Research article

$ G^2/C^1 $ Hermite interpolation of offset curves of parametric regular curves

  • Received: 21 August 2023 Revised: 24 October 2023 Accepted: 02 November 2023 Published: 20 November 2023
  • MSC : 41A05, 65D17

  • In this paper we presented a method of $ G^2 $ Hermite interpolation of offset curves of regular plane curves based on approximating the normal vector fields. We showed that our approximant is also $ C^1 $ Hermite interpolation of the offset curve. Our method is capable of achieving circular precision. Another advantage of our method is that if the input curve is a polynomial curve, then our method also yields a polynomial curve. Our approximation method was applied to numerical examples and its numerical results were compared to previous offset approximation methods. It was observed that our method is almost optimal with respect to the number of control points of the approximation curves for the same tolerance.

    Citation: Young Joon Ahn. $ G^2/C^1 $ Hermite interpolation of offset curves of parametric regular curves[J]. AIMS Mathematics, 2023, 8(12): 31008-31021. doi: 10.3934/math.20231587

    Related Papers:

  • In this paper we presented a method of $ G^2 $ Hermite interpolation of offset curves of regular plane curves based on approximating the normal vector fields. We showed that our approximant is also $ C^1 $ Hermite interpolation of the offset curve. Our method is capable of achieving circular precision. Another advantage of our method is that if the input curve is a polynomial curve, then our method also yields a polynomial curve. Our approximation method was applied to numerical examples and its numerical results were compared to previous offset approximation methods. It was observed that our method is almost optimal with respect to the number of control points of the approximation curves for the same tolerance.



    加载中


    [1] J. Hoschek, Spline approximation of offset curves, Comput. Aided Geom. Design, 5 (1988), 33–40. https://doi.org/10.1016/0167-8396(88)90018-0 doi: 10.1016/0167-8396(88)90018-0
    [2] J. Hoschek, N. Wissel, Optimal approximate conversion of spline curves and spline approximation of offset curves, Comput. Aided Design, 20 (1988), 475–483. https://doi.org/10.1016/0010-4485(88)90006-1 doi: 10.1016/0010-4485(88)90006-1
    [3] R. T. Farouki, C. A. Neff, Analytic properties of plane offset curves, Comput. Aided Geom. Design, 7 (1990), 83–99. https://doi.org/10.1016/0167-8396(90)90023-K doi: 10.1016/0167-8396(90)90023-K
    [4] L. Fang, Y. Li, Algebraic and geometric characterizations of a class of algebraic-hyperbolic Pythagorean-hodograph curves, Comput. Aided Geom. Design, 97 (2022), 102121. https://doi.org/10.1016/j.cagd.2022.102121 doi: 10.1016/j.cagd.2022.102121
    [5] R. T. Farouki, M. Knez, V. Vitrih, E. Žagar, On the construction of polynomial minimal surfaces with Pythagorean normals, Appl. Math. Comput., 435 (2022), 127439. https://doi.org/10.1016/j.amc.2022.127439 doi: 10.1016/j.amc.2022.127439
    [6] G. Cigler, E. Žagar, Interpolation of planar $G^1$ data by Pythagorean-hodograph cubic biarcs with prescribed arc lengths, Comput. Aided Geom. Design, 96 (2022), 102119. https://doi.org/10.1016/j.cagd.2022.102119 doi: 10.1016/j.cagd.2022.102119
    [7] M. Knez, F. Pelosi, M. L. Sampoli, Construction of $G^2$ planar Hermite interpolants with prescribed arc lengths, Appl. Math. Comput., 426 (2022), 127092. https://doi.org/10.1016/j.amc.2022.127092 doi: 10.1016/j.amc.2022.127092
    [8] R. T. Farouki, F. Pelosi, M. L. Sampoli, Construction of planar quintic Pythagorean-hodograph curves by control-polygon constraints, Comput. Aided Geom. Design, 103 (2023), 102192. https://doi.org/10.1016/j.cagd.2023.102192 doi: 10.1016/j.cagd.2023.102192
    [9] H. P. Schröcker, Z. Šír. Partial fraction decomposition for rational Pythagorean hodograph curves, J. Comput. Appl. Math., 428 (2023), 115196. https://doi.org/10.1016/j.cam.2023.115196 doi: 10.1016/j.cam.2023.115196
    [10] E. Žagar, Arc length preserving $G^2$ Hermite interpolation of circular arcs, J. Comput. Appl. Math., 424 (2023), 115008. https://doi.org/10.1016/j.cam.2022.115008 doi: 10.1016/j.cam.2022.115008
    [11] I. K. Lee, M. S. Kim, G. Elber, Planar curve offset based on circle approximation, Comput. Aided Design, 28 (1996), 617–630. https://doi.org/10.1016/0010-4485(95)00078-X doi: 10.1016/0010-4485(95)00078-X
    [12] I. K. Lee, M. S. Kim, G. Elber, Polynomial/rational approximation of Minkowski sum boundary curves, Grap. Models Image Process., 60 (1998), 136–165. https://doi.org/10.1006/gmip.1998.0464 doi: 10.1006/gmip.1998.0464
    [13] Y. J. Ahn, C. M. Hoffmann, Y. S. Kim, Curvature-continuous offset approximation based on circle approximation using quadratic Bézier biarcs, Comput. Aided Design, 43 (2011), 1011–1017. https://doi.org/10.1016/j.cad.2011.04.005 doi: 10.1016/j.cad.2011.04.005
    [14] S. W. Kim, S. C. Bae, Y. J. Ahn, An algorithm for $G^2$ offset approximation based on circle approximation by $G^2$ quadratic spline, Comput. Aided Design, 73 (2016), 36–40. https://doi.org/10.1016/j.cad.2015.11.003 doi: 10.1016/j.cad.2015.11.003
    [15] B. Jüttler, Triangular Bézier surface patches with a linear normal vector field, In: The mathematics of surfaces VIII, information geometers, Winchester, 1998.
    [16] B. Jüttler, M. L. Sampoli. Hermite interpolation by piecewise polynomial surfaces with rational offsets, Comput. Aided Geom. Design, 17 (2000), 361–385. https://doi.org/10.1016/S0167-8396(00)00002-9 doi: 10.1016/S0167-8396(00)00002-9
    [17] M. Sampoli, M. Peternell, B. Jüttler. Rational surfaces with linear normals and their convolutions with rational surfaces, Comput. Aided Geom. Design, 23 (2006), 179–192. https://doi.org/10.1016/j.cagd.2005.07.001 doi: 10.1016/j.cagd.2005.07.001
    [18] M. Peternell, B. Odehnal, Convolution surfaces of quadratic triangular Bézier surfaces, Comput. Aided Geom. Design, 25 (2008), 116–129. https://doi.org/10.1016/j.cagd.2007.05.003 doi: 10.1016/j.cagd.2007.05.003
    [19] Z. Šír, J. Gravesen, B. Jüttler, Curves and surfaces represented by polynomial support functions, Theor. Comput. Sci., 392 (2008), 141–157. https://doi.org/10.1016/j.tcs.2007.10.009 doi: 10.1016/j.tcs.2007.10.009
    [20] J. Vršek, M. Lávička, Exploring hypersurfaces with offset-like convolutions, Comput. Aided Geom. Design, 29 (2012), 676–690. https://doi.org/10.1016/j.cagd.2012.07.002 doi: 10.1016/j.cagd.2012.07.002
