This study explores the evolution and application of integral transformations, initially rooted in mathematical physics but now widely employed across diverse mathematical disciplines. Integral transformations offer a comprehensive framework comprising recurrence relations, generating expressions, operational formalism, and special functions, enabling the construction and analysis of specialized polynomials. Specifically, the research investigates a novel extended family of Frobenius-Genocchi polynomials of the Hermite-Apostol-type, incorporating multivariable variables defined through fractional operators. It introduces an operational rule for this generalized family, establishes a generating connection, and derives recurring relations. Moreover, the study highlights the practical applications of this generalized family, demonstrating its potential to provide solutions for specific scenarios.
Citation: Mohra Zayed, Shahid Ahmad Wani, Georgia Irina Oros, William Ramírez. Unraveling multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials via fractional operators[J]. AIMS Mathematics, 2024, 9(7): 17291-17304. doi: 10.3934/math.2024840
This study explores the evolution and application of integral transformations, initially rooted in mathematical physics but now widely employed across diverse mathematical disciplines. Integral transformations offer a comprehensive framework comprising recurrence relations, generating expressions, operational formalism, and special functions, enabling the construction and analysis of specialized polynomials. Specifically, the research investigates a novel extended family of Frobenius-Genocchi polynomials of the Hermite-Apostol-type, incorporating multivariable variables defined through fractional operators. It introduces an operational rule for this generalized family, establishes a generating connection, and derives recurring relations. Moreover, the study highlights the practical applications of this generalized family, demonstrating its potential to provide solutions for specific scenarios.
[1] | G. Dattotli, S. Lorenzutta, C. Cesarano, Bernstein polynomials and operational methods, J. Comput. Anal. Appl., 8 (2006), 369–377. |
[2] | G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle, In: Advanced special functions and applications, Rome: Aracne Editrice, 2000,147–164. |
[3] | T. Nahid, J. Choi, Certain hybrid matrix polynomials related to the Laguerre-Sheffer family, Fractal Fract., 6 (2022), 211. https://doi.org/10.3390/fractalfract6040211 doi: 10.3390/fractalfract6040211 |
[4] | S. A. Wani, K. Abuasbeh, G. I. Oros, S. Trabelsi, Studies on special polynomials involving degenerate Appell polynomials and fractional derivative, Symmetry, 15 (2023), 840. https://doi.org/10.3390/sym15040840 doi: 10.3390/sym15040840 |
[5] | R. Alyusof, S. A. Wani, Certain properties and applications of $\Delta_h$ hybrid special polynomials associated with Appell sequences, Fractal Fract., 7 (2023), 233. https://doi.org/10.3390/fractalfract7030233 doi: 10.3390/fractalfract7030233 |
[6] | H. M. Srivastava, G. Yasmin, A. Muhyi, S. Araci, Certain results for the twice-iterated 2D $q$-Appell polynomials, Symmetry, 11 (2019), 1307. https://doi.org/10.3390/sym11101307 doi: 10.3390/sym11101307 |
[7] | A. M. Obad, A. Khan, K. S. Nisar, A. Morsy, q-Binomial convolution and transformations of $q$-Appell polynomials, Axioms, 10 (2021), 70. https://doi.org/10.3390/axioms10020070 doi: 10.3390/axioms10020070 |
[8] | D. Bedoya, O. Ortega, W. Ramírez, U. Urieles, New biparametric families of Apostol-Frobenius- Euler polynomials of level m, Mat. Stud., 55 (2021), 10–23. https://doi.org/10.30970/ms.55.1.10-23 doi: 10.30970/ms.55.1.10-23 |
[9] | G. Dattoli, Generalized polynomials operational identities and their applications, J. Comput. Appl. Math., 118 (2000), 111–123. https://doi.org/10.1016/S0377-0427(00)00283-1 doi: 10.1016/S0377-0427(00)00283-1 |
[10] | P. Appell, J. K. de Fériet, Fonctions hyperg${\acute{e}}$om${\acute{e}}$triques et hypersph${\acute{e}}$riques: polyn${\hat{o}}$mes d'Hermite, Paris: Gauthier-Villars, 1926. |
[11] | L. C. Andrews, Special functions for engineers and applied mathematicians, New York: Macmillan Publishing Company, 1985. |
[12] | G. Dattoli, Summation formulae of special functions and multivariable Hermite polynomials, Nuovo Cimento B, 119B (2004), 479–488. https://doi.org/10.1393/ncb/i2004-10111-1 doi: 10.1393/ncb/i2004-10111-1 |
[13] | M. A. Özarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 62 (2011), 2452–2462. https://doi.org/10.1016/j.camwa.2011.07.031 doi: 10.1016/j.camwa.2011.07.031 |
[14] | Q. M. Luo, Apostol-Euler polynomials of higher order and the Gaussian hypergeometric function, Taiwanese J. Math., 10 (2006), 917–925. https://doi.org/10.11650/twjm/1500403883 doi: 10.11650/twjm/1500403883 |
[15] | A. Erd${\rm\acute e}$lyi, Higher transcendental functions, McGraw-Hill Book Company, 1955. |
[16] | L. Carlitz, Eulerian numbers and polynomials, Math. Mag., 32 (1959), 247–260. https://doi.org/10.2307/3029225 doi: 10.2307/3029225 |
[17] | K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974. |
[18] | D. V. Widder, An introduction to transform theory, New York: Academic Press, 1971. |
[19] | G. Dattoli, P. E. Ricci, C. Cesarano, L. Vázquez, Special polynomials and fractional calculus, Math. Comput. Modell., 37 (2003), 729–733. https://doi.org/10.1016/S0895-7177(03)00080-3 doi: 10.1016/S0895-7177(03)00080-3 |
[20] | D. Assante, C. Cesarano, C. Fornaro, L. Vazquez, Higher order and fractional diffusive equations, J. Eng. Sci. Technol. Rev., 8 (2015), 202–204. https://doi.org/10.25103/JESTR.085.25 doi: 10.25103/JESTR.085.25 |
[21] | J. F. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta. Math., 73 (1941), 333–366. |
[22] | B. Kurt, Y. Simsek, Frobenius-Euler type polynomials related to Hermite-Bernoulli polyomials, AIP Conf. Proc., 1389 (2011), 385–388. https://doi.org/10.1063/1.3636743 doi: 10.1063/1.3636743 |
[23] | Y. Simsek, Generating functions for $q$-Apostol-type Frobenius-Euler numbers and polynomials, Axioms, 1 (2012), 395–403. https://doi.org/10.3390/axioms1030395 doi: 10.3390/axioms1030395 |
[24] | D. S. Kim, T. Kim, Some new identities of Frobenius-Euler numbers and polynomials, J. Inequal. Appl., 307 (2012), 307. https://doi.org/10.1186/1029-242X-2012-307 doi: 10.1186/1029-242X-2012-307 |