We present a stabilizer-free weak Galerkin finite element method (SFWG-FEM) with polynomial reduction on a quasi-uniform mesh in space and Alikhanov's higher order L2-$ 1_\sigma $ scheme for discretization of the Caputo fractional derivative in time on suitable graded meshes for solving time-fractional subdiffusion equations. Typical solutions of such problems have a singularity at the starting point since the integer-order temporal derivatives of the solution blow up at the initial point. Optimal error bounds in $ H^1 $ norm and $ L^2 $ norm are proven for the semi-discrete numerical scheme. Furthermore, we have obtained the values of user-chosen mesh grading constant $ r $, which gives the optimal convergence rate in time for the fully discrete scheme. The optimal rate of convergence of order $ \mathcal{O}(h^{k+1}+M^{-2}) $ in the $ L^\infty(L^2) $-norm has been established. We give several numerical examples to confirm the theory presented in this work.
Citation: Şuayip Toprakseven, Seza Dinibutun. A high-order stabilizer-free weak Galerkin finite element method on nonuniform time meshes for subdiffusion problems[J]. AIMS Mathematics, 2023, 8(12): 31022-31049. doi: 10.3934/math.20231588
We present a stabilizer-free weak Galerkin finite element method (SFWG-FEM) with polynomial reduction on a quasi-uniform mesh in space and Alikhanov's higher order L2-$ 1_\sigma $ scheme for discretization of the Caputo fractional derivative in time on suitable graded meshes for solving time-fractional subdiffusion equations. Typical solutions of such problems have a singularity at the starting point since the integer-order temporal derivatives of the solution blow up at the initial point. Optimal error bounds in $ H^1 $ norm and $ L^2 $ norm are proven for the semi-discrete numerical scheme. Furthermore, we have obtained the values of user-chosen mesh grading constant $ r $, which gives the optimal convergence rate in time for the fully discrete scheme. The optimal rate of convergence of order $ \mathcal{O}(h^{k+1}+M^{-2}) $ in the $ L^\infty(L^2) $-norm has been established. We give several numerical examples to confirm the theory presented in this work.
[1] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1998. |
[2] | J. P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127–293. https://doi.org/10.1016/0370-1573(90)90099-N doi: 10.1016/0370-1573(90)90099-N |
[3] | T. H. Solomon, E. R. Weeks, H. L. Swinney, Observation of anomalous diffusion and Levy flights in a two-dimensional rotating flow, Phys. Rev. Lett., 71 (1993), 3975. https://doi.org/10.1103/PhysRevLett.71.3975 doi: 10.1103/PhysRevLett.71.3975 |
[4] | W. Wyss, The fractional diffusion equation, J. Math. Phys., 27 (1986), 2782–2785. https://doi.org/10.1063/1.527251 doi: 10.1063/1.527251 |
[5] | R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3 |
[6] | R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time fractional diffusion: A discrete random walk approach, Nonlinear Dynam., 29 (2002), 129–143 https://doi.org/10.1023/A:1016547232119 doi: 10.1023/A:1016547232119 |
[7] | N. N. Leonenko, M. M. Meerschaert, A. Sikorskii, Fractional pearson diffusions, J. Math. Anal. Appl., 403 (2013), 532–546. https://doi.org/10.1016/j.jmaa.2013.02.046 doi: 10.1016/j.jmaa.2013.02.046 |
[8] | Z. Z. Sun, X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003 |
[9] | Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001 |
[10] | A. A. Alikhanov, Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation, Appl. Math. Comput., 268 (2015), 12–22. https://doi.org/10.1016/j.amc.2015.06.045 doi: 10.1016/j.amc.2015.06.045 |
[11] | F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, Difference methods for solving boundary value problems for fractional differential equations, Comput. Math. Math. Phys., 46 (2006), 1785–1795. https://doi.org/10.1134/S0965542506100149 doi: 10.1134/S0965542506100149 |
[12] | C. M. Chen, F. Liu, V. Anh, I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32 (2010), 1740–1760. https://doi.org/10.1137/090771715 doi: 10.1137/090771715 |
[13] | A. A. Alikhanov, Boundary value problems for the diffusion equation of the variable order in differential and difference settings, Appl. Math. Comput., 219 (2012), 3938–3946. https://doi.org/10.1016/j.amc.2012.10.029 doi: 10.1016/j.amc.2012.10.029 |
[14] | R. Du, W. R. Cao, Z. Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Appl. Math. Model., 34 (2010), 2998–3007. https://doi.org/10.1016/j.apm.2010.01.008 doi: 10.1016/j.apm.2010.01.008 |
[15] | G. H. Gao, Z. Z. Sun, H. W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo210 fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33-–50. https://doi.org/10.1016/j.jcp.2013.11.017 doi: 10.1016/j.jcp.2013.11.017 |
[16] | Y. N. Zhang, Z. Z. Sun, H. W. Wu, Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation, SIAM J. Numer. Anal., 49 (2011), 2302–2322. https://doi.org/10.1137/100812707 doi: 10.1137/100812707 |
[17] | Y. Lin, X. Li, C. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comp., 80 (2011), 1369–1396. https://doi.org/10.1090/S0025-5718-2010-02438-X doi: 10.1090/S0025-5718-2010-02438-X |
[18] | X. J. Li, C. J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942 |
[19] | W. Qiu, D. Xu, J. Guo, J. Zhou, A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model, Numer. Algorithms, 85 (2020), 39–58. https://doi.org/10.1007/s11075-019-00801-y doi: 10.1007/s11075-019-00801-y |
[20] | X. Peng, D. Xu, W. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers' equation, Math. Comput. Simulation, 208 (2023), 702–726. https://doi.org/10.1016/j.matcom.2023.02.004 doi: 10.1016/j.matcom.2023.02.004 |
[21] | G. H. Gao, Z. H. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), 586–595. https://doi.org/10.1016/j.jcp.2010.10.007 doi: 10.1016/j.jcp.2010.10.007 |
[22] | X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192 |
[23] | W. Wang, H. Zhang, X. Jiang, X. Yang, A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor, Ann. Nucl. Energy, 195 (2024), 110163. https://doi.org/10.1016/j.anucene.2023.110163 doi: 10.1016/j.anucene.2023.110163 |
[24] | Q. Tian, X. Yang, H. Zhang, D. Xu, An implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties, Comput. Appl. Math., 42 (2023), 246. https://doi.org/10.1007/s40314-023-02373-z doi: 10.1007/s40314-023-02373-z |
[25] | Z. Zhou, H. Zhang, X. Yang, $H^1$-norm error analysis of a robust ADI method on graded mesh for three-dimensional subdiffusion problems, Numer. Algorithms, 2023. https://doi.org/10.1007/s11075-023-01676-w doi: 10.1007/s11075-023-01676-w |
[26] | H. Zhang, X. Yang, Q. Tang, D. Xu, A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation, Comput. Math. Appl., 109 (2022), 180–190. https://doi.org/10.1016/j.camwa.2022.01.007 doi: 10.1016/j.camwa.2022.01.007 |
[27] | H. Zhang, Y. Liu, X. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput., 69 (2023), 651–674. https://doi.org/10.1007/s12190-022-01760-9 doi: 10.1007/s12190-022-01760-9 |
[28] | A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031 |
[29] | J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103–115. https://doi.org/10.1016/j.cam.2012.10.003 doi: 10.1016/j.cam.2012.10.003 |
[30] | Q. Li, J. Wang, Weak Galerkin finite element methods for parabolic equations, Numer. Methods Partial Differ. Equ., 29 (2013), 2004–2024. https://doi.org/10.1002/num.21786 doi: 10.1002/num.21786 |
[31] | L. Mu, J. Wang, X. Ye, A modified weak Galerkin finite element method for the Stokes equations, J. Comp. Appl. Math., 275 (2015), 79–90. https://doi.org/10.1016/j.cam.2014.08.006 doi: 10.1016/j.cam.2014.08.006 |
[32] | T. Zhang, L. Tang, A weak finite element method for elliptic problems in one space dimension, Appl. Math. Comput., 280 (2016), 1–10. https://doi.org/10.1016/j.amc.2016.01.018 doi: 10.1016/j.amc.2016.01.018 |
[33] | J. Wang, X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101–2126. |
[34] | S. Toprakseven, A weak Galerkin finite element method on temporal graded meshes for the multi-term time fractional diffusion equations, Comput. Math. Appl., 128 (2022), 108–120. https://doi.org/10.1016/j.camwa.2022.10.012 doi: 10.1016/j.camwa.2022.10.012 |
[35] | S. Toprakseven, A weak Galerkin finite element method for time fractional reaction-diffusion-convection problems with variable coefficients, Appl. Numer. Math., 168 (2021), 1–12. https://doi.org/10.1016/j.apnum.2021.05.021 doi: 10.1016/j.apnum.2021.05.021 |
[36] | S. Toprakseven, S. Dinibutun, Error estimations of a weak Galerkin finite element method for a linear system of $\ell\geq 2$ coupled singularly perturbed reaction-diffusion equations in the energy and balanced norms, AIMS Mathematics, 8 (2023), 15427–15465. https://doi.org/10.3934/math.2023788 doi: 10.3934/math.2023788 |
[37] | S. Toprakseven, Optimal order uniform convergence of weak Galerkin finite element method on Bakhvalov-type meshes for singularly perturbed convection dominated problems, Hacet. J. Math. Stat., 52 (2023), 850–875. https://doi.org/10.15672/hujms.1117320 doi: 10.15672/hujms.1117320 |
[38] | S. Toprakseven, Optimal order uniform convergence in energy and balanced norms of weak Galerkin finite element method on Bakhvalov-type meshes for nonlinear singularly perturbed problems, Comput. Appl. Math., 41 (2022), 377. https://doi.org/10.1007/s40314-022-02090-z doi: 10.1007/s40314-022-02090-z |
[39] | S. Toprakseven, P. Zhu, Error analysis of a weak Galerkin finite element method for two-parameter singularly perturbed differential equations in the energy and balanced norms, Appl. Math. Comput., 441 (2023), 127683. https://doi.org/10.1016/j.amc.2022.127683 doi: 10.1016/j.amc.2022.127683 |
[40] | Y. Xie, M. Tang, C. Tang, A weak Galerkin finite element method for indefinite time-harmonic maxwell equations, Appl. Math. Comput., 435 (2022), 127471. https://doi.org/10.1016/j.amc.2022.127471 doi: 10.1016/j.amc.2022.127471 |
[41] | X. Wang, F. Gao, Y. Liu, Z. Sun, A weak Galerkin finite element method for high dimensional time-fractional diffusion equation, Appl. Math. Comput., 386 (2020), 125524. https://doi.org/10.1016/j.amc.2020.125524 doi: 10.1016/j.amc.2020.125524 |
[42] | H. Wang, D. Xu, J. Zhou, J. Guo, Weak Galerkin finite element method for a class of time fractional generalized Burgers' equation, Numer. Methods Partial Differ. Equ., 37 (2021), 732–749. https://doi.org/10.1002/num.22549 doi: 10.1002/num.22549 |
[43] | X. Ye, S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math., 371 (2020), 112699. https://doi.org/10.1016/j.cam.2019.112699 doi: 10.1016/j.cam.2019.112699 |
[44] | A. Al-Taweel, X. Wang, The lowest-order stabilizer free weak Galerkin finite element method, Appl. Numer. Math., 157 (2020), 434–445. https://doi.org/10.1016/j.apnum.2020.06.012 doi: 10.1016/j.apnum.2020.06.012 |
[45] | A. Al-Taweel, X. Wang, X. Ye, S. Zhang, A stabilizer free weak Galerkin finite element method with supercloseness of order two, Numer. Methods Partial Differ. Equ., 37 (2021), 1012–1029. https://doi.org/10.1002/num.22564 doi: 10.1002/num.22564 |
[46] | X. Ye, S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J. Numer. Anal. Model, 17 (2020), 110–117. |
[47] | X. Ye, S. Zhang, Y. Zhu, Stabilizer-free weak Galerkin methods for monotone quasilinear elliptic PDEs, Results Appl. Math., 8 (2020), 100097. https://doi.org/10.1016/j.rinam.2020.100097 doi: 10.1016/j.rinam.2020.100097 |
[48] | J. Ma, F. Gao, N. Du, Stabilizer-free weak Galerkin finite element method with second-order accuracy in time for the time fractional diffusion equation, J. Comput. Appl. Math., 414 (2022), 114407. https://doi.org/10.1016/j.cam.2022.114407 doi: 10.1016/j.cam.2022.114407 |
[49] | M. Stynes, Too much regularity may force too much uniqueness, Fract. Calc. Appl. Anal., 19 (2016), 1554–1562. https://doi.org/10.1515/fca-2016-0080 doi: 10.1515/fca-2016-0080 |
[50] | X. Ye, S. Zhang, Numerical investigation on weak Galerkin finite elements, 2020, arXiv: 2004.12483.255. |
[51] | L. Mu, J. Wang, X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31–53. |
[52] | X. Ye, S. Zhang, A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction, 2020, arXiv: 2004.13019. |
[53] | N. J. Ford, J. Y. Xiao, Y. B. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal., 14 (2011), 454–474. https://doi.org/10.2478/s13540-011-0028-2 doi: 10.2478/s13540-011-0028-2 |
[54] | V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ., 22 (2006), 558–576. https://doi.org/10.1002/num.20112 doi: 10.1002/num.20112 |
[55] | X. Li, C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), 1016–1051. https://doi.org/10.4208/cicp.020709.221209a doi: 10.4208/cicp.020709.221209a |
[56] | R. A. Adams, J. J. F. Fournier, Sobolev spaces, Elsevier, 2003. |
[57] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[58] | V. Thomee, Galerkin finite element methods for parabolic problems, Springer Science & Business Media, 2007. |
[59] | M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329 |
[60] | M. Stynes, A survey of the L1 scheme in the discretisation of time-fractional problems, Numer. Math. Theory Methods Appl., 15 (2022), 1173–1192. https://doi.org/10.13140/RG.2.2.27671.60322 doi: 10.13140/RG.2.2.27671.60322 |
[61] | H. Chen, M. Stynes, Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem, J. Sci. Comput., 79 (2019), 624–647. https://doi.org/10.13140/RG.2.2.34452.19846 doi: 10.13140/RG.2.2.34452.19846 |
[62] | L. Mu, J. Wang, X. Ye, Weak Galerkin finite element methods on polytopal meshes, 2012, arXiv: 1204.3655. |
[63] | J. Douglas Jr., T. Dupont, L. Wahlbin, The stability in $L^q$ of the $L^2$-projection into finite element function spaces, Numer. Math., 23 (1974), 193–197. https://doi.org/10.1007/bf01400302 doi: 10.1007/bf01400302 |