Research article Special Issues

Saddlepoint p-values for a class of nonparametric tests for the current status and panel count data under generalized permuted block design

  • Received: 19 March 2023 Revised: 17 May 2023 Accepted: 25 May 2023 Published: 05 June 2023
  • MSC : 92B15, 62P10, 62E17, 62G10

  • Current status and panel count data appear in many applied fields, including medicine, clinical trials, epidemiology, econometrics, demography, engineering and public health. Therefore, in this article, we use the saddlepoint approximation method to approximate the exact p-value of a number of nonparametric tests for the current status and panel count data under a generalized permuted block design. The saddlepoint approximation is referred to as higher-order approximation and it is more accurate than the methods that lead to approximations that are accurate to the first order, such as the asymptotic normal approximation method. To verify the accuracy and efficiency of the saddlepoint approximation method, a simulation study is conducted. The simulation study results confirm that the saddlepoint approximation method is more powerful than the existing approximation method. Furthermore, number of real current status and panel count data sets are analyzed and displayed as illustrative examples.

    Citation: Abd El-Raheem M. Abd El-Raheem, Mona Hosny. Saddlepoint p-values for a class of nonparametric tests for the current status and panel count data under generalized permuted block design[J]. AIMS Mathematics, 2023, 8(8): 18866-18880. doi: 10.3934/math.2023960

    Related Papers:

  • Current status and panel count data appear in many applied fields, including medicine, clinical trials, epidemiology, econometrics, demography, engineering and public health. Therefore, in this article, we use the saddlepoint approximation method to approximate the exact p-value of a number of nonparametric tests for the current status and panel count data under a generalized permuted block design. The saddlepoint approximation is referred to as higher-order approximation and it is more accurate than the methods that lead to approximations that are accurate to the first order, such as the asymptotic normal approximation method. To verify the accuracy and efficiency of the saddlepoint approximation method, a simulation study is conducted. The simulation study results confirm that the saddlepoint approximation method is more powerful than the existing approximation method. Furthermore, number of real current status and panel count data sets are analyzed and displayed as illustrative examples.



    加载中


    [1] J. Huang, J. Wellner, Interval censored survival data: A review of recent progress, In: Proceedings of the first seattle symposium in biostatistics, Springer, 1997,123–169.
    [2] J. G. Sun, The statistical analysis of interval-censored failure time data, Springer, 2006.
    [3] J. J. Gart, D. Krewski, P. N. Lee, R. E. Tarone, J. Wahrendorf, Statistical methods in cancer research. volume Ⅲ–the design and analysis of long-term animal experiments, IARC Scientific Publications, 79 (1986), 1–219. https://doi.org/10.2307/2290099
    [4] N. P. Jewell, S. C. Shiboski, Statistical analysis of HIV infectivity based on partner studies, Biometrics, 46 (1990), 1133–1150. https://doi.org/10.2307/2532454 doi: 10.2307/2532454
    [5] N. Keiding, K. Begtrup, T. H. Scheike, G. Hasibeder, Estimation from current-status data in continuous time, Lifetime Data Anal., 2 (1996), 119–129. https://doi.org/10.1007/BF00128570 doi: 10.1007/BF00128570
    [6] Y. H. Ii, R. Kikuchi, K. Matsuoka, Two-dimensional (time and multiplicity) statistical analysis of multiple tumors, Math. Biosci., 84 (1987), 1–21. https://doi.org/10.1016/0025-5564(87)90040-X doi: 10.1016/0025-5564(87)90040-X
    [7] I. D. Diamond, J. W. McDonald, The analysis of current status data, In: J. Trussell, R. Hankinson, and J. Tilton (eds) Demographic Applications of Event History Analysis, Oxford University Press, 1991.
    [8] G. E. Dinse, A comparison of tumour incidence analyses applicable in single-sacrifice animal experiments, Stat. Med., 13 (1994), 689–708. https://doi.org/10.1002/sim.4780130530 doi: 10.1002/sim.4780130530
    [9] P. F. Thall, J. M. Lachin, Analysis of recurrent events: Nonparametric methods for random-interval count data, J. Am. Stat. Assoc., 83 (1988), 339–347. https://doi.org/10.1080/01621459.1988.10478603 doi: 10.1080/01621459.1988.10478603
    [10] J. Sun, J. D. Kalbfleisch, Estimation of the mean function of point processes based on panel count data, Stat. Sinica, 5 (1995), 279–289. https://doi.org/10.1007/BF01192198 doi: 10.1007/BF01192198
    [11] J. A. Wellner, Y. Zhang, Two estimators of the mean of a counting process with panel count data, Ann. Stat., 28 (2000), 779–814. https://doi.org/10.2307/2674053 doi: 10.2307/2674053
    [12] J. G. Sun, J. D. Kalbfleisch, Nonparametric tests of tumor prevalence data, Biometrics, 52 (1996), 726–731. https://doi.org/10.2307/2532912 doi: 10.2307/2532912
    [13] J. G. Sun, A nonparametric test for current status data with unequal censoring, J. R. Stat. Soc. B, 61 (1999), 243–250. https://doi.org/10.1111/1467-9868.00174 doi: 10.1111/1467-9868.00174
    [14] J. G. Sun, H. B. Fang, A nonparametric test for panel count data, Biometrika, 90 (2003), 199–208. https://doi.org/10.1093/biomet/90.1.199 doi: 10.1093/biomet/90.1.199
    [15] N. Balakrishnan, X. Q. Zhao, A nonparametric test for the equality of counting processes with panel count data, Comput. Stat. Data Anal., 54 (2010), 135–142. https://doi.org/10.1016/j.csda.2009.07.015 doi: 10.1016/j.csda.2009.07.015
    [16] D. J. McEntegart, The pursuit of balance using stratified and dynamic randomization techniques: An overview, Drug Inform. J., 37 (2003), 293–308. https://doi.org/10.1177/009286150303700305 doi: 10.1177/009286150303700305
    [17] V. W. Berger, Varying the block size does not conceal the allocation, J. Crit. Care, 2 (2006), 229. https://doi.org/10.1016/j.jcrc.2006.01.002 doi: 10.1016/j.jcrc.2006.01.002
    [18] G. R. Pond, P. A. Tang, S. A. Welch, E. X. Chen, Trends in the application of dynamic allocation methods in multi-arm cancer clinical trials, Clin. Trials, 7 (2010), 227–234. https://doi.org/10.1177/1740774510368301 doi: 10.1177/1740774510368301
    [19] J. P. Matts, J. M. Lachin, Properties of permuted-block randomization in clinical trials, Control. Clin. Trials, 9 (1988), 327–344. https://doi.org/10.1016/0197-2456(88)90047-5 doi: 10.1016/0197-2456(88)90047-5
    [20] J. M. Lachin, J. P. Matts, L. J. Wei, Randomization in clinical trials: Conclusions and recommendations, Control. Clin. Trials, 9 (1988), 365–374. https://doi.org/10.1016/0197-2456(88)90049-9 doi: 10.1016/0197-2456(88)90049-9
    [21] J. Efird, Blocked randomization with randomly selected block sizes, Int. J. Env. Res. Pub. He., 8 (2011), 15–20. https://doi.org/10.3390/ijerph8010015 doi: 10.3390/ijerph8010015
    [22] R. L. Strawderman, Higher-order asymptotic approximation: Laplace, saddlepoint, and related methods, J. Am. Stat. Assoc., 95 (2000), 1358–1364. https://doi.org/10.1080/01621459.2000.10474348 doi: 10.1080/01621459.2000.10474348
    [23] H. E. Daniels, Saddlepoint approximations in statistics, Ann. Math. Stat., 25 (1954), 631–650. https://doi.org/10.1214/aoms/1177728652 doi: 10.1214/aoms/1177728652
    [24] R. Lugannani, S. Rice, Saddlepoint approximation for the distribution of the sum of independent random variables, Adv. Appl. Prob., 12 (1980), 475–490. https://doi.org/10.1017/S0001867800050278 doi: 10.1017/S0001867800050278
    [25] I. M. Skovgaard, Saddlepoint expansions for conditional distributions, J. Appl. Prob., 24 (1987), 875–887. https://doi.org/10.2307/3214212 doi: 10.2307/3214212
    [26] S. J. Wang, Saddlepoint approximations for bivariate distributions, J. Appl. Prob., 27 (1990), 586–597. https://doi.org/10.1017/S0021900200039139 doi: 10.1017/S0021900200039139
    [27] H. E. Daniels, Exact saddlepoint approximations, Biometrika, 67 (1980), 59–63. https://doi.org/10.1093/biomet/67.1.59 doi: 10.1093/biomet/67.1.59
    [28] A. C. Davison, D. V. Hinkley, Saddlepoint approximations in resampling methods, Biometrika, 75 (1988), 417–431. https://doi.org/10.1093/biomet/75.3.417 doi: 10.1093/biomet/75.3.417
    [29] R. W. Butler, Saddlepoint approximations with applications, Cambridge University Press, UK, 2007.
    [30] E. F. Abd-Elfattah, R. W. Butler, The weighted log-rank class of permutation tests: P-values and confidence intervals using saddlepoint methods, Biometrika, 94 (2007), 543–551. https://doi.org/10.1093/biomet/asm060 doi: 10.1093/biomet/asm060
    [31] E. F. Abd-Elfattah, R. W. Butler, Log-rank permutation tests for trend: Saddlepoint p-values and survival rate confidence intervals, Can. J. Stat., 37 (2009), 5–16.
    [32] A. M. Abd El-Raheem, E. F. Abd-Elfattah, Weighted log-rank tests for clustered censored data: Saddlepoint p-values and confidence intervals, Stat. Meth. Med. Res., 29 (2020), 2629–2636. https://doi.org/10.1177/0962280220908288 doi: 10.1177/0962280220908288
    [33] A. M. Abd El-Raheem, E. F. Abd-Elfattah, Log-rank tests for censored clustered data under generalized randomized block design: Saddlepoint approximation, J. Biopharm. Stat., 31 (2021), 352–361. https://doi.org/10.1080/10543406.2020.1858310 doi: 10.1080/10543406.2020.1858310
    [34] K. S. Kamal, A. M. Abd El-Raheem, E. F. Abd-Elfattah, Weighted log-rank tests for left-truncated data: Saddlepoint p-values and confidence intervals, Commun. Stat.-Theor. Meth., 52 (2023), 4103–4113.
    [35] K. S. Kamal, A. M. Abd El-Raheem, E. F. Abd-Elfattah, Weighted log-rank tests for left-truncated data under wei s urn design: Saddlepoint p-values and confidence intervals, J. Biopharm. Stat., 32 (2022), 641–651.
    [36] A. M. Abd El-Raheem, E. F. Abd-Elfattah, Weighted log-rank tests for censored data under wei's urn design: Saddlepoint approximation and confidence intervals, J. Biopharm. Stat., In press, 2023.
    [37] A. M. Abd El-Raheem, M. Hosny, E. F. Abd-Elfattah, Statistical inference of the class of nonparametric tests for the panel count and current status data from the perspective of the saddlepoint approximation, J. Math., 2023 (2023), 1–8.
    [38] A. M. Abd El-Raheem, K. S. Kamal, E. F. Abd-Elfattah, P-values and confidence intervals of linear rank tests for left-truncated data under truncated binomial design, J. Biopharm. Stat., In press, 2023.
    [39] P. H. V. Elteren, On the combination of independent two sample tests of wilcoxon, Bull. Int. Stat. Inst., 37 (1960), 351–361. https://doi.org/10.1016/j.chemosphere.2013.08.020 doi: 10.1016/j.chemosphere.2013.08.020
    [40] R. E. Barlow, D. J. Bartholomew, J. M. Bremner, H. D. Brunk, Statistical inference under order restrictions, John Wiley, New York, 1972.
    [41] D. G. Hoel, H. E. Walburg, Statistical analysis of survival experiments, J. Natl. Cancer I., 49 (1972), 361–372. https://doi.org/10.1093/jnci/49.2.361 doi: 10.1093/jnci/49.2.361
    [42] D. M. Finkelstein, A proportional hazards model for interval-censored failure time data, Biometrics, 42 (1986), 845–854. https://doi.org/10.2307/2530698 doi: 10.2307/2530698
    [43] J. G. Sun, J. D. Kalbfleisch, The analysis of current status data on point processes, J. Am. Stat. Assoc., 88 (1993), 1449–1454. https://doi.org/10.1080/01621459.1993.10476432 doi: 10.1080/01621459.1993.10476432
    [44] D. A. Pierce, D. Peters, Practical use of higher order asymptotics for multiparameter exponential families, J. Roy. Stat. Soc. Ser. B, 54 (1992), 701–725. https://doi.org/10.1111/j.2517-6161.1992.tb01445.x doi: 10.1111/j.2517-6161.1992.tb01445.x
    [45] R. D. Routledge, Practicing safe statistics with the mid-p, Can. J. Stat., 22 (1994), 103–110. https://doi.org/10.2307/3315826 doi: 10.2307/3315826
    [46] A. Agresti, A. Gottard, Comment: Randomized confidence intervals and the mid-p approach, Stat. Sci., 20 (2005), 367–371.
    [47] D. P. Byar, The veterans administration study of chemoprophylaxis for recurrent stage i bladder tumours: Comparisons of placebo, pyridoxine and topical thiotepa, In Bladder tumors and other topics in urological oncology, Springer, 1980,363–370.
    [48] C. S. Davis, L. J. Wei, Tnonparametric methods for analyzing incomplete nondecreasing repeated measurements, Biometrics, 44 (1988), 1005–1018. https://doi.org/10.2307/2531731 doi: 10.2307/2531731
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(944) PDF downloads(39) Cited by(2)

Article outline

Figures and Tables

Figures(1)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog