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Abstract: Multiple sclerosis (MS) is a common neurological disorder that affects the central
nervous system (CNS) and can cause lesions that spread over space and time. Our study proposes
a mathematical model that illustrates the progression of the disease and its likelihood of recurrence.
We use Caputo fractional-order (FO) derivative operators to represent non-negative solutions and to
establish a steady-state point and basic reproductive number. We also employ functional analysis
to prove the existence of unique solutions and use the Ulam-Hyres (UH) notion to demonstrate the
stability of the solution for the proposed model. Furthermore, we conduct numerical simulations
using an Euler-type numerical technique to validate our theoretical results. Our findings are presented
through graphs that depict various behaviors of the model for different parameter values.
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1. Introduction and motivation

Multiple sclerosis (MS) is an autoimmune neurological disorder that affects the central nervous
system (CNS) and primarily damages oligodendryocytes, which are myelin producing cells. This
damage leads to dysfunction of neurons in the brain and spinal cord, causing various neurological
symptoms. It is commonly accepted that MS is an unpredictable illness that can have permanent effects
on the brain, spinal cord, and optic nerves. Symptoms may include difficulty with movement, cloudy
vision, and further neurological issues. The severity and deductability of signs can vary greatly from
patient to patient, ranging from subtle cases that require no medical intervention to severe cases that
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disrupt daily activities and require relapse-preventive therapies. Shigesi et al. [1] studied the association
between endometriosis and autoimmune disease. Similar studies can be found in [2–4].

MS is classified as an autoimmune neurodegenerative condition, which is characterized by the
degeneration of axons and neurons, demyelination, and inflammation in the CNS. The direct cause
of MS is largely unknown; although there are treatments available to slow the progression of MS and
limit any further damage to the CNS, there is currently no overall cure. The disease has been attributed
to a variety of factors, including immune dysfunction, viral infection, and genetic, epigenetic, and
environmental factors. Typically, symptoms of MS first present in patients between the ages of 15 and
50.

Relapsing-remitting MS (RRMS) is the most prevalent form of MS, characterized by episodes of
neurological symptoms, followed by periods of remission. MS is approximately three times more
common in females than males, and predicting the clinical course of relapses remains a challenge
due to the variability of the disease and the influence of factors such as a sick person’s environment,
lab findings, and medical profile. Kaiko et al. [5] analyzed immunological decision making, and the
relation between dendritic cells and cytokines was investigated by the authors in [6]. More analysis on
this aspect can be found in [7, 8].

The neurological damaged caused by MS can be classified in two ways: slow progressive brain
degeneration and regular attacks (relapses). Usually classified as a combination of at least two of these
parts, the clinical direction in MS patients are mostly categorized into three different forms: the primary
progressive phase (PPMS), the RRMS phase, and the secondary progressive phase (SPMS) [9].

PPMS and RRMS have contrasting symptoms. PPMS is characterized by a gradual decline in
cerebral function starting from the early stages of the disease, without clear-cut episodes of clinical
relapse [10, 11]. In contrast, RRMS is characterized by clinical relapses that occur unpredictably,
leading to temporary episodes of cerebral weakening [12, 13].

Because the adoptive immune system reacts against non-self, the immune system must be able to
recognize self from non-self; otherwise, an extensive range of immune diseases can occur. Through
the development of the immune system, different levels of immune reactions against non-self can lead
to variations of mechanisms form one end of the spectrum to another [14]. Various disease-modifying
drugs (DMDs), such as fingolimod, natalizumab, and interferon, have demonstrated an impressive
efficacy in reducing relapse rates in patients with multiple sclerosis.

However, not all individuals with MS will benefit from these DMDs. Additionally, DMDs are
helpful for proscribe relapse, since certain patients with MS have not been able to effectively block
the progressive brain decay connected with relapse. Additional research toward understanding the
pathophysiological mechanisms of MS can be beneficial in producing additional treatments.

Therefore, developing an accurate mathematical model that mimics the clinical manifestations of
MS is a promising approach.

Some mathematical models have been constructed to elucidate the perplexing concentric
morphology of demyelinating lesions. The focus of these models is on how macrophages are activated
and recruited in relation to the development of demyelinating lesions [15, 16]. Another model has
been introduced to illustrate the manifestation of cerebral decline lesions in demyelinating diseases,
and incorporating the dynamic interactions among macrophages, chemoattractants, and destroyed
oligodendrocyte in the brain volume. However, to analyze the non-linear asymmetrical laboratory
case and the dispersed distribution of lesions in MS, the authors in [17] constructed a new system that
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considers the specific uncertainties in space and time. We recall the following model proposed in [17]
described below.

Let P(t) represent the ratio of normal (healthy) brain cells (NBC), I(t) represent the infected brain
cells (IBC), and Q(t) represent the damaging (either immune or viral effectors) brain cells (DBC).

In addition, let γ denote the growth rate of NBC. Based on scientific observations, either viruses or
immune cells contribute to the development of this disease. Therefore, we assume that infected cells
I(t) release the virus Q(t) at a rate of δ and expire at a rate of α. The virus Q(t) is influenced by NBC
P(t) at a rate of d and expires at a rate of κ. We assume that d is small and the control parameters β, γ,
δ belong to that domain where P, I, Q, are non-negative. Therefore, the mathematical system can be
expressed in the following form [17]:

d
dtP = γP(1 − P) − βPQ,
d
dt I = βPQ − αI,
d
dtQ = δI − dPQ − κQ.

(1.1)

In the field of epidemiology, there has been a recent trend of using fractional-order (FO) derivatives
and integral operators in mathematical models. These operators are more flexible than traditional
deterministic models and have been a focus of current research in mathematics. Shah et al. investigated
Pine Wilt disease and COVID-19 models under FO [18,19]. Beside this, FO operators have been used
in the analysis and applications of delay differential equations. For instance, Xu et al. demonstrated
a FO 4D neural network including two different delays [20] and three-triangle multi-delayed neural
networks [21]. Additionally, we suggest two works on FO delay differential equations [22, 23].

FO differential equations involve either fractional-order derivatives or integral operators that depend
on past states as well as current states, making them a powerful tool for predicting future states.
They are more effective than classical deterministic operators, and Caputo and Riemann-Liouville
operators are commonly used in fractional-order differential equations. There are several applications
of differential equations in science and technology. For instance, several authors have used FO to
analyze wave behaviours in mathematical physics problems such as Schrodinger’s equation [24],
biophysics [25], nonlinear evolution equations [26], fractional wave equations [27], time-fractional
Fornberg-Whitham and Klein-Gordon equations [28], and fluid dynamics [29]. FO can be applied to
bifurcations and chaos analyses of dynamical systems. The advantage of FO over the integer order
operator in chaos analysis is that it provides more advanced features in chaotic dynamical systems
that are not attainable at integer order. Here, we give some applications of FO in bifurcation and
chaos analysis, such as: 4D-hyperchaotic system [30], coupled memristive model [31], 4D-memristive
system [32] and chaos in predator prey model [33].

In epidemiology, integer operators are basic tools for modelling the dynamics of a disease [34].
However, FO has been used by many researchers for an improved prediction and analysis of numerous
disease models, such as a tumor-immune model [35], bacteria dependent disease [36], a COVID-19
model [37], Buruli ulcers [38], a COVID-19 model for a case study in Saudi Arabia [39], HBV and
HCV co-infection models [40], a Vector-host disease model [41], a compartmental disease model [42],
and many more [43, 44].

In the next section, we propose a simple mathematical model consisting of three simultaneous
fractional differential equations that can replicate the clinical presentation of MS. In developing our
model, we draw upon previous research on Ulam-Hyers stability and the instability of steady state
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solutions and pattern formation. We derive conditions for the existence, uniqueness, and stability
of steady states both at equilibrium and away from equilibrium. We then use numerical simulation
techniques to verify our theoretical results. Finally, in the concluding section, we summarize our
findings and conclude our study.

The structure of the paper is as follows: In Section 2, we introduce the fundamental concepts of
fractional calculus. In Section 3, we present the primary findings of our research, comprised of a
theoretical and numerical analysis of the proposed model. In Section 4, we present the numerical
simulations. Finally, in Section 5, we provide the concluding remarks.

2. Preliminaries

Here, we provide a definition of some fractional operators.

Definition 2.1. [45] Let Ψ(t) ∈ C[0,T ], then the Caputo operator is defined as:

CD
µ
tΨ(t) =

1
Γ(1 − µ)

∫ t

0
(t − a)−µ

d
da
Ψ(a)da. (2.1)

Definition 2.2. [45] Let Ψ ∈ L1 ([0,T] ,R) , the Reimann-Liouville fractional integral operator of
0 < µ ≤ 1 order is defined as:

I
µ
tΨ(t) =

1
Γ(µ)

t∫
0

(t − a)µ−1Ψ (a) da.

Definition 2.3. [45] The Reimann-Liouville fractional derivative of order µ is expressed by:

D
µ
tΨ(t) =

1
Γ(1 − µ)

d
dt

∫ t

0

Ψ(a)
(t − a)µ

da.

3. Main work

Here, the classical derivative in the model (1.1) is replaced by the Caputo fractional-order RRMS
model, described as: 

CD
µ
t P(t) = γP(1 − P) − βPQ,

CD
µ
t I(t) = βPQ − αI,

CD
µ
tQ(t) = δI − dPQ − κQ,

(3.1)

along with initial conditions:
P(0) = P0, I(0) = I0,Q(0) = Q0.

Since model (3.1) is nonlinear and lacks a time-dependent explicit solution, it is studied over a
prolonged time period. By setting the derivatives of model (3.1) equal to zero, we obtain the following
equilibria:
E0 = (0, 0, 0) , E1 = (1, 0, 0) , and E2 =

(
ακ

(βδ−αd) ,
γκ(βδ−αd−ακ)

(βδ−αd)2 ,
γ(βδ−αd−ακ)
β(βδ−αd)

)
, also, the basic reproduction

number is given as:

R0 =
δβ

α(d + κ)
.
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3.1. Non-negativity of solutions

This portion focuses on the existence of a non-negative solution for the fractional order RRMS
model. It is evident from biological considerations that each state variable in the model (3.1) represents
a non-negative real-valued function. Stated differently, (P (t) , I (t) ,Q (t)) ∈ R3

+ where

R3
+ =
{
x = (x1, x2, x3) : x j ≥ 0,∀i = 1, 2, 3

}
.

First, we will demonstrate that all solutions of the model (3.1) are non-negative.

Theorem 3.1. All solutions of the considered FO RRMS model (3.1) belong to the non-negative real
space R3

+.

Proof. Consider the RRMS model (3.1), we have
CD

µ
t P(t)|P(t)=0 = 0, where 0 < γ ≤1 and X ≥0,

CD
µ
t I(t)|I(t)=0 = βPQ ≥ 0, where P (t) ≥ 0 and β > 0

CD
µ
tQ(t)|Q(t)=0 = δI ≥ 0, where δ > 0 and I ≥0.

Using fractional integral, we will get the solution of the above systems. The solution will be
nonnegative since there is no negative term in the system. □

3.2. Existence and uniqueness theorems

In this part, we will find the existence of a solution for the considered FO RRMS model (3.1) via
the concepts of the fixed- point theory. Define a norm as:

∥ (P, I,Q) ∥=∥ P ∥ + ∥ I ∥ + ∥ Q ∥,

where ∥ P ∥= sup {| P (t) |: t ∈ T}, ∥ I ∥= sup {| I (t) |: t ∈ T}, ∥ Q ∥= sup {| Q (t) |: t ∈ T}, and A =
(c [0,T]), where (c [0,T]) denotes the Banach space of real value continues mapping on T in the related
supremum norm. Let us express the model (3.1) as:

CD
µ
t P(t) = Q1(t,P),

CD
µ
t I(t) = Q2(t, I),

CD
µ
tQ(t) = Q3(t,Q).

(3.2)

By applying the definition of fractional integral of model (3.2) and using the properties of fractional
calculus we get 

P(t) − P(0) = 1
Γ(1−µ)

∫ t

0
(t − a)−µQ1(t,P)da

I(t) − I(0) = 1
Γ(1−µ)

∫ t

0
(t − a)−µQ2(t, I)da

Q(t) − Q(0) = 1
Γ(1−µ)

∫ t

0
(t − a)−µQ3(t,Q)da,

(3.3)

where t ∈ [0,T] and 0 < µ ≤ 1 with the following theorem, we will assume that ∥ P (t) ∥≤ c1,
∥ I (t) ∥≤ c2, and ∥ Q (t) ∥≤ c3 where ci, i = 1, 2, 3 are positive constants

m1 = γ − βc3 − 2γc1,m2 = α,m3 = dc1 + k.
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Theorem 3.2. Assume that 0 ≤ max {m1,m2,m3} < 1, then we show that kernels Q1, Q2, Q3 agrees to
fulfill the Lipschitz constraint and are contractions under some mappings.

Proof. Consider P1 and P2 be any functions, then we have

∥Q1(t,P1) −Q1(t,P2)∥ ≤ ∥γP1 (t) (1 − P1 (t)) − βP1 (t)Q (t) − γP2 (t) (1 − P2 (t)) + βP2 (t)Q (t)∥
=
∥∥∥γP1 (t) − γP2

1 (t) − βP1 (t)Q (t) − γP2 (t) + γP2
2 (t) + βP2 (t)Q (t)

∥∥∥
=
∥∥∥∥γ (P1 (t) − P2 (t)) − βQ (t) (P1 (t) − P2 (t)) − γ

(
P2

1 (t) − P2
2 (t)
)∥∥∥∥

= ∥(γ − βQ (t)) (P1 (t) − P2 (t)) − γ (P1 (t) + P2 (t)) (P1 (t) − P2 (t))∥
= ∥γ − βQ (t) − γ (P1 (t) + P2 (t)) (P1 (t) − P2 (t))∥
≤ ∥γ − βQ (t) − γ (P1 (t) + P2 (t))∥ ∥(P1 (t) − P2 (t))∥
≤ γ − β ∥Q (t)∥ − γ (∥P1 (t)∥ + ∥P2 (t)∥) ∥P1 − P2∥

≤ γ − βC3 − γ (2C1) ∥P1 − P2∥

≤ m1 ∥P1 − P2∥ ,

which implies that
∥Q1(t,P1) −Q1(t,P2)∥ ≤ m1 ∥P1 − P2∥ . (3.4)

Therefore, the Lipschitz condition is fulfilled. Similarly, the kernels Q2,Q3, can be fined using {I1, I2}
and {Q1,Q2} . 

∥Q1(t,P1) −Q1(t,P2)∥ ≤ m1 ∥P1 − P2∥

∥Q2(t, I1) −Q2(t, I2)∥ ≤ m2 ∥I1 − I2∥

∥Q3(t,Q1) −Q3(t,Q2)∥ ≤ m3 ∥Q1 − Q2∥ .

In addition, since 0 ≤ max {m1,m2,m3} < 1, the kernel are contractions. Recursively, system (3.3) can
be given as 

Xn (t) − P (0) = 1
Γ(1−µ)

∫ t

0
(t − a)−µQ1 (a,Pn−1) da,

In (t) − I (0) = 1
Γ(1−µ)

∫ t

0
(t − a)−µQ2 (a,In−1) da,

Zn (t) − Q (0) = 1
Γ(1−µ)

∫ t

0
(t − a)−µQ3 (a,Qn−1) da.

(3.5)

Let

K(t) =


P(t)
I(t)
Q(t)

 ,
Z(t,K(t)) =


Q1(t,P1)
Q2(t, I1)
Q3(t,Q1)

 ,
K(0) =


P(0)
I(0)
Q(0)

 .
Using (3.5), we obtain the following formation:

K(t) = K0 +
1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,K(a))da. (3.6)
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The difference between the successive terms of model (3.2) in the recursive form is defined as:

Φ1n (t) = Xn (t) − Xn−1 (t)

=
1

Γ (1 − µ)

∫ t

0
(t − a)−µQ1 (a,Pn−1) −Q1 (a,Pn−2) da

Φ2n (t) = In (t) − In−1 (t)

=
1

Γ (1 − µ)

∫ t

0
(t − a)−µQ2 (a,In−1) −Q2 (a,In−2) da

Φ3n (t) = Zn (t) − Zn−1 (t)

=
1

Γ (1 − µ)

∫ t

0
(t − a)−µQ3 (a,Qn−1) −Q3 (a,Qn−2) da,

with the initial condition P0 (t) = P (0) , I0 (t) = I (0) , Q0 (t) = Q (0) . By using the norm of the
equation, we have

∥Φ1n (t)∥ = ∥Xn (t) − Xn−1 (t)∥

=

∥∥∥∥∥∥ 1
Γ (1 − µ)

∫ t

0
(t − a)−µQ1 (a,Pn−1) −Q1 (a,Pn−2) da

∥∥∥∥∥∥
≤

1
Γ (1 − µ)

∥∥∥∥∥∥
∫ t

0
(t − a)−µQ1 (a,Pn−1) −Q1 (a,Pn−2) da

∥∥∥∥∥∥ .
According to the Lipschitz condition (3.4), we get

∥Xn (t) − Xn−1 (t)∥ ≤
1

Γ (1 − µ)
m1

∫ t

0
(t − a)−µ ∥Xn−1 (t) − Xn−2 (t)∥ da.

Thus, we have

∥Φ1n (t)∥ ≤
1

Γ (1 − µ)
m1

∫ t

0
(t − a)−µ

∥∥∥Φ1(n−1) (a)
∥∥∥ da. (3.7)

Similarly, the Lipschitz property for the remaining equation of the model can be obtained with∥Φ2n (t)∥ ≤ 1
Γ(1−µ)m2

∫ t

0
(t − a)−µ

∥∥∥Φ2(n−1) (a)
∥∥∥ da,

∥Φ3n (t)∥ ≤ 1
Γ(1−µ)m3

∫ t

0
(t − a)−µ

∥∥∥Φ3(n−1) (a)
∥∥∥ da.

(3.8)

The properties of the kernel, as shown in Eq (3.4), have been established and holds. By analysing the
remainder of Eqs (3.7) and (3.8), and applying the recursive access, we get the output as:

∥Φ1n (t)∥ ≤ ∥P0 (t)∥
[

1
Γ(1−µ)m1 p1−µ

]n
∥Φ2n (t)∥ ≤ ∥I0 (t)∥

[
1

Γ(1−µ)m2 p1−µ
]n

∥Φ3n (t)∥ ≤ ∥Q0 (t)∥
[

1
Γ(1−µ)m1 p1−µ

]n
.

(3.9)

Therefore, the existing and given sequence follows ∥Φ1n (t)∥ → 0, ∥Φ2n (t)∥ → 0 and ∥Φ3n (t)∥ → 0 as
n→ ∞. Therefore, at least one solution exists for the considered model.

Pn(t) =
∑n

i=1Φ1n (t)

In(t) =
∑n

i=1Φ2n (t)

Qn(t) =
∑n

i=1Φ3n (t) .

□
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We propose the following results, which guarantees the unique solution of model (3.2).

Theorem 3.3. The Caputo-fractional (RRMS ) model (3.2) has a unique solution for t ∈ [0,T] if the
inequality exists 1

Γ(1−µ) p1−µm1 < 1, where i = 1, 2, 3.

Proof. To prove the uniqueness of the solution, considering Eq (3.9) and taking triangular inequality
for any i = 1, 2, 3, we have 

∥Xn+i (t) − Xn (t)∥ ≤
∑n+i

k=n+1 mi
1 =

mn+1
1 −mn+i+1

1
1−m1

∥In+i (t) − In (t)∥ ≤
∑n+i

k=n+1 mi
2 =

mn+1
2 −mn+i+1

2
1−m2

∥Zn+i (t) − Zn (t)∥ ≤
∑n+i

k=n+1 mi
3 =

mn+1
3 −mn+i+1

3
1−m3

,

(3.10)

where 1
Γ(1−µ)m1 p1−µ < 1 by assertion and mi =

[
1

Γ(1−µ)m1 p1−µ
]n
, i = 1, 2, 3. Therefore, the sequences

Pn, In, Qn behave as Cauchy sequences inM (k), and as such, they converge uniformly. By applying the
limit theory to Eq (3.10) as n→ ∞, the limit of these sequences gives a unique solution to model (3.1).
Thus, the existence of a unique solution for model (3.1) has been proven. □

3.3. Ulam-Hyers stability

This section will cover the various forms of UH stability (UHS) and gives definitions for some UHS
criteria for the proposed system. Let K ∈ A be any solution of the considered FO RRMS model (3.1),
and ε > 0 and LZ : [0,T] × R3 → R+ shows a continuous function. We are presented with a set of
inequalities: ∣∣∣CDµtM(t) − Q(t,M(t))

∣∣∣ ≤ ε, (3.11)∣∣∣CDµtM(t) − Q(t,M(t))
∣∣∣ ≤ εLZ(t), (3.12)∣∣∣CDµtM(t) − Q(t,M(t))
∣∣∣ ≤ LZ(t), (3.13)

where t ∈ [0,T] and ε = max(εi)T for i = 1, 2, 3.

Definition 3.4. The given FO RRMS model (3.1) will be UHS if ∀ ε > 0, and ∀ solution M ∈ A of
system (3.3) ∃JZ > 0 such that

|M(t) − K(t)| ≤ εJZ > 0,

where JZ = max(JZi)
T.

Definition 3.5. The proposed RRMS model (3.1) will be a generalized UHS if ∃ a function HZ with
HZ(0) = 0 such that

|M(t) − K(t)| ≤ HZ(ε),

whereHZ = max(HZi)
T for i = 1, 2, 3.

Definition 3.6. The given RRMS model (3.1) will be a UHRS if ∃ UHZ > 0 such that

|M(t) − K(t)| ≤ HZ(t)UHZε.

Definition 3.7. The considered RRMS model will be a generalized UHRS if ∃ UHZ > 0 such that

|M(t) − K(t)| ≤ HZ(t)UHZ ,

where t ∈ [0,T].
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Remark 3.8. M ∈ A be a solution of (3.11) if and only if ∃Q ∈ A, the following properties hold:

• |Q(t)| ≤ ε,Q = max(Qi)T for i = 1, 2, 3.
• cDµtM(t) = Z(t,M(t)) +Q(t).

Remark 3.9. M ∈ A be a solution of (3.12) if and only if there exist H ∈ A, the following properties
hold:

• |H(t)| ≤ εHZ(t),H = max(Hi)T, for i = 1, 2, 3.
• cDµtM(t) = Z(t,M(t)) + H(t).

To concentrate our discussion on the Ulam’s stabilities of the proposed model, we will first establish
some necessary results. Additionally, we introduce an assumption that could prove useful in our
subsequent analysis. We will assume that:

(A3)∀ t ∈ [0,T], if ∃ an increasing functionHZ ∈ A and ΠHZ > 0 such that

I
µ
0HZ(t) ≤ ΠHZHZ(t).

Lemma 3.10. ForM ∈ A, given inequality below holds:∣∣∣∣∣∣M(t) −M0 −
1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,M(a))da

∣∣∣∣∣∣ ≤ εtµ

Γ(µ + 1)
.

Proof. Since M ∈ A satisfies (3.11), according to the 2nd condition of Remark 3.8, one can conclude
that cDµtM(t) = Z(t,M(t)) +Q(t),

M(0) = M0.
(3.14)

By utilizing the fractional integral, we can obtain the solution of system (3.14), which is expressed as
follows:

M(t) = m0 +
1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,M(a))da +

1
Γ(µ)

∫ t

0
(t − a)µ−1 Q(a)da.

Based on the initial assumption, we can use the first condition of Remark 3.8 to obtain the following
result: ∣∣∣∣∣∣M(t) −M0 −

1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,M(a))da

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1
Γ(µ)

∫ t

0
(t − a)µ−1 Q(a)da

∣∣∣∣∣∣
≤

1
Γ(µ)

∫ t

0
(t − a)µ−1

|Q(a)| da

≤
εtµ

Γ(µ + 1)
.

Hence, this ends the proof. □

Lemma 3.11. IfM ∈ A satisfies (3.12), then∣∣∣∣∣∣M(t) −M0 −
1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,M(a))da

∣∣∣∣∣∣ ≤ εΠHZHZ(t).
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Proof. LetM ∈ A be the solution of (3.12). Using the second condition of Remark 3.9, we can express
it as follows:

M(t) = M0 +
1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,M(a))da +

1
Γ(µ)

∫ t

0
(t − a)µ−1H(a)da.

In the context of first part of Remark 3.9, we can express the above equation as:∣∣∣M(t) −M0 − I
η
0Z(t,M(t))

∣∣∣ = ∣∣∣Iµ0H(t)
∣∣∣

≤ I
µ
0 |H(t)|

≤ εcI
µ
0HZ(t)

≤ εΠHZ(t).

This ends the proof. □

Now, we are ready to verify the UH and Ulam-Hyers-Rassias (UHR) stability of the proposed
RRMS model (3.1).

Theorem 3.12 (Generalized UHS). If the assertion (A1) and ζZTµ

Γ(µ+1) < 1 are fulfilled, then the proposed
RRMS system (3.5) is a UHS and so, a generalized UHS.

Proof. LetM ∈ A be any solution of Eq (3.11) and K ∈ A represent a unique solution of the proposed
model (3.5), via Eq (3.6) and Lemma 3.10, one has

|M(t) − K(t)| ≤

∣∣∣∣∣∣M(t) − K0 −
1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,K(a))da

∣∣∣∣∣∣
≤

∣∣∣∣∣∣M(t) −M0 −
1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,K(a))da

∣∣∣∣∣∣
+

1
Γ(µ)

∫ t

0
(t − a)µ−1

|Z(κ,M(a)) − Z(a,K(a))| da

≤

∣∣∣∣∣∣M(t) −M0 −
1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,K(a))da

∣∣∣∣∣∣
+
ζZ
Γ(µ)

∫ t

0
(t − a)µ−1

|M(a) − K(a)| da

≤
εtµ

Γ(µ + 1)
+
ζZtµ

Γ(µ + 1)
|M(t) − K(t)| .

After simplification, we obtain |M(t) − K(t)| ≤ εJZ, where

JZ =

tµ
Γ(µ+1)

1 − ζZ tµ

Γ(µ+1)

.

Therefore, the result of the UHS is achieved. Hence, the RRMS system (3.5) is a UHRS. Next, set
HZ(ε) = εJZ so thatHZ(0) = 0. Hence, the considered FO RRMS system is a generalized UHS. □

The given system exhibits a UHRS and a generalized UHRS according to the following theorem.
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Theorem 3.13. If (A1), (A3) and ζZ tµ

Γ(µ+1) < 1 are hold, then the model (3.5) is a UHRS, and accordingly,
a generalized UHRS.

Proof. Let M ∈ A be any solution of (3.13), and K ∈ A denotes a unique solution of (3.5) via Eq (3.6)
along with Lemma 3.11, one achieves

|M(t) − K(t)| ≤

∣∣∣∣∣∣M(t) − K0 −
1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,K(a))da

∣∣∣∣∣∣
≤

∣∣∣∣∣∣M(t) −M0 −
1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,M(a))da

∣∣∣∣∣∣
+

1
Γ(µ)

∫ t

0
(t − a)µ−1

|Z(a,M(a)) − Z(a,K(a))| da

≤

∣∣∣∣∣∣M(t) −M0 −
1
Γ(µ)

∫ t

0
(t − a)µ−1 Z(a,M(a))da

∣∣∣∣∣∣
+
ζZ
Γ(µ)

∫ t

0
(t − a)µ−1

|M(a) − K(a)| da

≤ εΠHZHZ(t) +
ζZtµ

Γ(µ + 1)
|M(t) − K(t)| .

After simplification, one achieves |M(t) − K(t)| ≤ εΠHZ (t)

1− ζZ tµ

Γ(µ+1)

. By supposing:

UHZ =
ΠHZ

1 − ζZ tµ

Γ(µ+1)

,

we get the required result:
|M(t) − K(t)| ≤ HZ(t)UHZµ. (3.15)

Consequently, the proposed system is a UHRS. Next, by setting ε = 1 in Eq (3.15) along withHZ(0) =
0, the suggested RRMS system is a generalized UHRS. □

3.4. Numerical results of RRMS model via Euler method

Finding exact or explicit solutions for FO differential equations remains a challenging task in
computational and applied mathematics. In this section, we propose an approach to obtain approximate
solutions for the FO model using fractional Euler’s methods. These techniques focus on either the
primary Taylor’s function or a power series expansion. The strategy for the fractional Euler’s numerical
solution will be discussed.

By taking an IVP as
CD

µ
t S(t) = g (t,S (t)) , c ≤ t ≤ p,S(t) = a, (3.16)

where c = t0, t1, ..., tn = p such that ti = c + i ▽ .
Let j = 0, 1, 2, ..., n, and ▽ = p−c

n .

Suppose that CD
µ
t S(t) and CD

2µ
t S(t) are continuous functions on

[
c, p
]
. Utilizing Taylor,s expansion

for i = 0, 1, 2, ..., n, one reaches:

S (ti+1) = S (ti + ▽) = S (ti) +
▽µ

µ

(
CD

µ
t S(ti)

)
+
▽2µ

2µ2

(
CD

2µ
t S
)

(ζi) ,
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where ti < ζi < ti+1. Since ▽ = ti+1 − ti, there exist Φi ∈ (0, 1) such that

S (ti+1) = S (ti) +
▽µ

µ

(
CD

µ
t S(ti)

)
+
▽2µ

2µ2

(
CD

2µ
t S
)

(ti +Φi▽) ,

from which we have

µ (S(ti+1) − S(ti))
▽µ

= g (ti,S(ti)) +
▽2µ

2µ2

(
CD

2µ
t S
)

(ti +Φi▽) . (3.17)

For a small enough time interval, ▽, the term ▽2µ

2µ2

(
CD

2µ
t S
)

(ti +Φi▽) in Eq (3.17) can be omitted.
Therefore, from the Eq (3.17), we acquire the numerical method in the form of:

S (ti+1) = S (ti) +
▽µ

µ
g (ti,S(ti)) . (3.18)

Agarwal et al. utilized Euler’s methods to develop a similar numerical scheme that provides the
solution for Eq (3.16) in the following form:

S (ti+1) = S (ti) +
▽µ

Γ (µ + 1)
g (ti,S(ti)) . (3.19)

The discrete Eqs (3.18) and (3.19) differ only in the denominator of their right-hand sides. In this paper,
we utilize the numerical method presented in Eq (3.19) and can now employ the previous scheme for
a simplified computation. We employ the numerical approximation scheme Eq (3.19), and each of the
equations in the model (3.1). First, we consider the equation

CD
µ
t P(t) = γP(1 − P) − βPQ,

for 0 < µ < 1, t > 0, with the initial values S (0) = S0 = 0.4, I (0) = I0 = 0.3, Q (0) = Q0 = 0.1, the
total population N = 0.8.

Suppose g (t,S(t)) = γP(1 − P) − βPQ, then we define CD
µ
t P(t) = g (t,S(t)) with S0 = 0.4, 0 < µ <

1, t > 0. Next, utilizing the numerical scheme in Eq (3.19), one obtains

S (ti+1) = S (ti) +
▽µ

Γ (µ + 1)
g (ti,S(ti)) ,

where g (ti,S(ti)) is described as

g (ti,S(ti)) = γP(ti)(1 − P(ti)) − βP(ti)Q(ti),

for i = 0, 1, 2, 3, ..., n − 1.
Now,

CD
µ
t I(ti) = βP(ti)Q(ti) − αI(ti).

Let g (t, I(ti)) = βP(ti)Q(ti) − αI(ti), and define CD
µ
t I(ti) = g (t, I(ti)) where I0 = 0.3, 0 < µ < 1, t > 0.

Utilizing the numerical solution scheme in Eq (3.10), we obtain

I (ti+1) = I (ti) +
▽µ

Γ (µ + 1)
g (ti, I(ti)) ,
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where g (ti, I(ti)) is described as

g (ti, I(ti)) = βP(ti)Q(ti) − αI(ti),

for i = 0, 1, 2, ..., n − 1. Lastly,

CD
µ
tQ(t) = δI(t) − dP(t)Q(t) − κQ(t).

Suppose g (ti,Q(ti)) = δI(ti)− dP(ti)Q(ti)− κQ(ti), define as CD
µ
tQ(t) = g (ti, I(ti)) , where Q0 = 0.1, 0 <

µ < 1, t > 0.

Utilizing the numerical scheme in Eq (3.10), we obtain

Q (ti+1) = Q (ti) +
▽µ

Γ (µ + 1)
g (ti,Q(ti)) ,

where g (ti,Q(ti)) is described as

g (ti,Q(ti)) = δI(ti) − dP(ti)Q(ti) − κQ(ti),

for i = 0, 1, 2, ..., n − 1.

4. Numerical simulations

This section presents a simulation of the proposed mathematical model to analyze the behavior
of three classes of a system for different cases. The initial conditions for these cases are chosen as
P = 0.4, I = 0.3, and Q = 0.1. The three cases correspond to the disease-free equilibrium (DFE)
point, the endemic equilibrium (EE) point, and oscillatory dynamics of the disease. For the DFE point
simulation, we use specific parameter values such as γ = 1.5, β = 0.25, α = 1.13, δ = 0.2, d = 0.01,
and κ = 0.1. The simulation results are presented in Figure 1, where sub-figures (a)–(c) display the
geometry of normal brain cells (NBC), infected brain cells (IBC), and damaged brain cells (DBC) for
a few FOs.

For the EE point simulation, we use a different set of parameter values such as γ = 0.5, β = 0.28, α =
0.13, δ = 0.1, d = 0.01, and κ = 0.1. The results of this simulation are presented in Figure 2, where
sub-figures (a)–(c) show the disease dynamics for some FOs. For the oscillatory dynamics simulation,
we use a set of parameter values such as γ = 0.5, β = 1.25, α = 0.13, δ = 0.1, d = 0.01, and κ = 0.1.
The simulation results reveal that the system exhibits oscillatory dynamics of the considered disease,
and this behavior is presented in Figure 3, where sub-figures (a)–(c) depict the evolution of each class
of the proposed model for a few FOs.
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Figure 1. Graphs of the proposed system for DFE at γ = 1.5, β = 0.25, α = 1.13, δ = 0.2, d =
0.01, and κ = 0.1.
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Figure 2. Graphs of the proposed system for EE at γ = 0.5, β = 0.28, α = 0.13, δ = 0.1, d =
0.01, and κ = 0.1.
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Figure 3. Oscillatory dynamics of the proposed system for γ = 0.5, β = 1.25, α = 0.13, δ =
0.1, d = 0.01, and κ = 0.1.

This section presents a simulation of the proposed mathematical model to analyze the behavior
of three classes of a system for different cases. The initial conditions for these cases are chosen as
P = 0.4, I = 0.3, and Q = 0.1. The three cases correspond to the disease-free equilibrium (DFE)
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point, the endemic equilibrium (EE) point, and oscillatory dynamics of the disease. For the DFE point
simulation, we use specific parameter values such as γ = 1.5, β = 0.25, α = 1.13, δ = 0.2, d = 0.01,
and κ = 0.1. The simulation results are presented in Figure 1, where sub-figures (a) − (c) display the
geometry of normal brain cells (NBC), infected brain cells (IBC), and damaged brain cells (DBC) for
a few FOs.

For the EE point simulation, we use a different set of parameter values such as γ = 0.5, β = 0.28, α =
0.13, δ = 0.1, d = 0.01, and κ = 0.1. The results of this simulation are presented in Figure 2, where
sub-figures (a)−(c) show the disease dynamics for some FOs. For the oscillatory dynamics simulation,
we use a set of parameter values such as γ = 0.5, β = 1.25, α = 0.13, δ = 0.1, d = 0.01, and κ = 0.1.
The simulation results reveal that the system exhibits oscillatory dynamics of the considered disease,
and this behavior is presented in Figure 3, where sub-figures (a)− (c) depict the evolution of each class
of the proposed model for a few FOs.

Furthermore, we analyze the chaotic dynamics of the proposed model in Figures 4 and 5. We
choose different values of FO to illustrate the memory and heredity features of the model. From these
simulations, we observe that the evolution of the disease varies as the value of the FO changes. We
note that the model achieves stability more rapidly at lower FOs compared to higher orders. Moreover,
the graphs of each class get closer to the dynamics of the integer order model as the FO increases.
Therefore, we conclude that the proposed model is more advanced and generalized than the classical
model.

From a biological perspective, mathematical models are an important tool to study the dynamics of
diseases and can help to understand how they spread and how they can be controlled. The proposed
model is used to simulate the behavior of a disease affecting brain cells. The simulations provide
insight into how the disease progresses under different conditions, such as at the DFE point, the EE
point, and with oscillatory dynamics. We also analyze the chaotic dynamics of the model and how
the disease evolution changes as the value of the FO changes. These findings could provide valuable
information for developing strategies to control and treat the disease.

(a) (b) (c)

Figure 4. Complex dynamics of the proposed system for γ = 0.5, β = 1.25, α = 0.13, δ =
0.1, d = 0.01, and κ = 0.1.
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Figure 5. Chaotic dynamics of the proposed system for γ = 0.5, β = 1.25, α = 0.13, δ =
0.1, d = 0.01, and κ = 0.1.

5. Conclusions and future recommendation

In this research, we have explored a mathematical model to assess the level of disease progression
and recurrence. To provide non-negative solutions, we have expanded the model by including Caputo
fractional-order derivative operators. Additionally, we have also established steady-state points and
basic reproductive number. Moreover, we have identified the necessary conditions for the existence of
a unique fractional system. Different forms of UHS have been demonstrated to show that the solution
of the considered FO system is a UHS. To obtain an approximate solution for the FO system, we have
used an effective Euler-type numerical technique.

The study presents the results of three different cases, where the behavior of the model is analyzed
for a few fractional values. We have concluded that the proposed system is more generalized than the
classical model, as it provides the behavior of the model for fractional values. Overall, this research
contributes to the understanding of disease progression and recurrence by providing a mathematical
model that can be utilized to simulate and analyze the behavior of disease models. The inclusion of
Caputo fractional-order derivative operators allows for a more comprehensive analysis of the model’s
stability and recurrence, making it a valuable tool for researchers and health care professionals.

In the near future, we will study the proposed model using different operators and concepts, such as
fractal fractional operators, fuzzy operators, and stochastic concepts.
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