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Turkey

2 International University of Kuwait, Ardiya, Kuwait Department of Mathematics and Natural
Sciences, Kuwait

* Correspondence: Email: topraksp@artvin.edu.tr; Tel: +904662151000.

Abstract: We present a stabilizer-free weak Galerkin finite element method (SFWG-FEM) with
polynomial reduction on a quasi-uniform mesh in space and Alikhanov’s higher order L2-1σ scheme
for discretization of the Caputo fractional derivative in time on suitable graded meshes for solving
time-fractional subdiffusion equations. Typical solutions of such problems have a singularity at the
starting point since the integer-order temporal derivatives of the solution blow up at the initial point.
Optimal error bounds in H1 norm and L2 norm are proven for the semi-discrete numerical scheme.
Furthermore, we have obtained the values of user-chosen mesh grading constant r, which gives the
optimal convergence rate in time for the fully discrete scheme. The optimal rate of convergence of
order O(hk+1 + M−2) in the L∞(L2)-norm has been established. We give several numerical examples to
confirm the theory presented in this work.
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1. Introduction

In this work, we consider the following time fractional diffusion equation (TFDE) with zero
Dirichlet boundary value:

C
0 Dα

T u(x, t) − ∇ · (A(x)∇u(x, t)) = f (x, t), ∀(x, t) ∈ QT := Ω × J,

u(x, t)|∂Ω = 0, ∀t ∈ [0,T ],
u(x, 0) = g(x), ∀x ∈ Ω,

(1.1)
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where Ω ⊂ R2 be a bounded polygonal domain with its boundary ∂Ω, J = (0,T ] is the time interval
with the final time T , A(x) = (ai j(x))2×2 is a symmetric positive definite matrix-valued function in Ω, g
and f are given sufficiently smooth and C

0 Dα
T denotes the Caputo fractional derivative of order α [1],

C
0 Dα

T u(x, t) =
1

Γ(1 − α)

∫ t

0
(t − s)−α

∂u(x, s)
∂s

ds, α ∈ (0, 1). (1.2)

In particular, we assume that the function A(x) satisfies

k1ν
Tν ≤ νT Aν ≤ k2ν

Tν, ∀ν ∈ R2, (1.3)

where k1 and k2 are positive constants.
We introduce the left-hand sided and right-hand sided Riemann-Lioville fractional integrals and

the left-hand sided and right-hand sided Riemann-Lioville fractional derivatives, respectively, defined
by [1]

0D−αt u(x, t) =
1

Γ(α)

∫ t

0
(t − s)α−1u(x, s)ds, α ≥ 0, (1.4)

tD−αT u(x, t) =
1

Γ(α)

∫ T

t
(s − t)α−1u(x, s)ds, α ≥ 0, (1.5)

R
0 Dα

T u(x, t) =
1

Γ(1 − α)
∂

∂t

∫ t

0
(t − s)−αu(x, s)ds, α ∈ (0, 1], (1.6)

R
t Dα

T u(x, t) =
−1

Γ(1 − α)
∂

∂t

∫ T

t
(s − t)−αu(x, s)ds, α ∈ (0, 1]. (1.7)

We will use the following identity from [1] in our analysis

R
0 Dα

T u(x, t) = C
0 Dα

T u(x, t) +
u(x, 0)

Γ(1 − α)
t−α. (1.8)

In recent decades, many physical phenomenon or processes in science and engineering have been
modeled using fractional partial differential equations since they describe better memory effect and
hereditary properties (see, [2–5] and references therein). The TFDE considered in this paper is obtained
from the classical diffusion problem by taking a fractional derivative of order α in the place of the first-
order time derivative. TFDEs are obtained from a fractional Fick law describing transport equations
with long memory [6]. The TFDE is formulated by a linear integro-differential equation. Several
analytical and numerical techniques have been considered for solving TFDE in the literature. The
Fourier transform method, the Laplace transform method, the Mellin transform method and the Green
function technique are some examples of the analytical approach (see [1, 7] and references therein).
In general, the analytical solutions of fractional differential or partial differential equations are not
available; thus one must construct a numerical method for solving this equation. Many papers have
investigated robust numerical approximations to the time fractional diffusion equations or sub-diffusion
problems [8–18]. The TFDEs with the Caputo derivatives have been solved by the widely used L1
method in [8–11, 19, 20]. The compact difference methods [12, 14, 16, 21] have been considered to
improve the order of time approximation, and spectral methods [9, 17, 18] have been proposed for
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improving the accuracy in the space discretization. High order numerical methods [22–27] have been
presented for solving fractional partial differential equations. However, typical solutions of (1.1) have
an initial layer when t → 0 and the first order time derivative of the solution blows up at t = 0. Since
the solution is singular at t = 0, one should construct a reliable and efficient numerical scheme in
time [1]. Furthermore, the forcing function f in our model problem may blow up at the starting point
t = 0 even though u(x, t) is a continuous function in time. Thus, one needs to pay attention to the case
f (x, 0) when proposing a numerical method for solving the problem (1.1). As a remedy, we use the
Alikhanov’s L2 − 1σ method on graded meshes to approximate the time derivative in (1.1) for higher
order convergence.

Our aim of this paper is to combine the L2-1σ method [28] due to Alikhanov for time discretization
of the Caputo fractional derivative on graded temporal meshes with the SFWG-FEM in space on
quasi-uniform meshes to develop a robust scheme to solve the TFDE (1.1). The weak Galerkin
finite element method first appeared in [29] for solving the second order elliptic problems. The
novelty of this method lies on the definitions of weak function space and weak derivatives such as
weak gradient operator on this weak function space. This renders the method more applicable in
defining finite element space and mesh constructions; for example, one uses completely discontinuous
function spaces in the approximation and polygonal meshes. In the last decade, this method has been
applied to solve a variety of differential equations, e.g., parabolic problems [30, 31], second order
elliptic problems [32–39], Stokes equations [31], Maxwell equations [40] and fractional differential
equations [41, 42]. The stabilized-free weak Galerkin method is introduced in [43] for solving
second-order elliptic partial differential equations. This new method does not have a stabilization
component, which is essential in discontinuous approximations to enforce the jump across the element
boundaries. Also, the stabilization term is needed to ensure the coercivity of the WG-FEM. The
absence of stabilization terms in numerical methods makes the formulation much simpler and provides
much flexibility in implementation. The main idea of the SFWG-FEM is to use a higher degree of
polynomials in computing weak differential operators for the strong connectivity of weak functions
on element boundaries. In [44] and [45], the authors applied the SFWG-FEM to second-order elliptic
equations and proved that the method has supercloseness convergence in an energy norm and L2-norm
on triangular meshes. For more discussions of the method, we refer the interested readers to [43,46,47].
Further, in [48] the authors derived the semi-discrete SFWG-FEM formulation in space and presented
the stability results and error estimates. Then, they established the fully discrete SFWG-FEM by
discretization of the time using the L2-1σ formula to approximate the fractional time Caputo derivative
in uniform meshes. However, Alikhanov’s higher order L2-1σ formula has a rate of convergence 3− α
on a uniform mesh if the solution is smooth enough, while this rate of convergence reduces to first
order for the case where the typical solutions with a weak singularity at the starting point. As pointed
out in [49, Theorem 2.1], the smooth solutions exist only under acceptably restrictive data. These
observations and facts lead to using the L2-1σ formula on graded meshes in time and SFWG-FEM in
space in this paper. We show the order of convergence result that gives second-order convergence in
time and an optimal rate of convergence in space.

The remaining parts of the paper are organized as follows. Section 2 introduces a semi-discrete
SFWG-FEM. Stability and error analysis of the semi-discrete method are presented. The fully-discrete
SFWG-FEM and its stability and error analyses are given in Section 3. We present several numerical
examples to support the theory in Section 4. Finally, we close the paper with some concluding remarks
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in Section 5.
Throughout the paper, we use the following notations. ‖u‖ represents the L2-norm of a function u

in Ω and (u, v) :=
∫

Ω
uv dx denotes the L2 inner product. For D ⊂ Ω, the classical Sobolev spaces

are denoted by H s(Ω) with s ≥ 0 an integer and the corresponding norm ‖u‖s,D and semi-norms |u|s.
Further, the space L∞(J; Hk(Ω)) with the norm

‖v‖k,∞ = ess sup‖v(·, t)‖k (1.9)

is used. When D = Ω, we do not write D in the subscript.