    [21] Y. J. Ahn, C. M. Hoffmann, Approximate convolution with pairs of cubic Bézier LN curves, Comput. Aided Geom. Design, 28 (2011), 357–367. https://doi.org/10.1016/j.cagd.2011.06.006 doi: 10.1016/j.cagd.2011.06.006
    [22] Y. J. Ahn, C. M. Hoffmann, Circle approximation using LN Bézier curves of even degree and its application, J. Math. Anal. Appl., 40 (2014), 257–266. https://doi.org/10.1016/j.jmaa.2013.07.079 doi: 10.1016/j.jmaa.2013.07.079
    [23] X. J. Lu, J. Zheng, Y. Cai, G. Zhao, Geometric characteristics of a class of cubic curves with rational offsets, Comput. Aided Design, 70 (2016), 36–45. https://doi.org/10.1016/j.cad.2015.07.006 doi: 10.1016/j.cad.2015.07.006
    [24] Y. J. Ahn, C. M. Hoffmann, Sequence of ${G}^n$ LN polynomial curves approximating circular arcs, J. Comp. Appl. Math., 341 (2018), 117–126. https://doi.org/10.1016/j.cam.2018.03.028 doi: 10.1016/j.cam.2018.03.028
    [25] Y. J. Ahn, C. M. Hoffmann, $G^2$ Hermite interpolation with quartic regular linear normal curves, J. Comp. Appl. Math., 424 (2023), 114981. https://doi.org/10.1016/j.cam.2022.114981 doi: 10.1016/j.cam.2022.114981
    [26] S. W. Kim, R. Lee, Y. J. Ahn, A new method approximating offset curve by Bézier curve using parallel derivative curves, Comp. Appl. Math., 37 (2018), 2053–2064. https://doi.org/10.1007/s40314-017-0437-x doi: 10.1007/s40314-017-0437-x
    [27] G. Albrecht, C. V. Beccari, L. Romani, $G^2/C^1$ Hermite interpolation by planar PH B-spline curves with shape parameter, Appl. Math. Lett., 121 (2021), 107452. https://doi.org/10.1016/j.aml.2021.107452 doi: 10.1016/j.aml.2021.107452
    [28] G. Farin, Geometric Hermite interpolation with circular precision, Comput. Aided Geom. Design, 40 (2008), 476–479. https://doi.org/10.1016/j.cad.2008.01.003 doi: 10.1016/j.cad.2008.01.003
    [29] D. J. Walton, D. S. Meek, $G^2$ Hermite interpolation with circular precision, Comput. Aided Design, 42 (2010), 749–758. https://doi.org/10.1016/j.cad.2010.04.004 doi: 10.1016/j.cad.2010.04.004
    [30] R. Lee, Y. J. Ahn, Geometric shape analysis for convolution curve of two compatible quadratic Bézier curves, J. Comput. Appl. Math., 288 (2015), 141–150. https://doi.org/10.1016/j.cam.2015.04.012 doi: 10.1016/j.cam.2015.04.012
    [31] T. Dokken, M. Dæhlen, T. Lyche, K. Mørken, Good approximation of circles by curvature-continuous Bézier curves, Comput. Aided Geom. Design, 7 (1990), 33–41. https://doi.org/10.1016/0167-8396(90)90019-N doi: 10.1016/0167-8396(90)90019-N
    [32] Y. J. Ahn, C. M. Hoffmann, Offset approximation of polygons on an ellipsoid, Acta Geod. Geophys., 56 (2021), 293–302. https://doi.org/10.1007/s40328-021-00335-7 doi: 10.1007/s40328-021-00335-7
    [33] H. M. Yoon, Y. J. Ahn, Circular arc approximation by hexic polynomial curves, Comput. Appl. Math., 42 (2023), 256. https://doi.org/10.1007/s40314-023-02315-9 doi: 10.1007/s40314-023-02315-9
    [34] G. Farin, Curves and surfaces for CAGD: A practical guide, San Francisco: Morgan-Kaufmann, 2002.
    [35] B. G. Lee, Y. Park, J. Yoo, Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction, Comput. Aided Geom. Design, 19 (2002), 709–718. https://doi.org/10.1016/S0167-8396(02)00164-4 doi: 10.1016/S0167-8396(02)00164-4
    [36] G. Elber, E. Cohen, Error bounded variable distance offset perator for free form curves and surfaces, Int. J. Comput. Geom. Appl., 1 (1991), 67–78. https://doi.org/10.1142/S0218195991000062 doi: 10.1142/S0218195991000062
    [37] T. Maekawa, N. M. Patrikalakis, Computation of singularities and intersections of offsets of planar curves, Comput. Aided Geom. Design, 10 (1993), 407–429. https://doi.org/10.1016/0167-8396(93)90020-4 doi: 10.1016/0167-8396(93)90020-4
    [38] T. W. Sederberg, T. Nishita, Curve intersection using Bézier clipping, Comput. Aided Design, 22 (1990), 538–549. https://doi.org/10.1016/0010-4485(90)90039-F doi: 10.1016/0010-4485(90)90039-F
    [39] C. Y. Hu, T. Maekawa, E. C. Sherbrooke, N. M. Patrikalakis, Robust interval algorithm for curve intersections, Comput. Aided Design, 28 (1996), 495–506. https://doi.org/10.1016/0010-4485(95)00063-1 doi: 10.1016/0010-4485(95)00063-1
    [40] C. Schulz, Bézier clipping is quadratically convergent, Comput. Aided Geom. Design, 26 (2009), 61–74. https://doi.org/10.1016/j.cagd.2007.12.006 doi: 10.1016/j.cagd.2007.12.006
    [41] G. Jaklič, J. Kozak, On parametric polynomial circle approximation, Numer. Algorithms, 77 (2018), 433–450. https://doi.org/10.1007/s11075-017-0322-0 doi: 10.1007/s11075-017-0322-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(376) PDF downloads(52) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog