Research article

Some generalizations for the Schwarz-Pick lemma and boundary Schwarz lemma

  • Received: 19 August 2023 Revised: 27 October 2023 Accepted: 31 October 2023 Published: 20 November 2023
  • MSC : 30C80, 31A30

  • In this paper, we first obtain a Schwarz-Pick type lemma for the holomorphic self-mapping of the unit disk with respect to the $ q $-distance. Second, we establish the general Schwarz-Pick lemma for the self-mapping of the unit disk satisfying the Poisson differential inequality. As an application, it is proven that this mapping is Lipschitz continuous with respect to the $ q $-distance under certain conditions. Moreover, the corresponding explicit Lipschitz constant is given. Third, it is proved that there exists a self-mapping of the unit disk satisfying the Poisson differential inequality, which does not meet conditions of the boundary Schwarz lemma. Finally, with some additional conditions, a boundary Schwarz lemma for the self-mapping of the unit disk satisfying the Poisson differential inequality is established.

    Citation: Fangming Cai, Jie Rui, Deguang Zhong. Some generalizations for the Schwarz-Pick lemma and boundary Schwarz lemma[J]. AIMS Mathematics, 2023, 8(12): 30992-31007. doi: 10.3934/math.20231586

    Related Papers:

  • In this paper, we first obtain a Schwarz-Pick type lemma for the holomorphic self-mapping of the unit disk with respect to the $ q $-distance. Second, we establish the general Schwarz-Pick lemma for the self-mapping of the unit disk satisfying the Poisson differential inequality. As an application, it is proven that this mapping is Lipschitz continuous with respect to the $ q $-distance under certain conditions. Moreover, the corresponding explicit Lipschitz constant is given. Third, it is proved that there exists a self-mapping of the unit disk satisfying the Poisson differential inequality, which does not meet conditions of the boundary Schwarz lemma. Finally, with some additional conditions, a boundary Schwarz lemma for the self-mapping of the unit disk satisfying the Poisson differential inequality is established.



