−1(tn−1) +

K1

2

]
, t ∈ I1,

In(tn) +
hr

γ(r + 1)
F1(tn, ϖn(tn)) +

hr

2Γ(r + 1)

[
K2 + K3

]
, t ∈ I2,

(4.4)

and for the last class as

R(tn+1) =


Sn−1(tn−1) +

h
2

F1

[
tn−1 +

h
2
, ϖn−1(tn−1) +

K1

2

]
, t ∈ I1,

Rn(tn) +
hr

γ(r + 1)
F1(tn, ϖn(tn)) +

hr

2Γ(r + 1)

[
K2 + K3

]
, t ∈ I2.

(4.5)

5. Numerical simulation

In this section, we present the numerical simulation in Figures 3–11 using the obtained scheme
under classical and piecewise derivative concepts. We divided the whole interval into two sub-intervals
and checked the first interval for integer order derivative while the second interval was tested on
different fractional orders in the sense of the Caputo derivative by using the data given in Table 2.
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Table 2. Description and specification of real values for the variables used in (1.1).
Parameters Numerical value
S 76.013223 in millions [73]
E 8.206109 in million [73]
I 21.150371 in million [73]
R 20.330297 in million [73]
a 0.09 per day assumed
β 0.08 [56]
γ 10 days [56]
δ 6 days [56]
q 0.001 [56]
d 0.0012 [75]
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Figure 3. Graphical presentations of approximate solutions of S and E corresponding to the
given fractional orders for the proposed model.
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Figure 4. Graphical presentations of approximate solutions of I and R corresponding to the
given fractional orders for the proposed model.
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Figure 3 expressed the susceptible and exposed populations which declined, and then became stable
as the remaining classes increased on both intervals as presented in Figure 4. The single curve was for
the first interval and it showed integer order classical behavior from [0, t1] = [0, 50], while the four
different curves showed the global order derivative behavior on (t1, t2] = (500, 400]. Here, we have
considered the first set of fractional orders values in (0, 0.75].

Here, we considered another set of fractional orders values in (0.75, 0.95]. Figure 5 contains the
graphical presentations of susceptible, and exposed classes while in Figure 6 presents the dynamical
behaviors of infected and recovered classes respectively corresponding to given fractional orders.
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Figure 5. Graphical presentations of approximate solutions of S and E corresponding to the
given fractional orders for the proposed model.
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Figure 6. Graphical presentations of approximate solutions of I and R corresponding to the
given fractional orders for the proposed model.

Furthermore, Figures 7 and 8 show the dynamical behaviors of different classes of the proposed
model by considering another set of fractional orders values in (0.90, 1]. The crossover behaviors in
dynamics of different classes can be observed clearly at t1 = 50.
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Figure 7. Graphical presentations of approximate solutions of S and E corresponding to the
given fractional orders for the proposed model.
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Figure 8. Graphical presentations of approximate solutions of I and R corresponding to the
given fractional orders for the proposed model.
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Figure 9. Presentation of real data plots for confirmed and recovered cases for the given
months.

From Figures 3–8 we have observed the crossover behavior at the given points. The numerical
simulation of all four compartments has been shown for three sets of different fractional orders. The
bending effects are also shown on t1 describing the piecewise derivative dynamics. Since the population
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of the infected class is decreasing, as a result the recovered class population is rising. Here, we have
presented the real data fit for the recorded values of confirmed infected and recovered cases per day in
Japan from January 2022 to August 2022 in Figure 9.

5.1. Stochastic analysis

Here, we considered the same numerical values given in Table 2 to simulated the aforesaid
considered model under the stochastic concepts described in (1.3). We simulate (1.3) corresponding
to two different values of white noise. Figures 10 and 11 show, the dynamics of S , E and I,R of
the proposed model using stochastic concepts. Here, we have taken the fractional order as one and
simulated the results against two distinct values of white noise, ρi = 0, 0.02 for i = 1, 2, 3, 4.
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Figure 10. Graphical presentations of approximate solutions of S and E corresponding to
the given values of ρi for the proposed model in stochastic concepts.
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Figure 11. Graphical presentations of approximate solutions of I and R corresponding to the
given values of ρi for proposed model in stochastic concepts.

In addition to keeping in mind the importance of stochastic calculus, we have also attempted to
simulate the proposed model under the mentioned concept in Figures 10 and 11, respectively. The
concerned behavior due to stochastic is more realistic than the usual or traditional fractional derivatives.
The crossover properties of both stochastic and fractional orders can be handled by our suggested
investigation.
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6. Conclusions

In the presented research work, we have established a model under the concept of piecewise
equations with the fractional order Caputo derivative. By using Schauder and Banach’s fixed point
theory, we have established the existence theory of solution to the proposed model and a numerical
scheme has been established by using the modified Euler method. The results have been presented
by using real data graphically for various fractional orders. Additionally, concerned results have
been demonstrated and compared with real data in the case of reported infected individuals. Since
many real-world problems are subject to abrupt changes in their state of rest or uniform motion
which is also called crossover behavior traditional derivatives of either classical or fractional form
cannot demonstrate this effect properly. The mentioned effect can be excellently explained by using
piecewise equations with fractional order derivatives. Further, fractional order derivatives are more
flexible and keep a greater degree of freedom. In the future, such a type of analysis can be extended
to more complex dynamical problems involving Mittag-Leffler and fractal-fractional type derivatives.
In addition, the aforesaid model will be investigated under the stochastic fractional order differential
equations using non-singular differential operators.
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