2. Semi-discrete scheme

We start with discretization of (1.1) only in space using a SFWG finite element method. Let Th

be a partition of the domain Ω consisting of polygons with a set of shape-regular requirements given
in [29]. Let Eh be the set of all edges in Th, and E0

h = E \ ∂Ω be the set of all interior edges. For any
element K∈ Th, hK is the diameter of K and the mesh size h = maxK∈Th hK .

We first formulate the weak form of (1.1): For any t ∈ (0,T ], we seek a solution u(x, t) ∈ H1
0(Ω)

satisfying 
(

C
0 Dα

T u,w
)

+ (K∇u,∇w) = ( f ,w) , ∀w ∈ H1
0(Ω),

uh(0) = πhg,
(2.1)

where πhg is the L2 projection of the function g on the weak Galerkin finite element space defined
below.

For given integers k ≥ 1, the weak Galerkin finite element space S h associated with Th is defined
by

S h = {ω = {ω0, ωb} : ω0|K ∈ Pk(K), ωb|e ∈ Pk−1(e), e ⊂ ∂K,K ∈ Th}, (2.2)

and its subspace S 0
h is given by

S 0
h = {ω = {ω0, ωb} ∈ S h : ωb = 0 on ∂K ∩ ∂Ω,∀K ∈ Th}, (2.3)

where Pk(K) is the space of polynomials with degree of at most k on an element K and Pk−1(e) is
the space of polynomials with degree of at most k − 1 on an edge e ⊂ ∂K. Observe that ωb of
v = {ω0, ωb} is allowed to have different value from the trace of ω0 on the boundary of each element.
The configuration of the SFWG-FEM scheme consists of

(
Pk(K),Pk−1(e),P j(K)d

)
with j = d + k − 1.

Using the definition of the classical definition of weak gradient given by (2.4), the configuration of the
SFWG-FEM

(
Pk(K),Pk−1(e),P j(K)d

)
delivers only sub-optimal spatial accuracy in both energy norm

and the L2 norm, presented in Table 1 ( [50]).

Table 1. Weak gradient calculated by (2.4), ‖ · ‖E = O (hr1) and ‖ · ‖ = O (hr2).

Pk(K) Pk−1(e) [Pk+1(K)]d r1 r2

k = 1 k = 1 k = 1 0 0
k = 2 k = 2 k = 2 1 2
k = 3 k = 3 k = 3 2 3
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The standard definition for a weak gradient ∇wu ∈
[
P j(K)

]2
of a weak function u = {u0, ub} is a

unique polynomial on each K ∈ Th satisfying [29, 43, 51]

(∇wu, r)K = − (u0,∇ · r)K + 〈ub, r · n〉∂K ∀r ∈
[
P j(K)

]2
. (2.4)

Following the ideas in [52], we shall use a different definition of weak gradient given by (2.5) for the

SFWG-FEM using the configuration
(
Pk(K), Pk−1(e),

[
P j(K)

]2
)
. With this new definition, our proposed

SFWG-FEM has optimal order spatial convergence rates in the energy and L2 norms, presented in
Table 2.

Table 2. Weak gradient calculated by (2.5), ‖ · ‖E = O (hr1) and ‖ · ‖ = O (hr2).

Pk(K) Pk−1(e) [Pk+1(K)]d r1 r2

k = 1 k = 1 k = 1 1 2
k = 2 k = 2 k = 2 2 3
k = 3 k = 3 k = 3 3 4

For each ω = {ω0, ωb} ∈ S h ∪ H1(Ω), we define the weak gradient operator ∇wω ∈ [P j(K)]2 of the
weak function ω on K as a unique polynomial on K satisfying the following equation∫

K
∇wωφ dx =

∫
K
∇ω0φ dx +

∫
∂K
πb(ω0 − ωb)φ · n ds, ∀φ ∈ [P j(K)]2, (2.5)

where n is the unit outward normal vector to ∂K. In (2.5), we let ω0 = ω and ωb = ω if ω ∈ H1(Ω).
Here, πb is the L2-projection onto Pk−1(e) for any e ∈ Eh. Let π0 be the L2-projection onto the space
Pk(K) for any K ∈ Th and define πhu = {π0u, πbu} ∈ S h for any u ∈ H1(K). For any K ∈ Th, we
denote by Πh : [L2(K)]2 → [P j(K)]2 the L2-orthogonal projection defined by

∫
K

(Πhτ − τ)σ dx = 0,
∀σ ∈ [P j(K)]2. From now on we take j = k + 1.

We have the relation between the weak gradient and the projection Πh stated in the following lemma.

Lemma 2.1. For any v ∈ H1(K) and K ∈ Th, one has

∇w(πhv) = Πh∇v.

Proof. From (2.5) and integration by parts, one has for r ∈ [Pk+1(K)]2

(∇wπhv, r)K = (∇π0v, r)K + 〈πb(πbv − π0v), r · n〉∂K

= −(π0v,∇ · r)K + 〈π0v, r · n〉∂K + 〈πbv − π0v, r · n〉∂K

= −(v,∇ · r)K + 〈πbv, r · n〉∂K

= (∇v, r)K − 〈v, r · n〉∂K + 〈πbv, r · n〉∂K

= (Πh∇v, r)K ,

where we used the definitions of projections π0 πb and Πh. The proof is completed. �

For simplicity, we will use the following notations.

(z,w)Th =
∑
K∈Th

(z,w)K =
∑

K∈TK

∫
K

zw dx, and 〈z,w〉 =
∑
K∈Th

〈z,w〉∂K =
∑
K∈Th

∫
∂K

zw ds.
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For u = {u0, ub} ∈ S h and ω = {ω0, ωb} ∈ S h, we define the bilinear form as

Ah(u, ω) :=
(
A∇wu,∇wω

)
Th
. (2.6)

Based on the weak form (2.1), the semi-discrete SFWG-FEM for the problem (1.1) is to find a
numerical solution uh(t) = {u0,h(t), ub,h(t)} : (0,T ]→ S 0

h such that
(

C
0 Dα

T u0,h, ω0

)
+ Ah (uh, ω) = ( f , ω0) ,

uh(0) = πhg,
(2.7)

for all ω = {ω0, ωb} ∈ S 0
h.

We define two energy norms ‖ · ‖E and ‖ · ‖1,h, respectively: For ω = {ω0, ωb} ∈ S 0
h,

‖ω‖E :=

∑
K∈Th

‖∇wω‖
2
K


1/2

, (2.8)

‖ω‖1,h :=

∑
K∈Th

‖∇ω0‖
2
K + h−1

K ‖πb(ω0 − ωb)‖2∂K


1/2

. (2.9)

The following lemma shows the equivalence of the two norms defined above.

Lemma 2.2. For any ω = {ω0, ωb} ∈ S 0
h, there are two constants a1, a2 > 0 such that

a1‖ω‖1,h ≤ ‖ω‖E ≤ a2‖ω‖1,h. (2.10)

Proof. To avoid repetition, the interested reader is refereed to [52, Lemma 3.2] for the proof. �

Lemma 2.3. There is a constant C > 0 such that, for any ω ∈ S 0
h

Ah(ω,ω) ≥ C‖ω‖2E. (2.11)

Proof. The proof follows from from the definition the bilinear form Ah(·, ·) given by (2.6) and (1.3). �

In order to analyze convergence and stability properties of the time-fractional partial differential
equation, we introduce some function spaces.

Let Hα(J) denote the classical fractional Sobolev space with the norm ‖·‖Hα(J). We denote the spaces
of infinitely differentiable functions and compactly supported infinitely differentiable functions on J
by C∞(J) and C∞0 (J), respectively. Let 0C∞(J) be the the space of infinitely differentiable functions on
the interior of J with compact support in J. Now, the closure of the space 0C∞(J) in the norm ‖ · ‖Hα(J)

for α ∈ (0, 1) defines the Sobolev space 0Hα(J). The following Sobolev spaces can be found in [53]
and [54]. The set A denotes the closure of a set A.

Definition 2.1. [53] Define Hα
r (0,T ) := C∞0 (0,T ) in the norm ‖ · ‖Hα

r (0,T ) defined by

‖v‖Hα
r (0,T ) =

(
‖v‖2L2(0,T ) + |v|2Hα

r (0,T )

)1/2
,

where |v|Hα
r (0,T ) = ‖Rt Dα

T v‖L2(0,T ).
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Definition 2.2. [53] Define Hα
c (0,T ) := C∞0 (0,T ) in the norm ‖ · ‖Hα

c (0,T ) defined by

‖v‖Hα
r (0,T ) =

(
‖v‖2L2(0,T ) + |v|2Hα

c (0,T )

)1/2
,

where |v|Hα
c (0,T ) =

∣∣∣∣(R
0 Dα

T v, R
t Dα

T v
)

L2(0,T )

∣∣∣∣1/2.

Lemma 2.4. [53] For α ∈ (0, 1), the spaces Hα
r (J), Hα

c (J), Hα
0 (J) are equal and their norms ‖ · ‖Hα

r (J),
‖ · ‖Hα

c (J) and ‖ · ‖Hα
0 (J) are equivalent.

Lemma 2.5. [55] If 0 < α < 2, α , 1, u, v ∈ Hα/2(J), then we have(R
0 Dα

T u, v
)

L2(J) =
(R

0 Dα/2
T u, R

t Dα/2
T v

)
L2(J).

Lemma 2.6. [54] For α > 0 and u ∈ Hα(J), we have(
∞D−αt û, tD−α∞ û

)
L2(R) = cos(πα)‖∞D−αt û‖2L2(R),

where û is the extension of u by zero outside of J.

For a nonnegative real number α and the Sobolev space Y with the norm ‖ · ‖Y , define the space

Hα(J; Y) := {u : ‖u(·, t)‖Y ∈ Hα(J)},

with respect to the norm
‖u‖Hα(J;Y) :=

∥∥∥∥ ‖u(·, t)‖Y
∥∥∥∥

Hα(J)
.

We also adapt the following notations:

(u, v)L2(J×Ω) =

∫ T

0
(u, v)L2(Ω)dt, (u, v)L2(J×Th) =

∫ T

0
(u, v)Thdt,

‖v‖2L2(J;Hα(Ω)) =

∫ T

0
‖v‖2Hα(Ω)dt, (‖v‖E)2

L2(J) =

∫ T

0
‖v‖2Edt.

The broken Sobolev space H s (Th) is denoted by H s (Th) :=
{
v ∈ L2(Ω) : v|K ∈ H s(K), ∀K ∈ Th

}
.

The following theorem ensures the well-posedness of the semi-discrete SFWG-FEM (2.7) and the
stability estimate for t > 0.

Theorem 2.1. For any α ∈ (0, 1) and f ∈ Lq(J; L2(Ω)), the solution uh of the semi-discrete

problem (2.7) satisfies the following stability estimate with q =
2

1 + α
.

‖u0,h‖Hα/2(J;L2(Ω)) ≤ C‖ f ‖Lq(J;L2(Ω)) + ‖g‖L2(Ω)‖t−α‖Lq(J). (2.12)

Proof. Choosing v = uh = {u0,h, ub,h} in (2.7), then using (1.8) and the coercivity of the bilinear form
Ah(·, ·), we get

(R
0 Dα

T u0,h, u0,h
)

+ C‖uh‖
2
E ≤ ( f , u0,h) +

( g(x)t−α

Γ(1 − α)
, u0,h

)
, (2.13)
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where we have used that u(x, 0) = g(x) and Ah(uh, uh) ≥ C‖uh‖
2
E. Employing Lemma 2.5 to the first

term on LHS of (2.13), knowing that ‖uh‖
2
E ≥ 0, and using Cauchy-Schwarz inequality on the right side

of (2.13), we obtain

(R
0 Dα/2

T u0,h,
R
t Dα/2

T u0,h
)
≤ ‖ f ‖L2(Ω)‖u0,h‖L2(Ω) +

t−α

Γ(1 − α)
‖g‖L2(Ω)‖u0,h‖L2(Ω).

Integrating the above expression with respect to t, we get

(R
0 Dα/2

T u0,h,
R
t Dα/2

T u0,h
)

L2(QT ) ≤

∫ T

0

(
‖ f ‖L2(Ω)‖u0,h‖L2(Ω) +

t−α

Γ(1 − α)
‖g‖L2(Ω)‖u0,h‖L2(Ω)

)
dt. (2.14)

By Lemma 2.4, we obtain

C
(R

0 Dα/2
T u0,h,

R
0 Dα/2

T u0,h
)

L2(QT ) ≤

∫ T

0

(
‖ f ‖L2(Ω)‖u0,h‖L2(Ω) +

t−α

Γ(1 − α)
‖g‖L2(Ω)‖u0,h‖L2(Ω)

)
dt.

Employing Hölder inequality on the left side of the above inequality gives(R
0 Dα/2

T u0,h,
R
0 Dα/2

T u0,h
)

L2(QT ) ≤ C
(
‖ f ‖Lq(J;L2(Ω)) + ‖g‖L2(Ω)‖t−α‖Lq(J)

)
‖u0,h‖Lp(J;L2(Ω)),

where q =
2

1 + α
and p =

2

1 − α
.

With the aid of the facts that (see, e.g., [53])

‖R0 Dα/2
T v‖L2(J) � ‖v‖Hα/2(J), ∀v ∈0 Hα/2(J),

and the embedding theorem from [56]

Hα/2(J) ↪→ Lp(J), ‖u0,h‖Lp(J;L2(Ω)) ≤ C‖u0,h‖Hα/2(J;L2(Ω)),

one can conclude that

‖u0,h‖
2
Hα/2(J;L2(Ω)) ≤ C

(
‖ f ‖Lq(J;L2(Ω)) + ‖g‖L2(Ω)‖t−α‖Lq(J)

)
‖u0,h‖Hα/2(J;L2(Ω)),

from which the desired result follows after dividing both sides of the above inequality by
‖u0,h‖Hα/2(J;L2(Ω)). Thus, the proof is completed. �

Lemma 2.7. Let u be the solution of the problem (1.1). Then, for any ω = {ω0, ωb} ∈ S 0
h, we have

−
(
∇ · (A∇u), ω0

)
Th

=
(
A∇w(πhu),∇wω)Th − Z(u, ω), (2.15)

where Z(u, ω) := Z1(u, ω) + Z2(u, ω) + Z3(u, ω) with

Z1(u, ω) =
(
A∇w(πhu) − A∇u,∇wω)Th , (2.16)

Z2(u, ω) = 〈(A∇u − Πh(A∇u)) · n, πbω0 − ωb〉 , (2.17)
Z3(u, ω) = 〈A∇u · n, ω0 − πbω0〉 . (2.18)
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Proof. Using integration by parts, we have for any ω = {ω0, ωb} ∈ S 0
h

−
(
∇ · (A∇u), ω0

)
Th

=
(
A∇u,∇ω0

)
Th
−

〈
A∇u · n, ω0 − ωb

〉
=

(
A∇u,∇ω0

)
Th
−

〈
A∇u · n, πbω0 − ωb

〉
−

〈
A∇u · n, ω0 − πbω0

〉
,

(2.19)

where we have used that ωb|∂Ω = 0 and A∇u is single value on Eh.
Using the definition of projection Πh, one has(

A∇u,∇ω0
)
Th

=
(
Πh(A∇u),∇ω0

)
Th
. (2.20)

On the other hand, it follows from the definition of weak gradient (2.5) that(
Πh(A∇u),∇wω

)
Th

=
(
Πh(A∇u),∇ω0

)
Th

+
〈
πb(ωb − ω0),Πh(A∇u) · n

〉
. (2.21)

From (2.20), (2.21) and using the definitions of Πh and πb, we have(
A∇u,∇ω0

)
Th

=
(
Πh(A∇u),∇wω

)
Th

+
〈
πb(ω0 − ωb),Πh(A∇u) · n

〉
=

(
A∇u,∇wω

)
Th

+
〈
πb(ω0 − ωb),Πh(A∇u) · n

〉
=

(
A∇u,∇wω

)
Th

+
〈
πbω0 − ωb,Πh(A∇u) · n

〉
.

(2.22)

Plugging the above equation (2.22) into (2.19) yields

−
(
∇ · (A∇u), ω0

)
Th

=
(
A∇u,∇wω

)
Th

+
〈
πbω0 − ωb, (Πh(A∇u) − A∇u) · n

〉
−

〈
A∇u · n, ω0 − πbω0

〉
,

which gives (2.15). Thus, we complete the proof. �

Next, we present an error equation for the discretization error eh(t) = {e0,h(t), eb,h(t)} := {π0u(t) −
u0,h(t), πbu(t) − ub,h(t)}. This error equation plays an important role in our error analysis.

Lemma 2.8. Assume that u(t) is the solution of the problem (1.1) and uh(t) is the solution of the semi-
discrete problem (2.7) for t ∈ (0,T ]. Then, we have for any ω = {ω0, ωb} ∈ S 0

h(C
0 Dα

T e0,h, ω0
)

+ Ah(eh, ω) = Z(u, ω). (2.23)

Proof. Multiplying the first equation in (1.1) by a test function ω0 of ω = {ω0, ωb} ∈ S 0
h yields(C

0 Dα
T u, ω0

)
Th
−

(
∇ · (A∇u), ω0

)
Th

= ( f , ω0)Th .

From (2.15) in Lemma 2.7, we obtain(C
0 Dα

Tπ0u, ω0
)
Th
−

(
A∇w(πhu),∇wω

)
Th

= ( f , ω0)Th + Z(u.ω), (2.24)

where we have used that
(C

0 Dα
T u, ω0

)
Th

=
(C

0 Dα
Tπ0u, ω0

)
Th

which follows from the definition of
projection π0.

Subtracting the first equation in (2.7) from (2.24), we get(C
0 Dα

T e0,h, ω0
)
Th
−

(
A∇weh,∇wω

)
Th

= Z(u.ω), ∀ω ∈ S 0
h,

which is the desired result (2.23). Thus, we complete the proof. �
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For ω ∈ H1(T ), we have the trace inequality (see, e.g., [29])

‖ω‖2e ≤ C
(
h−1

K ‖ω‖
2
K + hK‖∇ω‖

2
K

)
. (2.25)

The following approximation results will be used in the sequel.

Lemma 2.9. [29] Let u be the solution of the problem (1.1) and assume that Th is shape regular. Then,
the L2 projections π0 and Πh satisfy∑

K∈Th

(
‖u − π0u‖2K + h2

K ‖∇ (u − π0u)‖2K
)
≤ Ch2(s+1)‖u‖2s+1, 0 ≤ s ≤ k, (2.26)∑

K∈Th

(
‖∇u − Πh∇u‖2K + h2

K |∇u − Πh∇u|21,K
)
≤ Ch2s‖u‖2s+1, 0 ≤ s ≤ k. (2.27)

Lemma 2.10. Assume that w ∈ Hk+1(Ω). Then, for any ω = {ω0, ωb} ∈ V0
h , one has

|Z(w, ω)| ≤ Chk‖w‖k+1‖ω‖E.

Proof. Using Cauchy-Schwarz inequality, (1.3), Lemmas 2.1 and Lemma 2.9 we obtain

|Z1(w, ω)| =
∣∣∣∣ ∑

K∈Th

(
A(∇w(πhu) − ∇u), ω0 − πbω0

)
T

∣∣∣∣
≤ C

∑
K∈Th

‖A‖L∞(T )‖Πh∇u − ∇u‖L2(T )‖∇wω‖L2(T )

≤ Chk‖w‖Hk+1(Ω)‖ω‖E.

(2.28)

It follows from the Cauchy-Schwarz inequality, the trace inequality (2.25), (1.3), (2.10) and Lemma 2.9
that

|Z2(w, ω)| =
∣∣∣∣ ∑

K∈Th

〈
(A∇w − Πh(A∇w)) · n, πbω0 − ωb

〉
∂K

∣∣∣∣
≤ C

∑
K∈Th

‖A∇w − Πh(A∇w)‖L2(∂K)‖πbω0 − ωb‖L2(∂K)

≤ C
( ∑

K∈Th

hK‖A∇w − Πh(A∇w)‖2L2(∂K)

)1/2( ∑
K∈Th

h−1
K ‖πbω0 − ωb‖

2
L2(∂K)

)1/2

≤ Chk‖w‖Hk+1(Ω)‖ω‖1,h

≤ Chk‖w‖Hk+1(Ω)‖ω‖E,

(2.29)

where we have used that∑
K∈Th

hK‖A∇w − Πh(A∇w)‖2L2(∂K) ≤
∑
K∈Th

(‖A∇w − Πh(A∇w)‖2L2(K) + h2
K |A∇w − Πh(A∇w)|1,K)

≤ Chk‖w‖Hk+1(Ω). (2.30)
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From Cauchy-Schwarz inequality, the trace inequality (2.25), (1.3), (2.10) and Lemma 2.9 that

|Z3(w, ω)| =
∣∣∣∣ ∑

K∈Th

〈
A∇w · n, ω0 − πbω0

〉
∂K

∣∣∣∣
=

∣∣∣∣ ∑
K∈Th

〈
(A(∇w − Πk−1(A∇w)) · n, ω0 − πbω0

〉
∂K

∣∣∣∣
≤ C

∑
K∈Th

‖A∇w − Πk−1(A∇w)‖L2(∂K)‖πbω0 − ω0‖L2(∂K)

≤ C
( ∑

K∈Th

hK‖A∇w − Πk−1(A∇w)‖2L2(∂K)

)1/2( ∑
K∈Th

h−1
K ‖π0ω0 − ω0‖

2
L2(∂K)

)1/2

≤ C
( ∑

K∈Th

hK‖K∇w − Πk−1(A∇w)‖2L2(∂K)

)1/2( ∑
K∈Th

h−2
K ‖π0ω0 − ω0‖

2
L2(T ) + ‖∇(π0ω0 − ω0)‖2L2(T )

)1/2

≤ Chk‖w‖Hk+1(Ω)‖v‖1
≤ Chk‖w‖Hk+1(Ω)‖ω‖E,

(2.31)

where Πk−1 is the L2 projection operator onto the space [Pk−1(K)]2 on each K ∈ Th and we have used the
fact ‖πbω0 − ω0‖L2(∂K) ≤ ‖π0ω0 − ω0‖L2(∂K) and above estimate (2.30). Combining the estimates (2.28),
(2.29) and (2.31) finishes the proof. �

We now study the estimate for the error eh(t) of the numerical scheme (2.7) in the ‖ · ‖E-norm.

Theorem 2.2. Let u be the solution of the problem (1.1) and uh be the solution of the semi-discrete
problem (2.7). Suppose that u, ∂u

∂t ∈ L2(0, t; Hk+1(Th)) for any fixed t ∈ J. Then, we have the error
estimate

‖eh(t)‖E ≤ C(g, u,
∂u
∂t

)hk, (2.32)

where C(g, u, ∂u
∂t ) depends on the norms of g, u and ∂u

∂t .

Proof. For a fixed t ∈ J, choosing ω = eh in (2.23) yields(C
0 Dα

T e0,h, e0,h
)

+ Ah(eh, eh) = Z(u, eh).

The coercivity property (2.11) of the bilinear form Ah(·, ·) and Lemma 2.10 imply that(C
0 Dα

T e0,h, e0,h
)

+ ‖eh‖
2
E ≤ Chk‖u‖Hk+1(Ω)‖eh‖E ≤ Ch2h‖u‖2Hk+1(Ω) +

1
2
‖eh‖

2
E.

Hence, we have (C
0 Dα

T e0,h, e0,h
)

+
1
2
‖eh‖

2
E ≤ Ch2h‖u‖2Hk+1(Ω). (2.33)

Since eh(0) = 0, one has C
0 Dα

T e0,h = R
0 Dα

T e0,h, thus integrating (2.33) with respect to t and using
Lemma 2.5, we have

‖e0,h‖Hα/2(0,t;L2(Ω)) +

∫ t

0
‖eh(s)‖2E ds ≤ Ch2h

∫ t

0
‖u(s)‖2k+1 ds. (2.34)
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Now, taking v = ∂eh
∂t in (2.23) gives

(R
0 Dα

T e0,h,
∂e0,h

∂t
)

+ Ah(eh,
∂eh

∂t
) = Z(u,

∂eh

∂t
),

or, equivalently (R
0 D−βT

∂e0,h

∂t
,
∂e0,h

∂t
)

+
1
2

d
dt

Ah(eh, eh) =
d
dt

Z(u, eh) − Z(
∂u
∂t
, eh),

where we have used the fact that R
0 Dα

T e0,h = R
0 Dα−1

T
∂e0,h

∂t = R
0 D−βT

∂e0,h

∂t with β := 1 − α (see, e.g., [1, 57]).
Hence, integrating on the time domain, using the adjoint property of the Riemann-Lioville fractional

integrals and then Lemma 2.6, we get∫
Ω

cos(πβ/2)‖∞D−β/2t ê0,h‖
2
L2(R) dx +

1
2
‖eh‖

2
E ≤ Z(u(t), eh(t)) +

∫ t

0
|Z(

∂u
∂t

(s), eh(s))| ds,

where ê0,h is the zero extension of e0,h in (0,T ]. Using the fact that cos(πβ/2) is non-negative for
β ∈ (0, 1) and Lemma 2.10, we obtain

‖eh‖
2
E ≤ Chk‖u(t)‖k+1‖eh‖E + Chk

∫ t

0
‖
∂u
∂t

(s)‖k+1‖eh(s)‖E ds

≤ Ch2k(‖u(t)‖2k+1 +

∫ t

0
‖
∂u
∂t

(s)‖2k+1 ds
)

+
1
2
‖eh‖

2
E +

1
2

∫ t

0
‖eh‖

2
E ds.

Appealing (2.34), one has

‖eh‖
2
E ≤ Ch2k(‖u(t)‖2k+1 +

∫ t

0
‖u(s)‖2k+1 ds +

∫ t

0
‖
∂u
∂t

(s)‖2k+1 ds
)
. (2.35)

Note that u(t) = u(0) +
∫ t

0
∂u
∂t (s) = g +

∫ t

0
∂u
∂t (s). Thus, we get

‖u(t)‖k+1 ≤ ‖g‖k+1 +

∫ t

0
‖
∂u
∂t

(s)‖k+1 ds,

which combined with (2.35) gives

‖eh‖
2
E ≤ Ch2k(‖g‖2k+1 +

∫ t

0
‖u(s)‖2k+1 ds +

∫ t

0
‖
∂u
∂t

(s)‖2k+1 ds
)
.

We complete the proof. �

The optimal error rate in the L2-norm can be derived by introducing the elliptic (Ritz) projection
Eh : H1

0(Ω)→ S 0
h defined as follows. For any w ∈ H1

0(Ω) [58]

Ah(Ehw, φ) = (−∇ · (A∇w), φ0), ∀φ = {φ0, φb} ∈ S 0
h. (2.36)

In fact, Ehw is the WG-FEM solution of the corresponding elliptic equation that has exact solution w.
Note that Ehw = {E0w, Ebw} for any w ∈ H1

0(Ω), where E0w is the WG-FEM solution in the inside of
elements and Ebw is the trace on Eh.

The following error bounds for the elliptic projection Eh follow from [52, Theorem 4.4 ] and [52,
Theorem 4.5].
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Lemma 2.11. [52] Suppose that w ∈ H1
0(Ω) ∩ Hk+1(Th). Then, the elliptic projection Eh defined

by (2.36) has the following error estimates

‖Ehw − πhw‖E ≤ Chk|w|k+1,

‖E0w − π0w‖ ≤ Chk+1|w|k+1.

We now state and prove the error estimate of a semi-discrete scheme in L2-norm.

Theorem 2.3. Let u ∈ Hk+1(Ω) and uh be the solution of the problem (1.1) and the semi-discrete
problem (2.7), respectively. Then for any fixed t ∈ (0,T ], there holds

‖u0,h(t) − π0u(t)‖Hα/2(0,T ;L2(Ω)) ≤ Chk+1‖C0 Dα
T ‖L2(J;Hk+1(Ω)). (2.37)

Proof. We first split the error eh(t) := ξh(t) + θh(t), where

ξh(t) = {ξ0(t), ξb(t)}, ξ0 := u0,h − E0u, ξb := ub,h − Ebu, (2.38)
θh(t) = {θ0(t), θb(t)}, θ0 := E0u − π0u, ξb := Ebu − πbu. (2.39)

It follows from Lemma 2.11 that

‖θ0‖Hα(0,T ;L2(Ω)) ≤ Chk+1‖C0 Dα
T u‖L2(J;Hk+1(Ω)). (2.40)

We shall bound ξh using the semi-discrete problem (2.7), the definitions of the elliptic projection (2.36)
and the projection π0 as follows. For any φ = {φ0, φb} ∈ S 0

h, we have(C
0 Dα

Tξ0, φ0
)

+ Ah(ξh, φ) =
(C

0 Dα
T u0,h, φ0

)
+ Ah(uh, φ) −

(C
0 Dα

T E0, φ0
)
− Ah(Eh, φ)

= (C
0 Dα

T u, φ0) −
(C

0 Dα
T E0, φ0

)
=

(
π0(C

0 Dα
T u), φ0

)
−

(C
0 Dα

T E0, φ0
)

= −(C
0 Dα

Tθ0, φ0).

Choosing φ = ξh in the above equation, we get(C
0 Dα

Tξ0, ξ0
)

+ Ah(ξh, ξh) = −(C
0 Dα

Tθ0, ξ0).

Since ξ0(0) = 0, one has C
0 Dα

Tξ0 = R
0 Dα

Tξ0 and Lemma 2.5 implies that(R
0 Dα/2

T ξ0,
R
t Dα/2

T ξ0
)

+ ‖ξh‖
2
E ≤ ‖

C
0 Dα

Tθ0‖‖ξ0‖.

Recalling that
‖R0 Dα/2

T ν
∥∥∥L2(0,T ) �

∥∥∥ ν‖Hα/2(0,T ), ∀ν ∈ 0Hα/2(0,T ),

we get

‖ξ0‖
2
Hα/2(0,T ;L2(Ω)) + (‖ξh‖

2
E)L2(J) ≤ C‖C0 Dα

Tθ0‖L2(QT )‖ξ0‖L2(QT ).

Applying the arithmetic mean inequality yields
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‖ξ0‖
2
Hα/2(0,T ;L2(Ω)) + (‖ξh‖

2
E)L2(J) ≤ C‖C0 Dα

Tθ0‖L2(QT )‖ξ0(s)‖L2(J;H1(Th))

≤ C‖C0 Dα
Tθ0‖

2
L2(QT ) +

1
2

∫ T

0
‖ξ0(s)‖2H1(Th) ds

≤ C‖C0 Dα
Tθ0‖

2
L2(QT ) +

1
2

∫ T

0

(
‖ξh(s)‖1,h

)2
ds

≤ C‖C0 Dα
Tθ0‖

2
L2(QT ) +

1
2

(
‖ξh(s)‖2E

)
L2(J)

,

where we have used the equivalent of the norms (2.10) in the last inequality. From (2.40), we obtain

‖ξ0‖
2
Hα/2(0,T ;L2(Ω)) +

1
2

(‖ξh‖
2
E)L2(J) ≤ Ch2(k+1)‖C0 Dα

T u‖2L2(J;Hk+1(Ω)),

which proves the desired result. �

3. Temporal discretization

In order to present semi-discrete numerical scheme, we discretize (1.1) in time direction. We
investigate time discretization using the well known L2 − 1σ formula on graded meshes to deal with
the singularity of solution at t = 0.

Let M > 0 be a natural number. We define temporal graded meshes by setting tm = T (
m

M
)r for

m = 0, 1, . . . ,M, where r ≥ 1 is a user-chosen grading constant. Similar temporal graded meshes have
been investigated in the literature, e.g, [59, 60]. The graded constant r will influence the convergence
rate; thus we take it such a way that the rate is optimal as presented below.

One can easily show that

tm ≥ 2−rtm+1 for m = 1, . . . ,M − 1, (3.1)

and

τm := tm − tm−1 ' T 1/r M−1t1−1/r
m for m = 1, . . . ,M. (3.2)

For m = 0, 1, . . . ,M − 1 and σ ∈ [0, 1], let tm+σ = tm + στm+1. Following the ides of [28], the Caputo
derivative C

0 Dα
T u in (1.1) at t = tm+σ is approximated using the L2 − 1σ formula.

C
0 Dα

T u (tm+σ) ≈ δαtm+σ
u = cm,mum+1 −

m∑
p=0

(
cm,p − cm,p−1

)
up for m = 0, . . . ,M − 1. (3.3)

Here, c0,0 = τ−1
1 d0,0, cm,−1 = 0 and for m ≥ 1 one has

cm,p =


τ−1

p+1
(
dm,0 − fm,0

)
if p = 0,

τ−1
p+1

(
dm,p + fm,p−1 − fm,p

)
if 1 ≤ p ≤ m − 1,

τ−1
p+1

(
dm,m + fm,m−1

)
if p = m,

where
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dm,m =
1

Γ(1 − α)

∫ tm+σ

tm
(tm+σ − θ)−α dθ =

σ1−α

Γ(2 − α)
τ1−α

m+1 for m ≥ 0,

dm,p =
1

Γ(1 − α)

∫ tp+1

tp

(tm+σ − θ)−α dθ for m ≥ 1, and 0 ≤ p ≤ n − 1,

fm,p =
1

Γ(1 − α)
2

tp+2 − tp

∫ tp+1

tp

(tm+σ − θ)−α
(
η − tp+1/2

)
dθ for m ≥ 1, and 0 ≤ p ≤ m − 1.

The following technical lemmas will be useful in the later analysis.

Lemma 3.1. [28, Corollary 1] Assume that 0 ≤ σ ≤ 1. we have the following coercivity property of a
function Z(·, t) on the graded temporal mesh {tm}

M
m=0,

(
σZm+1 + (1 − σ)Zm, δαtm+σ

Z
)
≥

1
2
δαtm+σ
‖Z‖2 for m = 0, . . . ,M − 1.

Lemma 3.2. [61, Lemma 7] Let w ∈ C[0,T ] ∩ C3(0,T ]. Suppose that
∣∣∣w(d)(t)

∣∣∣ ≤ C(1 + tα−d) for
d = 0, 1, 2, 3 and t ∈ (0,T ]. Then

ψ j+σ
w ≤ CM−min{rα,3−α} for j = 0, . . . ,M − 1,
ψ j,s

w ≤ CM−min{rα,3−α} for s = 1, . . . , j, when j ≥ 1,

where

ψ j+σ
v = τ3−α

j+1 tαj+σ sup
η∈(t j,t j+1)

|v′′′(η)| for j = 1, . . . ,M − 1, (3.4)

and

ψ j,s
v = τ−αj+1τ

2
s(τs + τs+1)tαs sup

η∈(ts−1,ts+1)
|v′′′(η)| for 2 ≤ s ≤ j ≤ M − 1. (3.5)

Lemma 3.3. [61, Lemma 5] Assume that 1 ≥ σ ≥ 1 − α/2. Then for any function
{
V j

}M

j=0
, one has

∣∣∣Vk+1
∣∣∣ ≤ ∣∣∣V0

∣∣∣ + Γ(1 − α) max
m=0,...,k

{
tαm+σδ

α
tm+σ
|V |

}
for k = 0, . . . ,M − 1.

Lemma 3.4. [61, Lemma 1] Suppose σ = 1 − α/2. Assume that τ j+1 ≤ Ct j for j ≥ 2 and τ1/τ2 ≤ ρ,
where ρ is any fixed positive constant. Then for any function v(t) ∈ C3(0,T ], one has∣∣∣∣δαt j+σ

v − Dα
t v

(
t j+σ

)∣∣∣∣ ≤ Ct−αj+σ

(
ψ j+σ

v + max
s=1,..., j

{
ψ j,s

v

})
for j = 0, . . . ,M − 1,

where ψ j+σ
v and ψ j,s

v are given by (3.4) and (3.5), respectively.
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4. Fully discrete numerical scheme

We now formulate the fully discrete L2-1σ SFWG-FEM for the problem (2.1) as follows: find
um+1

h = {um+1
0,h , u

m+1
b,h } ∈ S 0

h such that{
(δαtm+σ

u0,h, v0,h) + (A∇wum,σ
h ,∇wvh) = ( f m+σ, v0,h), ∀vh = {v0,h, vb,h} ∈ S 0

h,

u0
h = πhg,

(4.1)

where um,σ
h = σum+1

h + (1 − σ)um
h and f m+σ = f (·, tm+σ) for m = 0, 1, . . . ,M − 1.

We will prove that the L2 stability of the fully discrete L2-1σ SFWG-FEM (4.1). First, we give a
Poincare-type inequality in the WG finite element space S 0

h.

Lemma 4.1. [62] There is a positive constant C independent of the mesh such that

‖ω0‖ ≤ C‖v‖E, ∀v = {ω0, ωb} ∈ S 0
h.

Lemma 4.2. Let {u j
h}

M
j=0 be the solution of the fully discrete problem (4.1). Then

‖um+1
0,h ‖

2 ≤ ‖u0
0,h‖

2 +
Γ(1 − α)Tα

2
max

0≤m≤M−1
‖ f m+σ‖2 for m = 0, . . . ,M − 1.

Proof. For m = 0, . . . ,M − 1, choosing vh = um,σ
h in (4.1) yields

(δαtm+σ
u0,h, um,σ

0,h ) + ‖∇wum,σ
h ‖

2 = ( f m+σ, um,σ
0,h ).

Invoking Lemma 3.1, we obtain

1
2
δαtm+σ
‖u0,h‖

2 + ‖∇wum,σ
h ‖

2 ≤ ( f m+σ, um,σ
0,h ). (4.2)

Using Cauchy-Schwarz inequality, the Young’s inequality and Lemma 4.1, we obtain

( f m+σ, um,σ
0,h ) ≤ ‖ f m+σ‖‖um,σ

0,h ‖ ≤ ‖∇wum,σ
h ‖

2 +
1
4
‖ f m+σ‖2.

Using this inequality in (4.2) gives

δαtm+σ
‖u0,h‖

2 ≤
1
2
‖ f m+σ‖2.

Thus, from Lemma 3.3, one has

‖um+1
0,h ‖

2 ≤ ‖u0
0,h‖

2 + Γ(1 − α) max
m=0,...,k

{
tαm+σδ

α
tm+σ
‖u0,h‖

2}
≤ ‖u0

0,h‖
2 +

Γ(1 − α)Tα

2
max

0≤m≤M−1
‖ f m+σ‖2,

which completes the proof. �
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We now prove an error estimate for the fully discrete L2-1σ SFWG-FEM (4.1). For the error
analysis, similar to (2.38), we split the error

um − um
h = ξm

h + θm
h , (4.3)

where ξm
h = um−Ehum and θm

h = Ehum−um
h . The estimation of ξm

h follows from Lemma 2.9, and thus we
shall estimate θm

h as follows. From (1.1) and (4.1), for m = 0, . . . ,M − 1 we have ∀vh = {v0,h, vb,h} ∈ S 0
h,

(δαtm+σ
θ0,h, v0,h) + (A∇wθ

m,σ
h ,∇wvh)

= (δαtm+σ
E0u, v0,h) + (A∇wEhum,σ,∇wvh) − (δαtm+σ

u0,h, v0,h) − (A∇wum,σ
h ,∇wvh)

= (E0δ
α
tm+σ

u, v0,h) + (A∇wEhum,σ,∇wvh) − ( f m+σ, v0,h)
=

(
(E0 − π0)δαtm+σ

u, v0,h
)

+
(
π0(δαtm+σ

u + ∇ · (A∇um,σ), v0,h
)
− (π0 f m+σ, v0,h)

=
(
π0(E0 − I)δαtm+σ

u, v0,h
)

+
(
π0(δαtm+σ

u + ∇ · (A∇um,σ), v0,h
)

−
(
π0(C

0 Dα
T um+σ − ∇ · (A∇um+σ)), v0,h

)
=

(
− π0

(
δαtm+σ

ξ0 + Rm+σ + Φm+σ
)
, v0,h

)
,

(4.4)

where Φm+σ = C
0 Dα

T um+σ − δαtm+σ
um and Rm+σ = ∇ · (A∇um+σ) − ∇ · (A∇um,σ).

The following theorem shows convergence of the L2-1σ SFWG-FEM in the norm L∞(L2).

Theorem 4.1. Assume that σ = (2 − α)/2. Let um and um
h be the solutions of (1.1), (4.1), respectively.

Assume that u ∈ L∞
(
J; H1

0(Ω) ∩ Hk+1(Ω)
)
, C

0 Dα
T u ∈ L∞

(
J; H1

0(Ω) ∩ Hk+1(Ω)
)

and

∥∥∥∥∥∥∥∂
lu(·, t)

∂tl

∥∥∥∥∥∥∥ ≤ C(1 +

tα−l) for l = 0, 1, 2, 3. Then there exists a constant C such that

max
1≤m≤M

∥∥∥um − um
0,h

∥∥∥ ≤ C
(
M−min{rα,2} + hk+1

)
. (4.5)

Proof. Let m ∈ {0, 1, . . . ,M} be a fixed number. Taking vh = θm,σ
h in (4.4) yields

(δαtm+σ
θ0,h, θ

m,σ
0,h ) + (A∇wθ

m,σ
h ,∇wθ

m,σ
h ) = −

(
π0

(
δαtm+σ

ξ0 + Rm+σ + Φm+σ
)
, θm,σ

0,h

)
.

From Lemma 3.1 and Cauchy-Schwarz inequality, one has

1
2
δαtm+σ
‖θ0,h‖

2 ≤ ‖π0β‖‖θ
m,σ
0,h ‖,

where β := δαtm+σ
ξ0 + Rm+σ + Φm+σ. Now using the fact that the stability of the L2 projection in L2-

norm [63] and the triangle inequality, we have

1
2
δαtm+σ
‖θ0,h‖

2 ≤ C
(
‖δαtm+σ

ξ0‖ + ‖Rm+σ‖ + ‖Φm+σ‖
)

max
1≤r≤N

‖θr
0,h‖.

Thus, Lemma 3.3 and u0
0,h − E0u0 = 0 imply that

‖θm+1
0,h ‖

2 ≤ C max
0≤i≤M−1

{tαi+σ
(
‖δαti+σξ0‖ + ‖Ri+σ‖ + ‖Φi+σ‖

)
} max

1≤r≤M
‖θr

0,h‖.
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Therefore, one has

max
1≤m≤M

‖θm
0,h‖ ≤ C max

0≤i≤M−1
{tαi+σ

(
‖δαti+σξ0‖ + ‖Ri+σ‖ + ‖Φi+σ‖

)
}. (4.6)

We shall estimate each term in (4.6) individually as follows. We first note that ‖E0Φ
i+σ‖ ≤ ‖Φi+σ‖ and

Lemma 2.9 give that

‖δαti+σξ0‖ = ‖δαti+σξ0 −
C
0 Dα

Tξ0 + C
0 Dα

Tξ0‖

= ‖δαti+σu − C
0 Dα

T u(ti+σ) − E0(δαti+σu − C
0 Dα

T u(ti+σ)) − C
0 Dα

Tξ0‖

≤ ‖Φi+σ‖ + ‖E0Φ
i+σ‖ + Chk+1‖C0 Dα

T ui+σ‖k+1

≤ C‖Φi+σ‖ + Chk+1‖C0 Dα
T u‖L∞(Hk+1(Ω)).

(4.7)

Now, from Lemma 3.4 and Lemma 3.2 we get

max
0≤i≤M−1

{
tαi+σ

∥∥∥Φi+σ
∥∥∥} ≤ C max

0≤i≤M−1

{∥∥∥ψi+σ
u

∥∥∥ +

{
max
s=1,...,i

∥∥∥ψi,s
u

∥∥∥}}
≤ CM−min{rα,3−α}.

(4.8)

We next consider the second term max0≤i≤M−1

{
tαi+σ

∥∥∥Ri+σ
∥∥∥} in (4.6). When i = 0, the assumption

‖u(t)‖ ≤ C implies that

tασ‖R
σ‖ ≤ Ctα1 ' M−rα, (4.9)

where we have used that t1 = M−r. Taylor’s theorem [61, Lemma 9] and the assumption that∥∥∥∥∥∥∥∂
2u(·, t)

∂t2

∥∥∥∥∥∥∥ ≤ C(1 + tα−2) ≤ Ctα−2, for each i ≥ 1 yield

tαi+σ‖R
i+σ‖ ≤ Ctαi+στ

2
i+1tα−2

i ≤ Ctαi+1M−2t2−2/r
i+1 tα−2

i ≤ Ct2α−2/r
i+1 M−2,

where we have used (3.1) and (3.2). Therefore,

tαi+σ‖R
i+σ‖ ≤ C

{
M−2 for i = 1, . . . ,M − 1 if r ≥ 1/α,
M−2t2α−2/r

1 ' M−2rα for i = 1, . . . ,M − 1 if 1 ≤ r ≤ 1/α.

This result, together with (4.9), gives

max
0≤i≤M−1

{tαi+σ‖R
i+σ‖} ≤ CM−min{rα,2}. (4.10)

From (4.6)–(4.10), one can conclude that

max
1≤m≤M

∥∥∥θm
0,h

∥∥∥ ≤ C
(
M−min{rα,2} + hk+1

)
. (4.11)

Combining (4.11), Lemmas (2.9) and (4.3) gives the desired result (4.5). The proof is now
completed. �

Corollary 4.1. Assume that rα ≥ 2. Then the error between the numerical solution um
h computed by

L2 − 1σ SFWG-FEM scheme (4.1) satisfies∥∥∥um − um
0,h

∥∥∥ ≤ C
(
hk+1 + M−2

)
for m = 0, 1, . . . ,M.

AIMS Mathematics Volume 8, Issue 12, 31022–31049.



31040

Proof. From Theorem 4.1 and r ≥ 2/α, one has
∥∥∥um − um

0,h

∥∥∥ ≤ C
(
hk+1 + M−2

)
for each m. The result

now follows. The proof is now completed. �

The convergence order O
(
M−2

)
in time for the L2-1σ SFWG-FEM proved in Corollary 4.1 is higher-

order than the O
(
M−(2−α)

)
temporal rate obtained by the well-known L1-WG-FEM. The O

(
hk+1

)
spatial

convergence rate of the numerical methods is optimal in L2(Ω).

5. Numerical results

In this section, we present some numerical experiments to show that our theoretical results are valid.
For easy implementation and to avoid much algebra, we take T = 1 and QT = [0, 1]2 × (0, 1]. In the
following examples, we have first divided the domain Ω into squares and then further divided these
squares into triangles by connecting the diagonal lines (as illustrated in Figure 1). We use the space of
piecewise linear polynomials on the triangles and constant polynomials on the edges. We aim to verify
the spacial and temporal accuracy of the L2-1σ SFWG-FEM scheme (4.1) on graded meshes. In the
numerical solutions, the L2-1σ SFWG-FEM solution um

h = {um
0,h, u

m
b,h} is computed by the scheme (4.1).

We compute the temporal errors eh = {e0, eb} = {um − um
0,h, u

m − um
b,h} in the L∞

(
L2

)
-norm using the

following formula
‖e0‖L∞(L2),M = max

0≤m≤M

∥∥∥u (x, tm) − um
0,h

∥∥∥ ,
where we have used 5-point Gaussian quadrature rules on time mesh interval for each m to approximate∥∥∥u (x, tm) − um

0,h

∥∥∥. The order of convergence (OC) is computed using the following formula

OC = log2

( ∥∥∥u − um
0,h

∥∥∥
L∞(L2),M∥∥∥u − um

0,2h

∥∥∥
L∞(L2),2M

)
.

Figure 1. Uniform triangulation of the domain.

Example 5.1. Let A = 1 in (1.1). We take f (x, y, t) so that the problem (1.1) has the following solution

u(x, y, t) = (tθ + t2) sin(πx) sin(πy),
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where θ is a fractional number.

If θ ∈ (0, 1), then the solution u will have a weak singularity at t = 0. That is, the integer-order
derivatives of u with respect to the time will blow up at the starting point.

We first fix M = 2000 which is small enough to avoid the time discretization errors and take the
mesh size h = 1

2m , m = 1, 2, 3, 4, 5, 6. We present the spatial errors at t = 1 in the energy and L2

norms and their orders of convergence is shown in Table 3 when α = 0.4 and θ = 2. The orders of
convergence listed in this table show that the proposed method has the optimal convergence order of
O(hk) in the energy norm and O(hk+1) in the L2 norm, as stated by Corollary 4.1.

Table 3. Spatial error histories and the rates of convergence at t = 1 of the SFWG-FEM
using P2 element for Example 5.1 on triangular meshes.

Take M = 2000, θ = 2, α = 0.4, r = 1
N ‖eh‖E OC ‖e0‖ OC
4 1.47E + 01 - 4.30E − 03 -
8 2.98E + 00 2.30 5.41E − 04 2.99

16 6.66E − 01 2.16 6.75E − 05 3.00
32 1.60E − 01 2.05 8.43E − 06 3.00
64 4.16E − 02 1.95 1.06E − 06 2.99

Expected OC 2.00 3.00

Then, we fix the mesh size h in space so that the errors in time dominate the errors in space. The
results in Table 4, Table 5 and Table 6 show that the rate of convergence is of order O(M−2), which is in
perfect agreement with Corollary 4.1. In these tables, when r = ropt, we observe that the computed OC
is slightly bigger than the expected ones. The reason for this is that the optimum value of the grading
constant yields a better approximation in L2 norm for the problem having a weak singularity at the
initial point. Observe that if the regularity parameter θ ∈ (0, 1), then one cannot achieve the optimal
convergence rate using the uniform mesh or non-optimal grading constant r due to the singularity of
the solution at t = 0.

Table 4. Time error histories and the rates of convergence of the SFWG-FEM for
Example 5.1 on triangular meshes.

Take h = π/64, θ = 0.8, α = 0.4
r = 1 ropt = 5/2 r = 3

M ‖e0‖ OC ‖e0‖ OC ‖e0‖ OC
16 2.85E − 03 - 5.72E − 04 - 4.73E − 04 -
32 1.75E − 03 0.70 1.43E − 04 2.00 1.18E − 04 2.00
64 1.04E − 03 0.75 3.41E − 05 2.07 2.96E − 05 2.00

128 6.10E − 04 0.77 8.31E − 06 2.03 7.23E − 06 2.03
256 3.55E − 04 0.78 2.08E − 06 2.00 1.79E − 06 2.01

Expected OC - 0.8 . 2.00 - 2.00
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Table 5. Time error histories and the rate convergence of the SFWG-FEM for Example 5.1
on triangular meshes.

h = π/64, θ = 0.5, α = 0.2
r = 2 r = 5/2 ropt = 4

M ‖e0‖ OC ‖e0‖ OC ‖e0‖ OC
16 3.06E − 03 - 4.03E − 03 - 4.07E − 03 -
32 1.74E − 03 0.81 1.84E − 03 1.13 1.92E − 03 1.08
64 9.03E − 04 0.95 8.53E − 04 1.11 6.88E − 04 1.48

128 4.54E − 04 0.99 3.67E − 04 1.21 1.90E − 04 1.86
256 2.21E − 04 1.04 1.43E − 04 1.36 5.01E − 05 1.92

Expected OC 1.00 1.25 2.00

Table 6. Time error histories and the rate convergence of the SFWG-FEM for Example 5.1
on triangular meshes.

h = π/64, θ = 0.5, r = 2/θ
α = 2/3 α = 4/5

M ‖e0‖ OC ‖e0‖ OC
16 5.36E − 03 - 6.55E − 03 -
32 2.49E − 03 1.10 3.02E − 03 1.11
64 8.84E − 04 1.50 1.07E − 03 1.50

128 2.41E − 04 1.86 2.93E − 04 1.87
256 6.23E − 05 1.95 7.41E − 04 1.98

Expected OC 2.00 2.00

Example 5.2. Let K = 0.1 in (1.1). The function f (x, y, t) is taken so that the exact solution of the
problem (1.1) is

u(x, y, t) =
(
tθ + 1

)
(x(1 − x)y(1 − y))ex+y,

where θ is a regularity parameter.

In this example, we take M = 2000 so that the spatial error dominates the error in time. Table 7 lists
the computed errors at t = 1 in the energy and L2 norms and their orders of convergence. These rates of
convergence displayed are in good agreement with the theory predicted by Corollary 4.1. These rates
show that the optimal orders of convergence are obtained.

Next, we fix the spatial step size h = 1/300 to ensure that the temporal errors dominate the errors in
space. We compute ‖um − um

0,h‖L∞(L2),M of L2-1σ SFWG-FEM and their rates of convergence in Table 8
and in Table 9 for various values of α. These rates of convergence displayed are in good agreement with
the theory predicted by Corollary 4.1. Further, Table 8 displays that the optimal rate of convergence
O(M−2) is only obtained by the values of the grading constant r ≥ 2/θ.
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Table 7. Spatial error histories and the rate convergence at t = 1 of the SFWG-FEM for
Example 5.2 on triangular meshes.

Fix M = 2000, θ = 2, α = 0.4, r = 1
N ‖eh‖E OC ‖e0‖ OC
4 2.62E + 00 - 7.51E − 04 -
8 6.56E − 01 2.00 9.56E − 05 2.97

16 1.65E − 01 1.99 1.20E − 05 2.99
32 4.18E − 02 1.98 1.50E − 06 3.00
64 1.06E − 02 1.97 1.88E − 07 3.00

Expected OC 2.00 3.00

Table 8. Time error histories and the rate convergence of the SFWG-FEM for Example 5.2
on triangular meshes.

h = 1/300, θ = 0.8, α = 0.2
r = 1 ropt = 5/2 r = 3

M ‖e0‖ OC ‖e0‖ OC ‖e0‖ OC
16 1.25E − 04 - 2.07E − 05 - 3.95E − 05 -
32 7.65E − 05 0.70 5.61E − 06 1.88 1.10E − 05 1.84
64 4.57E − 05 0.74 1.61E − 06 1.80 2.96E − 06 1.90

128 2.68E − 05 0.77 4.35E − 07 1.89 8.11E − 07 1.87
256 1.54E − 05 0.80 1.12E − 07 1.96 2.14E − 07 1.92

Expected OC 0.80 2.00 - 2.00

Table 9. Time error histories and the rate convergence of the SFWG-FEM for Example 5.2
on triangular meshes.

h = 1/300, θ = 0.8, r = 2/θ
α = 2/3 α = 4/5

M ‖e0‖ OC ‖e0‖ OC
16 4.27E − 05 - 5.37E − 05 -
32 1.99E − 05 1.10 2.42E − 05 1.14
64 6.98E − 06 1.50 8.58E − 06 1.50

128 1.92E − 06 1.86 2.32E − 06 1.89
256 4.93E − 07 1.96 5.79E − 07 2.00

Expected OC 2.00 2.00

In Example 5.3 we use triangular meshes with hanging nodes to illustrate the advantage of the
SFWG method in treating irregular meshes shown in Figure 2.
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Figure 2. Triangulation of the domain with hanging nodes.

Example 5.3. Let Ω = (0, 1)2, A = 1, T = 1 in (1.1) and f (x, y, t) be given such that the exact solution

u(x, y, t) = tα sin(πx) sin(πy).

In order to show the advantage of the SFWG method in dealing with the triangular meshes with
hanging nodes, we report the measured errors in the energy and L2 norms in Table 10. The results
show the flexibility of the SFWG-FEM in treating hanging nodes in meshes, while the standard finite
element method cannot be easily applied without any hp refinement, which makes the computations
formidably expensive.

Table 10. Spatial error histories and the rates of convergence at t = 1 of the SFWG-FEM
using P2 element for Example 5.3 on triangular meshes with hanging nodes.

Take M = 2000, α = 0.3, r = 2/α
N ‖eh‖E OC ‖e0‖ OC
16 4.53E − 01 - 1.26E − 02 -
32 1.18E − 01 1.99 1.56E − 03 3.01
64 2.94E − 02 2.00 1.94E − 04 3.00

128 7.32E − 03 2.00 2.43E − 05 3.00
256 1.83E − 03 2.00 3.03E − 06 3.00

Expected OC 2.00 3.00

6. Conclusions

In this paper, we studied the SFWG-FEM in space and L2-1σ method in time for the fractional
diffusion problems on graded meshes in time. We derived optimal error estimates of semi-discrete in
the L2 and H1 norms and fully discrete numerical schemes in the L2 norm. Because of the singularity
at the initial time, graded meshes in time were used, and the optimal values of the grading constant
gave the second order convergence in time. Various examples were carried out to verify the theory
presented in this work. We will investigate the method of this paper to fractional diffusion problems
with time-dependent diffusion coefficient in future work.
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