    加载中


    [1] L. V. Ahlfors, An extension of Schwarz's lemma, T. Am. Math. Soc., 43 (1938), 359–364. https://doi.org/10.2307/1990065 doi: 10.2307/1990065
    [2] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Monotonicity rules in calculus, Am. Math. Mon., 113 (2006), 805–816. https://doi.org/10.2307/27642062 doi: 10.2307/27642062
    [3] K. Astala, V. Manojlović, On Pavlović theorem in space, Potential Anal., 43 (2015), 361–370. https://doi.org/10.1007/s11118-015-9475-4 doi: 10.1007/s11118-015-9475-4
    [4] S. Bernstein, Sur la généralisation du problé de Dirichlet, Math. Ann., 62 (1906), 253–271. https://doi.org/10.1007/BF01449980 doi: 10.1007/BF01449980
    [5] M. Bonk, On Bloch's constant, P. Am. Math. Soc., 110 (1990), 889–894. https://doi.org/10.2307/2047734 doi: 10.2307/2047734
    [6] K. Broder, The Schwarz lemma: an odyssey, Rocky Mountain J. Math., 52 (2022), 1141–1155. https://doi.org/10.1216/rmj.2022.52.1141 doi: 10.1216/rmj.2022.52.1141
    [7] D. M. Burns, S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Am. Math. Soc., 7 (1994), 661–676. https://doi.org/10.1090/S0894-0347-1994-1242454-2 doi: 10.1090/S0894-0347-1994-1242454-2
    [8] S. L. Chen, D. Kalaj, The Schwarz type lemmas and the Landau type theorem of mappings satisfying Poisson's equations, Complex Anal. Oper. Theory, 13 (2019), 2049–2068. https://doi.org/10.1007/s11785-019-00911-4 doi: 10.1007/s11785-019-00911-4
    [9] Z. H. Chen, Y. Liu, Y. F. Pan, A Schwarz lemma at the boundary of Hilbert balls, Chin. Ann. Math. Ser. B, 39 (2018), 695–704. https://doi.org/10.1007/s11401-018-0090-8 doi: 10.1007/s11401-018-0090-8
    [10] J. L. Chen, P. J. Li, S. K. Sahoo, X. T. Wang, On the Lipschitz continuity of certain quasiregular mappings between smooth Jordan domains, Isr. J. Math., 220 (2017), 453–478. https://doi.org/10.1007/s11856-017-1522-y doi: 10.1007/s11856-017-1522-y
    [11] X. Chen, J. Wang, X. Tang, Boundary Schwarz lemma of the unit ball in $\mathbb{R}^{n}$ satisfying Poisson's equation, Acta Mathematica Sinica, Chinese Series, 66 (2023), 717–726. https://doi.org/10.12386/b20210679 doi: 10.12386/b20210679
    [12] P. Duren, Harmonic mappings in the plane, Cambridge: Cambridge University Press, 2004.
    [13] M. Elin, F. Jacobzon, M. Levenshtein, D. Shoikhet, The Schwarz lemma: rigidity and dynamics, In: Harmonic and complex analysis and its applications, Cham: Birkhäuser, 2014,135–230. https://doi.org/10.1007/978-3-319-01806-5_3
    [14] J. B. Garnett, Bounded analytic functions, New York: Academic Press, 1981.
    [15] I. Graham, H. Hamada, G. Kohr, A Schwarz lemma at the boundary on complex Hilbert balls and applications to starlike mappings, J. Anal. Math., 140 (2020), 31–53. https://doi.org/10.1007/s11854-020-0080-0 doi: 10.1007/s11854-020-0080-0
    [16] H. Hamada, A Schwarz lemma at the boundary using the Julia-Wolff-Carathéodory type condition on finite dimensional irreducible bounded symmetric domains, J. Math. Anal. Appl., 465 (2018), 196–210. https://doi.org/10.1016/j.jmaa.2018.04.076 doi: 10.1016/j.jmaa.2018.04.076
    [17] H. Hamada, G. Kohr, A boundary Schwarz lemma for mappings from the unit polydisc to irreducible bounded symmetric domains, Math. Nachr., 293 (2020), 1345–1351. https://doi.org/10.1002/mana.201900493 doi: 10.1002/mana.201900493
    [18] E. Heinz, On certain nonlinear elliptic differential equations and univalent mappings, J. Anal. Math., 5 (1956), 197–272. https://doi.org/10.1007/BF02937346 doi: 10.1007/BF02937346
    [19] H. W. Hethcote, Schwarz lemma analogues for harmonic functions, Int. J. Math. Educ. Sci., 8 (1977), 65–67. https://doi.org/10.1080/0020739770080109 doi: 10.1080/0020739770080109
    [20] E. Hopf, Ueber den funktionalen, insbesondere den analytischen Charakter der Loesungen elliptischer Differentialgleichungen zweiter Ordnung, Math. Z., 34 (1932), 194–233. https://doi.org/10.1007/BF01180586 doi: 10.1007/BF01180586
    [21] D. Kalaj, A priori estimate of gradient of a solution to certain differential inequality and quasiconformal mappings, J. Anal. Math., 119 (2013), 63–88. https://doi.org/10.1007/s11854-013-0002-5 doi: 10.1007/s11854-013-0002-5
    [22] D. Kalaj, M. Mateljević, On certain nonlinear elliptic PDE and quasiconfomal mapps between euclidean surfaces, Potential Anal., 34 (2011), 13–22. https://doi.org/10.1007/s11118-010-9177-x doi: 10.1007/s11118-010-9177-x
    [23] D. Kalaj, On quasi-conformal harmonic maps between surfaces, Int. Math. Res. Notices, 2015 (2015), 355–380. https://doi.org/10.1093/imrn/rnt203 doi: 10.1093/imrn/rnt203
    [24] H. Li, M. Mateljević, Boundary Schwarz lemma for harmonic and pluriharmonic mappings in the unit ball, J. Math. Inequal., 16 (2022), 477–498. https://doi.org/10.7153/jmi-2022-16-35 doi: 10.7153/jmi-2022-16-35
    [25] T. Liu, X. Tang, A new boundary rigidity theorem for holomorphic self-mappings of the unit ball in $\mathbb{C}^{n}$, Pure Appl. Math. Q., 11 (2015), 115–130. https://doi.org/10.4310/PAMQ.2015.v11.n1.a5 doi: 10.4310/PAMQ.2015.v11.n1.a5
    [26] T. Liu, J. Wang, X. Tang, Schwarz lemma at the boundary of the unit ball in $\mathbb{C}^{n}$ and its applications, J. Geom. Anal., 25 (2015), 1890–1914. https://doi.org/10.1007/s12220-014-9497-y doi: 10.1007/s12220-014-9497-y
    [27] T. Liu, X. Tang, A boundary Schwarz lemma on the classical domain of type Ⅰ, Sci. China Math., 60 (2017), 1239–1258. https://doi.org/10.1007/s11425-015-0225-7 doi: 10.1007/s11425-015-0225-7
    [28] T. Liu, X. Tang, Schwarz lemma at the boundary of strongly pseudoconvex domain in $\mathbb{C}^{n}$, Math. Ann., 366 (2016), 655–666. https://doi.org/10.1007/s00208-015-1341-6 doi: 10.1007/s00208-015-1341-6
    [29] T. Liu, X. Tang, W. Zhang, Schwarz lemma at the boundary on the classical domain of type Ⅲ, Chin. Ann. Math. Ser. B, 41 (2020), 335–360. https://doi.org/10.1007/s11401-020-0202-0 doi: 10.1007/s11401-020-0202-0
    [30] M. Mateljević, Distortion of harmonic functions and harmonic quasiconformal quasi-isometry, Rev. Roumaine Math. Pures Appl., 51 (2006), 711–722.
    [31] M. Mateljević, M. Vuorinen, On harmonic quasiconformal quasi-isometries, J. Inequal. Appl., 2010 (2010), 178732. https://doi.org/10.1155/2010/178732 doi: 10.1155/2010/178732
    [32] M. Mateljević, Schwarz lemma and distortion for harmonic functions via length and area, Potential Anal., 53 (2020), 1165–1190. https://doi.org/10.1007/s11118-019-09802-x doi: 10.1007/s11118-019-09802-x
    [33] M. Mateljević, Boundary behaviour of partial derivatives for solutions to certain Laplacian-gradient inequalities and spatial QC maps, In: Operator theory and harmonic analysis, Cham: Springer, 2021,393–418. https://doi.org/10.1007/978-3-030-77493-6_23
    [34] M. Mateljević, A. Khalfallah, On some Schwarz type inequalities, J. Inequal. Appl., 2020 (2020), 164. https://doi.org/10.1186/s13660-020-02433-6 doi: 10.1186/s13660-020-02433-6
    [35] M. Mateljević, M. Svetlik, Hyperbolic metric on the strip and the Schwarz lemma for HQR mappings, Appl. Anal. Discr. Math., 14 (2020), 150–168. https://doi.org/10.2298/AADM200104001M doi: 10.2298/AADM200104001M
    [36] M. Mateljević, N. Mutavdžić, The boundary Schwarz lemma for harmonic and pluriharmonic mappings and some generalizations, Bull. Malays. Math. Sci. Soc., 45 (2022), 3177–3195. https://doi.org/10.1007/s40840-022-01371-4 doi: 10.1007/s40840-022-01371-4
    [37] M. R. Mohapatra, X. T. Wang, J. F. Zhu, Boundary Schwarz lemma for solutions to nonhomogeneous biharmonic equations, B. Aust. Math. Soc., 100 (2019), 470–478. https://doi.org/10.1017/S0004972719000947 doi: 10.1017/S0004972719000947
    [38] M. R. Mohapatra, Schwarz-type lemma at the boundary for mappings satisfying non-homogeneous polyharmonic equations, Monatsh. Math., 192 (2020), 409–418. https://doi.org/10.1007/s00605-020-01402-x doi: 10.1007/s00605-020-01402-x
    [39] R. Osserman, A new variant of the Schwarz-Pick-Ahlfors lemma, Manuscripta Math., 100 (1999), 123–129. https://doi.org/10.1007/s002290050231 doi: 10.1007/s002290050231
    [40] G. Ren, Z. Xu, Schwarz's lemma for slice Clifford analysis, Adv. Appl. Clifford Algebras, 25 (2015), 965–976. https://doi.org/10.1007/s00006-015-0534-00 doi: 10.1007/s00006-015-0534-0
    [41] S. Ruscheweyh, Two remarks on bounded analytic functions, Serdica, 11 (1985), 200–202.
    [42] J. Schauder, Ueber lineate elliptische Differentialgleichungen zweiter Ordnung, Math. Z., 38 (1934), 257–282. https://doi.org/10.1007/BF01170635 doi: 10.1007/BF01170635
    [43] X. Tang, T. Liu, J. Zhang, Schwarz lemma at the boundary and rigidity property for holomorphic mappings on the unit ball of $\mathbb{C}^{n}$, P. Am. Math. Soc., 145 (2017), 1709–1716. https://doi.org/10.1090/proc/13378 doi: 10.1090/proc/13378
    [44] X. Tang, T. Liu, W. Zhang, Schwarz lemma at the boundary on the classical domain of type Ⅱ, J. Geom. Anal., 28 (2018), 1610–1634. https://doi.org/10.1007/s12220-017-9880-6 doi: 10.1007/s12220-017-9880-6
    [45] H. Werner, Das problem von Douglas fuer flaechen konstanter mittlerer Kruemmung, Math. Ann., 133 (1957), 303–319. https://doi.org/10.1007/BF01342884 doi: 10.1007/BF01342884
    [46] S. T. Yau, A general Schwarz lemma for Kähler manifolds, Am. J. Math., 100 (1978), 197–203. https://doi.org/10.2307/2373880 doi: 10.2307/2373880
    [47] D. G. Zhong, F. N. Meng, W. J. Yuan, On Schwarz-Pick inequality mappings satisfying Poisson differential inequality, Acta Math. Sci., 41 (2021), 959–967. https://doi.org/10.1007/s10473-021-0320-0 doi: 10.1007/s10473-021-0320-0
    [48] D. G. Zhong, M. L. Huang, D. P. Wei, Some inequalities for self-mappings of unit ball satisfying the invariant Laplacians, in press.
    [49] J. F. Zhu, Schwarz lemma and boundary Schwarz lemma for pluriharmonic mappings, Filomat, 32 (2018), 5385–5402. https://doi.org/10.2298/FIL1815385Z doi: 10.2298/FIL1815385Z
    [50] J. F. Zhu, X. T. Wang, Boundary Schwarz lemma for solutions to Poisson's equation, J. Math. Anal. Appl., 463 (2018), 623–633. https://doi.org/10.1016/j.jmaa.2018.03.043 doi: 10.1016/j.jmaa.2018.03.043
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(739) PDF downloads(70) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog