Research article

Mathematical analysis of neurological disorder under fractional order derivative

  • Received: 14 March 2023 Revised: 25 April 2023 Accepted: 27 April 2023 Published: 05 June 2023
  • MSC : 26A33, 34K37

  • Multiple sclerosis (MS) is a common neurological disorder that affects the central nervous system (CNS) and can cause lesions that spread over space and time. Our study proposes a mathematical model that illustrates the progression of the disease and its likelihood of recurrence. We use Caputo fractional-order (FO) derivative operators to represent non-negative solutions and to establish a steady-state point and basic reproductive number. We also employ functional analysis to prove the existence of unique solutions and use the Ulam-Hyres (UH) notion to demonstrate the stability of the solution for the proposed model. Furthermore, we conduct numerical simulations using an Euler-type numerical technique to validate our theoretical results. Our findings are presented through graphs that depict various behaviors of the model for different parameter values.

    Citation: Nadeem Khan, Amjad Ali, Aman Ullah, Zareen A. Khan. Mathematical analysis of neurological disorder under fractional order derivative[J]. AIMS Mathematics, 2023, 8(8): 18846-18865. doi: 10.3934/math.2023959

    Related Papers:

  • Multiple sclerosis (MS) is a common neurological disorder that affects the central nervous system (CNS) and can cause lesions that spread over space and time. Our study proposes a mathematical model that illustrates the progression of the disease and its likelihood of recurrence. We use Caputo fractional-order (FO) derivative operators to represent non-negative solutions and to establish a steady-state point and basic reproductive number. We also employ functional analysis to prove the existence of unique solutions and use the Ulam-Hyres (UH) notion to demonstrate the stability of the solution for the proposed model. Furthermore, we conduct numerical simulations using an Euler-type numerical technique to validate our theoretical results. Our findings are presented through graphs that depict various behaviors of the model for different parameter values.



    加载中


    [1] N. Shigesi, M. Kvaskoff, S. Kirtley, Q. Feng, H. Fang, J. C. Knight, et al., The association between endometriosis and autoimmune diseases: a systematic review and meta-analysis, Hum. Reprod. Update, 25 (2019), 486–503. http://doi.org/10.1093/humupd/dmz014 doi: 10.1093/humupd/dmz014
    [2] R. Nardone, V. Versace, L. Sebastianelli, F. Brigo, S. Golaszewski, M. Christova, et al., Transcranial magnetic stimulation and bladder function: a systematic review, Clin. Neurophysiol., 130 (2019), 2032–2037. http://doi.org/10.1016/j.clinph.2019.08.020 doi: 10.1016/j.clinph.2019.08.020
    [3] I. J. Crane, J. V. Forrester, Th1 and Th2 lymphocytes in autoimmune disease, Crit. Rev. Immunol., 25 (2005), 75–102. http://doi.org/10.1615/critrevimmunol.v25.i2.10 doi: 10.1615/critrevimmunol.v25.i2.10
    [4] Z. Blach-Olszewska, J. Leszek, Mechanisms of over-activated innate immune system regulation in autoimmune and neurodegenerative disorders, Neuropsych. Dis. Treat., 3 (2007), 365–372. http://doi.org/10.2147/ndt.s12160184 doi: 10.2147/ndt.s12160184
    [5] G. E. Kaiko, J. C. Horvat, K. W. Beagley, P. M. Hansbro, Immunological decision-making: how does the immune system decide to mount a helper T-cell response, Immunology, 123 (2007), 326–338. http://doi.org/10.1111/j.1365-2567.2007.02719.x doi: 10.1111/j.1365-2567.2007.02719.x
    [6] P. Blanco, A. K. Palucka, V. Pascual, J. Banchereau, Dendritic cells and cytokines in human inflammatory and autoimmune diseases, Cytokine Growth Factor Rev., 19 (2008), 41–52. http://doi.org/10.1016/j.cytogfr.2007.10.004 doi: 10.1016/j.cytogfr.2007.10.004
    [7] J. Tabarkiewicz, K. Pogoda, A. Karczmarczyk, P. Pozarowski, K. Giannopoulos, The role of IL-17 and Th17 lymphocytes in autoimmune diseases, Arch. Immunol. Ther. Exp., 63 (2015), 435–449. http://doi.org/10.1007/s00005-015-0344-z doi: 10.1007/s00005-015-0344-z
    [8] B. B. Ganesh, P. Bhattacharya, A. Gopisetty, B. S. Prabhakar, Role of cytokines in the pathogenesis and suppression of thyroid autoimmunity, J. Interferon Cytokine Res., 31 (2011), 721–731. http://doi.org/10.1089/jir.2011.0049 doi: 10.1089/jir.2011.0049
    [9] F. D. Lublin, S. C. Reingold, J. A. Cohen, G. R. Cutter, P. S. Sørensen, A. J. Thompson, et al., Defining the clinical course of multiple sclerosis: the 2013 revisions, Neurology, 83 (2014), 278–286. http://doi.org/10.1212/WNL.0000000000000560 doi: 10.1212/WNL.0000000000000560
    [10] R. Zivadinov, R. Bakshi, Central nervous system atrophy and clinical status in multiple sclerosis, J. Neuroimaging, 14 (2004), 27s–35s. http://doi.org/10.1177/1051228404266266 doi: 10.1177/1051228404266266
    [11] T. Akaishi, I. Nakashima, S. Mugikura, M. Aoki, K. Fujihara, Whole-brain and grey matter volume of Japanese patients with multiple sclerosis, J. Neuroimmunol., 306 (2017), 68–75. http://doi.org/10.1016/j.jneuroim.2017.03.009 doi: 10.1016/j.jneuroim.2017.03.009
    [12] D. T. Chard, C. M. Griffin, G. J. M. Parker, R. Kapoor, A. J. Thompson, D. H. Miller, Brain atrophy in clinically early relapsing remitting-multiple sclerosis, Brain, 125 (2002), 327–337. http://doi.org/10.1093/brain/awf025 doi: 10.1093/brain/awf025
    [13] C. H. Polman, S. C. Reingold, B. Banwell, M. Clanet, J. A. Cohen, M. Filippi, et al., Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria, Ann. Neurol., 69 (2011), 292–302. http://doi.org/10.1002/ana.22366 doi: 10.1002/ana.22366
    [14] H. H. Uhlig, B. S. McKenzie, S. Hue, C. Thompson, B. J. Shaikh, R. Stepankova, et al., Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology, Immunity, 25 (2006), 309–318. http://doi.org/10.1016/j.immuni.2006.05.017 doi: 10.1016/j.immuni.2006.05.017
    [15] R. H. Khonsari, V. Calvez, The origins of concentric demyelination: self-organization in the human brain, PLoS ONE, 2 (2007), e150. https://doi.org/10.1371/journal.pone.0000150 doi: 10.1371/journal.pone.0000150
    [16] M. C. Lombardo, R. Barresi, E. Bilotta, F. Gargano, P. Pantano, M. Sammartino, Demyelination patterns in a mathematical model of multiple sclerosis, J. Math. Biol., 75 (2017), 373–417. https://doi.org/10.1007/s00285-016-1087-0 doi: 10.1007/s00285-016-1087-0
    [17] M. F. Elettreby, E. Ahmed, A simple mathematical model for relapsing remitting multiple sclerosis (RRMS), Med. Hypotheses, 135 (2020), 109478. https://doi.org/10.1016/j.mehy.2019.109478 doi: 10.1016/j.mehy.2019.109478
    [18] K. Shah, M. A. Alqudah, F. Jarad, T. Abdeljawad, Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo-Febrizio fractional-order derivative, Chaos Soliton. Fract., 135 (2020), 109754. https://doi.org/10.1016/j.chaos.2020.109754 doi: 10.1016/j.chaos.2020.109754
    [19] K. Shah, T. Abdeljawad, Study of a mathematical model of COVID-19 outbreak using some advanced analysis, Wave. Random Complex, 2022 (2022), 1–18. https://doi.org/10.1080/17455030.2022.2149890 doi: 10.1080/17455030.2022.2149890
    [20] C. Xu, D. Mu, Z. Liu, Y. Pang, M. Liao, C. Aouiti, New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays, Commun Nonlinear Sci., 118 (2023) 107043. https://doi.org/10.1016/j.cnsns.2022.107043 doi: 10.1016/j.cnsns.2022.107043
    [21] C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 2022 (2022), 1–27. https://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
    [22] C. Xu, W. Zhang, C. Aouiti, Z. Liu, L. Yao, Bifurcation insight for a fractional-order stage-structured predator-prey system incorporating mixed time delays, Math. Method. Appl. Sci., 46 (2023), 9103–9118. https://doi.org/10.1002/mma.9041 doi: 10.1002/mma.9041
    [23] C. Xu, M. Liao, P. Li, Y. Guo, Z. Liu, Bifurcation properties for fractional order delayed BAM neural networks, Cogn. Comput., 13 (2021), 322–356. https://doi.org/10.1007/s12559-020-09782-w doi: 10.1007/s12559-020-09782-w
    [24] A. Khan, A. Ali, S. Ahmad, S. Saifullah, K. Nonlaopon, A. Akgul, Nonlinear Schrödinger equation under non-singular fractional operators: a computational study, Results Phys., 43 (2022) 106062. https://doi.org/10.1016/j.rinp.2022.106062 doi: 10.1016/j.rinp.2022.106062
    [25] K. S. Nisar, A. Ciancio, K. K. Ali, M. S. Osman, C. Cattani, D. Baleanu, et al., On beta-time fractional biological population model with abundant solitary wave structures, Alex. Eng. J., 61 (2022), 1996–2008. https://doi.org/10.1016/j.aej.2021.06.106 doi: 10.1016/j.aej.2021.06.106
    [26] O. A. Arqub, M. Al-Smadi, H. Almusawa, D. Baleanu, T. Hayat, M. Alhodaly, et al., A novel analytical algorithm for generalized fifth-order time-fractional nonlinear evolution equations with conformable time derivative arising in shallow water waves, Alex. Eng. J., 61 (2022), 5753–5769. https://doi.org/10.1016/j.aej.2021.12.044 doi: 10.1016/j.aej.2021.12.044
    [27] B. C. Barro, M. A. Taneco-Hernández, Y. P. Lv, J. F. Gómez-Aguilar, M. S. Osman, H. Jahanshahi, et al., Analytical solutions of fractional wave equation with emory effect using the fractional derivative with exponential kernel, Results Phys., 25 (2021), 104148. https://doi.org/10.1016/j.rinp.2021.104148 doi: 10.1016/j.rinp.2021.104148
    [28] S. Rashid, K. T. Kubra, S. Sultana, P. Agarwal, M. S. Osman, An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method, J. Comput. Appl. Math., 413 (2022), 114378. https://doi.org/10.1016/j.cam.2022.114378 doi: 10.1016/j.cam.2022.114378
    [29] T. Ak, M. S. Osman, A. H. Kara, Polynomial and rational wave solutions of Kudryashov-Sinelshchikov equation and numerical simulations for its dynamic motions, J. Appl. Anal. Comput., 10 (2020), 2145–2162. https://doi.org/10.11948/20190341 doi: 10.11948/20190341
    [30] K. Iskakova, M. M. Alam, S. Ahmad, S. Saifullah, A. Akgul, G. Yilmaz, Dynamical study of a novel 4D hyperchaotic system: an integer and fractional order analysis, Math. Comput. Simulat., 208 (2023), 219–245. https://doi.org/10.1016/j.matcom.2023.01.024 doi: 10.1016/j.matcom.2023.01.024
    [31] S. A. M. Abdelmohsen, S. Ahmad, M. F. Yassen, S. A. Asiri, A. M. M. Ashraf, S. Saifullah, et al., Numerical analysis for hidden chaotic behavior of a coupled memristive dynamical system via fractal-fractional operator based on newton polynomial interpolation, Fractals, 2023 (2023), 1–24. https://doi.org/10.1142/S0218348X2340087X doi: 10.1142/S0218348X2340087X
    [32] X. W. Jiang, J. H. Li, B. Li, W. Yin, L. Sun, X. Y. Chen, Bifurcation, chaos, and circuit realisation of a new four-dimensional memristor system, Int. J. Nonlin. Sci. Num., 2022 (2022), 0393. https://doi.org/10.1515/ijnsns-2021-0393 doi: 10.1515/ijnsns-2021-0393
    [33] B. Li, Z. Eskandari, Z. Avazzadeh, Strong resonance bifurcations for a discrete-time prey-predator model, J. Appl. Math. Comput., 2023 (2023), 2. https://doi.org/10.1007/s12190-023-01842-2 doi: 10.1007/s12190-023-01842-2
    [34] B. Li, Z. Eskandari, Z. Avazzadeh, Dynamical behaviors of an SIR epidemic model with discrete time, Fractal Fract., 6 (2022), 659. https://doi.org/10.3390/fractalfract6110659 doi: 10.3390/fractalfract6110659
    [35] S. Saifullah, S. Ahmad, F. Jarad, Study on the dynamics of a piecewise Tumour-Immune interaction model, Fractals, 30 (2022), 2240233. https://doi.org/10.1142/S0218348X22402332 doi: 10.1142/S0218348X22402332
    [36] H. Qu, M. U. Rahman, S. Ahmad, M. B. Riaz, M. Ibrahim, T. Saeed, Investigation of fractional order bacteria dependent disease with the effects of different contact rates, Chaos Soliton. Fract., 159 (2022), 112169. https://doi.org/10.1016/j.chaos.2022.112169 doi: 10.1016/j.chaos.2022.112169
    [37] Z. H. Shen, Y. M. Chu, M. A. Khan, S. Muhammad, O. A. Al-Hartomy, M. Higazy, Mathematical modeling and optimal control of the COVID-19 dynamics, Results Phys., 31 (2021), 105028. https://doi.org/10.1016/j.rinp.2021.105028 doi: 10.1016/j.rinp.2021.105028
    [38] Y. M. Chu, M. Farhan, M. A. Khan, M. Y. Alshahrani, T. Muhammad, S. Islam, Mathematical modeling and stability analysis of Buruli ulcer in Possum mammals, Results Phys., 27 (2021), 104471. https://doi.org/10.1016/j.rinp.2021.104471 doi: 10.1016/j.rinp.2021.104471
    [39] Y. M. Chu, A. Ali, M. A. Khan, S. Islam, S. Ullah, Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia, Results Phys., 21 (2021), 103787. https://doi.org/10.1016/j.rinp.2020.103787 doi: 10.1016/j.rinp.2020.103787
    [40] W. Y. Shen, Y. M. Chu, M. U. Rahman, I. Mahariq, A. Zeb, Mathematical analysis of HBV and HCV co-infection model under nonsingular fractional order derivative, Results Phys., 28 (2021), 104582. https://doi.org/10.1016/j.rinp.2021.104582 doi: 10.1016/j.rinp.2021.104582
    [41] Y. M. Chu, M. F. Khan, S. Ullah, S. A. A. Shah, M. Farooq, M. B. Mamat, Mathematical assessment of a fractional‐order vector-host disease model with the Caputo-Fabrizio derivative, Math. Method. Appl. Sci., 46 (2023), 232–247. https://doi.org/10.1002/mma.8507 doi: 10.1002/mma.8507
    [42] L. V. C. Hoan, M. A. Akinlar, M. Inc, J. F. Gómez-Aguilar, Y. M. Chu, B. Almohsen, A new fractional-order compartmental disease model, Alex. Eng. J., 59 (2020), 3187–3196. https://doi.org/10.1016/j.aej.2020.07.040 doi: 10.1016/j.aej.2020.07.040
    [43] Y. M. Chu, M. S. Khan, M. Abbas, S. Ali, W. Nazeer, On characterizing of bifurcation and stability analysis for time fractional glycolysis model, Chaos Soliton. Fract., 165 (2022), 112804. https://doi.org/10.1016/j.chaos.2022.112804 doi: 10.1016/j.chaos.2022.112804
    [44] J. Fang, Z. S. Qian, Y. M. Chu, M. U. Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12 (2022), 790–806. https://doi.org/10.11948/20210357 doi: 10.11948/20210357
    [45] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, Singapore: World Scientific, 2012. https://doi.org/10.1142/10044
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(902) PDF downloads(53) Cited by(4)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog