
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(7): 17291–17304.
DOI: 10.3934/math.2024840
Received: 05 March 2024
Revised: 22 April 2024
Accepted: 30 April 2024
Published: 20 May 2024

Research article

Unraveling multivariable Hermite-Apostol-type Frobenius-Genocchi
polynomials via fractional operators

Mohra Zayed1, Shahid Ahmad Wani2,*, Georgia Irina Oros3 and William Ramı́rez4,5,*

1 Mathematics Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
2 Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University),

Pune, India
3 Department of Mathematics and Computer Science, Faculty of Informatics and Sciences,

University of Oradea, Oradea 410087, Romania
4 Section of Mathematics International Telematic University Uninettuno, Rome 00186, Italy
5 Department of Natural and Exact Sciences, Universidad de la Costa, Barranquilla 080002,

Colombia

* Correspondence: Email: shahidwani177@gmail.com, shahid.wani@sitpune.edu.in,
w.ramirezquiroga@students.uninettunouniversity.net, wramirez4@cuc.edu.co.

Abstract: This study explores the evolution and application of integral transformations, initially
rooted in mathematical physics but now widely employed across diverse mathematical disciplines.
Integral transformations offer a comprehensive framework comprising recurrence relations, generating
expressions, operational formalism, and special functions, enabling the construction and analysis of
specialized polynomials. Specifically, the research investigates a novel extended family of Frobenius-
Genocchi polynomials of the Hermite-Apostol-type, incorporating multivariable variables defined
through fractional operators. It introduces an operational rule for this generalized family, establishes
a generating connection, and derives recurring relations. Moreover, the study highlights the practical
applications of this generalized family, demonstrating its potential to provide solutions for specific
scenarios.

Keywords: operational connection; fractional operators; Eulers’ integral; multivariable special
polynomials; explicit form; applications
Mathematics Subject Classification: 11T23, 33B10, 33C45, 33E20, 33E30

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2024840


17292

1. Introduction and preliminaries

Exploring the amalgamation of various polynomial types to create innovative multi-variable
generalized polynomials is a current and practical research area. These polynomials hold
immense significance due to their valuable attributes, including recurring and explicit relationships,
functional and differential equations, summation formulas, symmetric and convolution properties,
and determinant representations. The utilization of multi-variable hybrid special polynomials
extends to different domains such as number theory, combinatorics, classical and numerical analysis,
theoretical physics, and approximation theory, among others, offering substantial potential for practical
applications.

In order to fully realize the potential of hybrid polynomials for applications, a number of additional
categories have been established. The goal of this project is to increase the number of mathematical
instruments that may be used to solve complicated problems in a wide range of pure and applied
mathematics fields.

Polynomial sequences are considered to be very important in many fields, such as applied
mathematics, theoretical physics, and approximation theory. In particular, polynomials of degrees
equal to or fewer than n may be constructed from fundamental building blocks, which are Bernstein
polynomials of order n. Using operational approaches, Dattoli and colleagues performed a thorough
analysis of Bernstein polynomials, delving into their characteristics and complexities [1]. They
investigated the class of Appell sequences, which is a broad category that includes, among other
polynomial sequences, the Miller-Lee, Bernoulli, and Genocchi polynomials.

The exploration and comprehensive analysis of novel classes of hybrid special polynomials
associated with the Appell sequences hold immense significance across diverse domains. These
polynomials, as highlighted by various sources, including [2–8], serve as versatile tools with broad
utility in fields ranging from the physical sciences to engineering, biology, and medicine. Their
unique properties, such as integral representations, series definitions, and generating functions, enable
efficient problem-solving, mathematical analysis, and modelling of complex phenomena. By providing
a foundation for mathematical analysis and facilitating interdisciplinary collaboration, hybrid special
polynomials contribute to advancing research, enhancing computational efficiency, and fostering
innovation in various disciplines, making them indispensable assets in the pursuit of knowledge
and technological advancement. These hybrid special polynomials play a pivotal role in advancing
scientific understanding and technological innovation by offering versatile tools for problem-solving,
mathematical modelling, and computational analysis. Within engineering, hybrid special polynomials
contribute to the design and optimization of systems, enhancing efficiency and performance. In biology
and medicine, they enable the modelling of intricate biological processes, such as gene expression
dynamics and disease progression, thereby supporting medical diagnosis, treatment development, and
personalized healthcare. Differential equations are widely used to express problems in many scientific
and technical fields, and unique functions are often used to solve them. Consequently, these hybrid
special polynomials are highly useful for characterizing and solving issues that arise in the rapidly
evolving field of research. The following is an expression for the generating function reported in [9]:

eh1t+h2t2+h3t3 =

∞∑
n=0

Dn(h1, h2, h3)
tn

n!
, (1.1)
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the 3-variable Hermite polynomials (3VHP), represented as Dn(h1, h2, h3), are correlated with this
generating function.

The 3VHP reduces to a set of polynomials known as the 2-variable Hermite Kampé de Fériet
polynomials (2VHKdFP), represented by the symbol Dn(h1, h2). This is the result of setting h3 to
zero. [10] provides extensive documentation on these 2VHKdFP polynomials.

Moreover, the 3VHP converts into the conventional Hermite polynomials denoted as Dn(h1), as
described in [11], if we set h3 to zero, h1 to 2h1, and h2 to −1.

In addition, the following connection establishes the set of polynomials known as multivariable
Hermite Polynomials (MHP) [12], and denoted by the notationD[m]

n (h1, h2, · · · , hm):

exp(h1ξ + h2ξ
2 + · · · + hmξ

m) =
∞∑

n=0

D[m]
n (h1, h2, · · · , hm)

ξn

n!
, (1.2)

for these polynomials, the operational rule is written as follows:

exp

h2
∂2

∂2
h1

+ h3
∂3

∂3
h1

+ · · · + hm
∂m

∂m
h1

 hn
1 = D

[m]
n (h1, h2, · · · , hm). (1.3)

Additionally, these polynomials can be represented in series form as:

D[m]
n (h1, h2, · · · hm) = n!

[n/m]∑
r=0

hr
m D

[m]
n−mr(h1, h2, · · · , hm−1)

r! (n − mr)!
. (1.4)

In the work published in [13], a unified formulation for a particular class of polynomials called
Apostol-type Frobenius-Genocchi polynomials is introduced. These polynomials are formalized using
the mathematical notation Kn(h1; λ; u), as per [14]. The generative expression for these polynomials is
given as: (

(1 − u)ξ
λeξ − u

)
eh1ξ =

∞∑
n=0

Kn(h1; λ; u)
ξn

n!
, (1.5)

where, u ∈ C, u , 1.
The Apostol-type Frobenius-Genocchi numbers (ATFGN) of order β, Kn(λ; u), are obtained from

relation (1.5) for h1 = 0: (
(1 − u)ξ
λeξ − u

)
=

∞∑
n=0

Kn(λ; u)
ξn

n!
. (1.6)

The special case of Apostol-type Frobenius-Genocchi polynomials (ATFGP), named Apostol-
Genocchi polynomials (AGP), An(h1; λ), then follows for u = −1 and in their turn, they become
Genocchi polynomials denoted as An(h1) when λ = 1, as discussed in [15]. The Apostol-type
Frobenius-Genocchi polynomials (ATFGP) generate the Frobenius-Genocchi polynomials, Kn(h1; u),
when λ = 1, as explained in [16].

Fractional calculus provides tools for investigations in numerous research fields connected to the
sciences (biology, physics, and electrochemistry), economics, statistics, or probability theory. Its
origins date back to the late 17th, century when it was proposed independently by the renowned
mathematician and philosopher G.W. Leibniz, concerned with mathematical studies, and by I. Newton,
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regarding physics research. It involves extending integration to orders that are not whole integers, the
order of 1/2 is first employed. However, it was not until Liouville’s committed and exhaustive research
that this topic was thoroughly explored, leading to accurate and carefully carried out research in the
end.

Integral transformations are used to discover solutions for both differential and integral problems.
Mathematicians and engineers have always been fascinated with fractional operators, as demonstrated
by the writings of Widder and Oldham [17, 18]. As noted in scholarly works [17, 18], significant
progress was made by Riemann and Liouville in the study of fractional derivatives using integral
transforms.

Fractional derivatives can be handled effectively by combining specialized polynomials and
integral transformations in a synergistic fashion. The acceptance of this method as a useful tool is
highlighted in works like [19,20], where the importance of this integrated approach is also emphasized.
The combination of certain polynomials and integral transformations facilitates the theoretical and
practical developments involving fractional derivatives. Specialists and researchers have examined the
advantages of this method, hence improving knowledge regarding fractional calculus and its numerous
applications.

Integral transforms like Laplace or Fourier transforms combined with discrete polynomials like
Hermite, Laguerre, or Chebyshev polynomials allow researchers to create effective methods for solving
fractional differential equations. Some of the areas that have been observed to yield success with these
methods include but are not limited to, signal processing, physics, engineering, and finance. Dattoli et
al. first used “Euler’s integral”, which they presented in [19] in the form:

1
Γ(µ)

∫ ∞

0
e−qξξµ−1dξ = q−µ, min{Re(µ),Re(q)} > 0. (1.7)

Therefore, by employing Euler’s integral into the framework of integral transformation, researchers
can examine a wide range of complex problems arising in different mathematical and engineering
fields. This paper presents an integrated approach that includes all the essential tools for enhancing
the adaptability and the performance of integral transformations in various domains. This extended
framework offers new potential for the study of fractional derivatives and their uses, motivating original
approaches to solving problems.

The investigation presented here shows that more development is possible in this area and provides
a helpful tool for researchers when they address difficult fractional derivative problems in a wider
setting. Additionally, the cited study [19] demonstrates that the following axioms hold for both first-
and second-order derivatives:(

β −
∂

∂h1

)−µ
h(h1) = 1

Γ(µ)

∫ ∞
0

e−βttµ−1 eξ
∂
∂h1 h(h1)dξ = 1

Γ(µ)

∫ ∞
0

e−βtξµ−1 h(h1 + ξ)dξ, (1.8)

(
β −
∂2

∂h2
1

)−µ
h(h1) =

1
Γ(µ)

∫ ∞

0
e−βξξµ−1 e

ξ ∂
2

∂h2
1 h(h1)dξ. (1.9)

Fractional operators are used successfully by researchers due to the basic properties of exponential
operators and by choosing the right integral representations. New mathematical concepts are better
investigated, and the study of fractional derivatives is facilitated by this approach.
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Different characteristics of hybrid special polynomials naturally result from the inclusion of
operational rules, monomiality principles, and other relevant characteristics. The origins of
monomiality lie in the term poweroid, initially used in 1941 by Steffenson [21], and later developed
by Dattoli [2]. These methods of investigation still have applications in many fields, such as quantum
mechanics, mathematical physics, and classical optics, which are considered powerful and successful
research instruments.

Hence, multivariable Hermite polynomials D[m]
n (h1, h2, · · · , hm) given by (1.2) and Apostol-type

Frobenius-Genocchi polynomials [22,23] seen in (1.5) are combined and these two sets of polynomials
combine to form a new type of polynomial known as multivariable Hermite-Apostol- type Frobenius-
Genocchi polynomials governed by the monomiality principle and operational rules. The following
generating expression characterises these polynomials:(

(1 − u)ξ
λeξ − u

)
exp(h1ξ + h2ξ

2 + · · · + hmξ
m) =

∞∑
n=0

HK[m]
n (h1, h2, · · · , hm; λ; u)

ξn

n!
, (1.10)

accompanied by an operational rule:

exp
(
h2
∂2

∂h1
2 + h3

∂3

∂h1
3 + · · · + hm

∂m

∂h1
m

) {
K[m]

n (h1; λ; u)
}
= HK[m]

n (h1, h2, · · · , hm; λ; u). (1.11)

The remainder of the article unfolds as follows:
The extended version of multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials

is unveiled and scrutinized by applying the monomiality principle and operational methodologies.
Section 2 introduces these extended multivariable Hermite-Apostol-type Frobenius-Genocchi
polynomials by leveraging generating functions and operational definitions involving fractional
operators. Moving on to Section 3, we delve into the quasi-monomial attributes inherent to the extended
multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials. Additionally, this section lays
out the recurrence relations and summation formulas for these extended polynomials. Section 4 offers
practical applications by examining specific cases, and finally, the paper concludes in the concluding
section.

2. The extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials

The operational rule and generating function for the extended multivariable Hermite-Apostol-
type Frobenius-Genocchi polynomials are the main topics of this section. Fractional operators are
used to introduce and study these polynomials. First, we derive the operational rule for these
polynomials, as the operational rule offers a method for performing algebraic operations on the
extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials. The first operational
connection is demonstrated by the succeeding result:

Theorem 2.1. The following operational connection holds for EMVHAFGP

µHKn(h1, h2, h3, · · · , hm; λ; u; β):(
β −

(
h2
∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

))−µ
Kn(h1; λ; u) =

µHKn(h1, h2, h3, · · · , hm; λ; u; β). (2.1)
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Proof. By substituting q with β −
(
h2
∂2

∂h2
1
+ h3

∂3

∂h3
1
+ · · · + hm

∂m

∂hm
1

)
in Eq (1.8) of Genocchi’s integral and

subsequently applying this modified equation to Kn(h1; λ; u), we obtain the following result:(
β −

(
h2
∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

))−µ
Kn(h1; λ; u)

=
1
Γ(µ)

∫ ∞

0
e−βξξµ−1 exp

(
h2ξ
∂2

∂h2
1

+ h3ξ
∂3

∂h3
1

+ · · · + hmξ
∂m

∂hm
1

)
Kn(h1; λ; u)dξ, (2.2)

as evident from Eq (1.11), the following result is achieved:(
β −

(
h2
∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

))−µ
Kn(h1; λ; u)

=
1
Γ(µ)

∫ ∞

0
e−βξξµ−1

HKn(h1, h2ξ, h3ξ, · · · , hmξ; λ; u)dξ. (2.3)

A new class of polynomials is presented by means of the transformation explained on the right side of
Eq (2.3). The notion

µHKn(h1, h2, h3, · · · , hm; λ; u; β) is the representation of these polynomials, which
are known as the EMHAFGP. As a result, we create the following relationship:

µHKn(h1, h2, h3, · · · , hm; λ; u; β) =
1
Γ(µ)

∫ ∞

0
e−βξξµ−1

HKn(h1, h2ξ, h3ξ, · · · , hmξ; λ; u)dξ. (2.4)

Hence, by taking into account expressions (2.3) and (2.4), we confirm the validity of statement (2.1).
□

Theorem 2.2. For the extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials,
denoted as

µHKn(h1, h2, h3, · · · , hm; λ; u; β), the provided generating expression is valid and can be
expressed as follows:

(1 − u)w exp(h1w)
(λew − u) (β − (h2w2 + h3w3 + · · · + hmwm))µ

=

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; λ; u; β)
wn

n!
. (2.5)

Proof. By multiplying Eq (2.4) by wn

n! and then summing over all possible values of n, we can deduce
the following:

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; λ; u; β)
wn

n!
=

∞∑
n=0

1
Γ(µ)

∫ ∞

0
e−βξξµ−1

HKn(h1, h2ξ, h3ξ, · · · , hmξ; λ; u)
wn

n!
dξ.

Therefore, considering the expression (1.10) on the right-hand side of the preceding equation, we can
determine that:

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; λ; u; β)
wn

n!
=

(1 − u)w exp(h1w)
(λew − u) Γ(µ)

∫ ∞

0
e−

(
β−(h2w2+h3w3+···+hmwm)

)
ξ ξµ−1dξ.

(2.6)
By examining the integral expression (1.7), we can derive statement (2.5). □
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3. Explicit forms and identities

The significance of explicit forms lies in their ability to provide a clear and direct representation of
mathematical expressions or objects. In various mathematical and scientific contexts, having explicit
forms is crucial for several reasons. Explicit forms of mathematical expressions make them easier to
understand and grasp. Understanding is facilitated by their frequent clarification of the connections
and underlying structure of the equations or polynomials. These formats facilitate computations and
numerical assessments. Through their efficient implementation in computer programs and numerical
simulations, they reduce computational complexity. More explicit formats often lead to informative
analysis. Mathematicians and researchers can examine these forms to find properties, relationships,
and behaviours of mathematical objects that might not be immediately apparent in their general or
abstract forms. They simplify the process of comparing different mathematical objects with each other.
Scholars can use explicit statement comparisons to identify patterns and do investigations into various
mathematical objects. For real-world applications in science, engineering, and other disciplines, these
clear forms are crucial. To tackle real-world issues, engineers, physicists, and practitioners frequently
need precise mathematical models with obvious forms that are computationally efficient. Explicit
forms are therefore essential for theoretical study as well as real-world applications since they improve
the usefulness, accessibility, and interpretability of mathematical statements.

Continuing in further depth, we will now provide the subsequent findings in order to provide
the comprehensive formula for the extended multivariable Hermite-Apostol-type Frobenius-Genocchi
polynomials:

Theorem 3.1. The extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials
(EMVHATFGP) can be expressed in the following explicit form:

µHKn(h1, h2, h3, · · · , hm; λ; u; β) =
n∑

s=0

(
n
s

)
Ks(h1; λ; u) µHn−s(h2, h3, · · · , hm; β). (3.1)

Proof. The generative expression (2.5) can be represented in the following manner:

(1 − u)w exp(h1w)
(λew − u) (β − (h2w2 + h3w3 + · · · + hmwm))µ

=
(1 − u)weh1w

(λew − u)
1

(β − (h2w2 + h3w3 + · · · + hmwm))µ
.

(3.2)
This can be further represented as:

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; λ; u; β) =
∞∑

s=0

Ks(h1; λ; u)
ws

s!

∞∑
n=0

µHn(h2, h3, · · · , hm; β)
wn

n!
. (3.3)

By substituting n with n−s and applying the Cauchy product rule to the right-hand side of the preceding
expression, we can derive statement (3.1). □

Theorem 3.2. The extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials
(EMVHATFGP) adhere to the provided explicit expression:

µHKn(h1, h2, h3, · · · , hm; λ; u; β) =
n∑

s=0

(
n
s

)
Ks(λ; u) µHn−s(h1, h2, h3, · · · , hm; β). (3.4)
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Proof. The generative expression (2.5) can be represented in the following manner:

(1 − u)w exp(h1w)
(λew − u) (β − (h2w2 + h3w3 + · · · + hmwm))µ

=
(1 − u)w
(λew − u)

eh1w

(β − (h2w2 + h3w3 + · · · + hmwm))µ
. (3.5)

This further can be represented as

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; λ; u; β) =
∞∑

s=0

Ks(λ; u)
ws

s!

∞∑
n=0

µHn(h1, h2, h3, · · · , hm; β)
wn

n!
. (3.6)

By substituting n with n−s and applying the Cauchy product rule to the right-hand side of the preceding
expression, we can derive statement (3.4). □

Onward, we can derive the recurrence relations governing the extended multivariable
Hermite-Apostol-type Frobenius-Genocchi polynomials (EMVHATFGP), which are represented as
µHKn(h1, h2, h3, · · · , hm; λ; u; β). Recursive equations that specify the terms of a sequence or
multidimensional array enable us to define each subsequent term with respect to the ones that came
before it.

Further, on differentiating the generating expression (2.5) with respect to h1, h2, h3, · · · , hm, and β,
the succeeding recurrence relations for the extended multivariable Hermite-Apostol-type Frobenius-
Genocchi polynomials (MVHATFGP)

µHKn(h1, h2, h3, · · · , hm; λ; u; β) are derived:

∂

∂h1

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= n

µHKn−1(h1, h2, h3, · · · , hm; λ; u; β),

∂

∂h2

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= µ n(n − 1)

µ+1HKn−2(h1, h2, h3, · · · , hm; λ; u; β)),

∂

∂h3

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= µ n(n − 1)(n − 2)

µ+1HKn−3(h1, h2, h3, · · · , hm; λ; u; β),

...
∂

∂hm

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= µn(n − 1) · · · (n − m + 1)

µ+1HKn−m(h1, h2, h3, · · · , hm; λ; u; β),

∂

∂β

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= −µ

µHKn(h1, h2, h3, · · · , hm; λ; u; β). (3.7)

Upon examining the aforementioned relations, the following expressions are validated:

∂

∂h2

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= − ∂3

∂h2
1∂β

µHKn(h1, h2, h3, · · · , hm; λ; u; β),

∂

∂h3

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= − ∂4

∂h3
1∂β

µHKn(h1, h2, h3, · · · , hm; λ; u; β),

...
∂

∂hm

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= − ∂

m+1

∂hm
1 ∂β

µHKn(h1, h2, h3, · · · , hm; λ; u; β). (3.8)

The operational framework established in Theorem 2.1 can be extended to various identities
associated with Frobenius-Genocchi polynomials, which have been extensively studied to derive
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the extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials (EMVHATFGP)
denoted as

µHKn(h1, h2, h3, · · · , hm; λ; u; β). To accomplish this, we perform the subsequent operation

using the operator (O) denoted by
(
β −

(
h2
∂2

∂h2
1
+ h3

∂3

∂h3
1
+ · · · + hm

∂m

∂hm
1

))−µ
on identities that involve

Frobenius-Genocchi polynomials Kn(h1; u) [24]:

uKn(h1; u−1) +Kn(h1; u) = (1 + u)
n∑

k=0

(
n
k

)
Kn−k(u−1)Kk(h1; u), (3.9)

1
n + 1

Kk(h1, u) +Kn−k(h1, u)

=

n−1∑
k=0

(
n
k

)
n − k + 1

n∑
l=k

((−u)Kl−k(u)Kn−l(u) + 2uKn−k(u)) Kk(h1, u)Kn(h1, u), (3.10)

Kn(h1, u) =
n∑

k=0

(
n
k

)
Kn−k(u)Kk(h1, u), (n ∈ Z+). (3.11)

The extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials (EMVHATFGP),
denoted as

µHKn(h1, h2, h3, · · · , hm; λ; u; β), are derived by applying the operator (O) to both sides of
the preceding equations:

u
µHKn(h1, h2, h3, · · · , hm; λ; u−1; β) +

µHKn(h1, h2, h3, · · · , hm; λ; u; β)

=(1 + u)
n∑

k=0

(
n
k

)
Kn−k(u−1)

µHKk(h1, h2, h3, · · · , hm; λ; u; β), (3.12)

1
n + 1 µHKk(h1, h2, h3, · · · , hm; u; β) +

µHKn−k(h1, h2, h3, · · · , hm; λ; u; β)

=

n−1∑
k=0

(
n
k

)
n − k + 1

n∑
l=k

((−u)Kn−l(u)Kl−k(u)

+2uKn−k(u))
µHKk(h1, h2, h3, · · · , hm; u; β)

µHKn(h1, h2, h3, · · · , hm; λ; u; β), (3.13)

µHKn(h1, h2, h3, · · · , hm; u; β) =
n∑

k=0

(
n
k

)
Kn−k(u)

µHKk(h1, h2, h3, · · · , hm; λ; u; β), (n ∈ Z+). (3.14)

4. Applications

In this section, we delve into some specific instances of the extended multivariable Hermite-
Apostol-type Frobenius-Genocchi polynomials (EMVHATFGP), considering their implications based
on the general concept. The inquiry will shed light on the peculiar properties and relations exhibited by
these polynomials, focusing on their special cases. Rigorous derivation and analysis shall establish the
concomitant consequences of these particular examples, thereby illuminating their place in the grander
scheme of polynomial theory. The intent behind this systematic approach is to better understand and
reveal finer details regarding EMVHATFGP, thus promoting mathematical progress in this field.
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Corollary 4.1. The extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials
can be transformed into the extended multivariable Hermite-Frobenius-Genocchi polynomials by
setting λ = 1. Consequently, we establish the following operational relationship by substituting λ = 1
into the left side of Eq (2.1) and indicating the resultant extended multivariable Hermite-Frobenius-
Genocchi polynomials in the right side as

µHKn(h1, h2, h3, · · · , hm; u; β):(
β −

(
h2
∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

))−µ
Kn(h1; u) =

µHKn(h1, h2, h3, · · · , hm; u; β). (4.1)

Corollary 4.2. The extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials
can be reduced to the extended multivariable Hermite-Genocchi polynomials by setting λ = 1 and
u = −1. Thus, by substituting λ = 1, u = −1 in the left-hand side of Eq (2.1), the following operational
relationship is established with the resulting extended multivariable Hermite-Genocchi polynomials on
the right side, represented as

µHKn(h1, h2, h3, · · · , hm; β):(
β −

(
h2
∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

))−µ
Kn(h1) =

µHKn(h1, h2, h3, · · · , hm; β). (4.2)

Corollary 4.3. The EMVHATFGP can be reduced to the extended 2-VHAFGP by setting m = 2. Thus,
on insertion of m = 2 in the left hand of expression (2.1), the succeeding operational relationship for
the extended 2-VHAFGP represented as

µHKn(h1, h2; λ; u; β) is established:(
β −

(
h2
∂2

∂h2
1

))−µ
Kn(h1; λ; u) =

µHKn(h1, h2; λ; u; β). (4.3)

Corollary 4.4. By putting λ = 1 and m = 2, the extended multivariable Hermite-Apostol-type
Frobenius-Genocchi polynomials” can be reduced to the extended 2-variable Hermite-Frobenius-
Genocchi polynomials. Thus, by inserting λ = 1 and m = 2 into the left side of Eq (2.1), we obtain the
subsequent operational relationship. The resulting extended 2-variable Hermite-Frobenius-Genocchi
polynomials are represented on the right side as

µHKn(h1, h2; u; β):(
β −

(
h2
∂2

∂h2
1

))−µ
Kn(h1; u) =

µHKn(h1, h2; u; β). (4.4)

Corollary 4.5. The extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials
can be simplified to the extended Hermite-Apostol-type Frobenius-Genocchi polynomials by setting
m = 2, h1 = 2h1, and h2 = −1. As a result, we create the operational relationship shown below by
changing the values of m = 2, h1 = 2h1, and h2 = −1 in Eq (2.1), its left side, and the resulting
extended Hermite-Apostol-type Frobenius-Genocchi polynomials are represented in the right side, as

µHKn(h1, h2; λ; u; β): (
β −

(
−
∂2

∂h2
1

))−µ
Kn(h1; λ; u) =

µHKn(h1, λ; u; β). (4.5)

Corollary 4.6. The extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials
can be simplified to the extended Hermite-Frobenius-Genocchi polynomials by setting m = 2, λ = 1,
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h1 = 2h1, and h2 = −1. Consequently, we establish the following operational relationship by
substituting m = 2, λ = 1, h1 = 2h1, and h2 = −1 into the left side of Eq (2.1) and representing
the resulting extended Hermite- Frobenius-Genocchi polynomials on the right side as

µHKn(h1; u; β):(
β −

(
−
∂2

∂h2
1

))−µ
Kn(h1; u) =

µHKn(h1; u; β). (4.6)

Corollary 4.7. The extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials
can be simplified to the extended multivariable Hermite-Frobenius-Genocchi polynomials by setting
λ = 1. Consequently, we establish the following generating expression by substituting λ = 1 into the
left-hand side of Eq (2.5) and representing the resulting extended multivariable Hermite-Frobenius-
Genocchi polynomials on the right-hand side as

µHKn(h1, h2, h3, · · · , hm; u; β):

(1 − u)w exp(h1w)
(ew − u) (β − (h2w2 + h3w3 + · · · + hmwm))µ

=

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; u; β)
wn

n!
. (4.7)

Corollary 4.8. By setting λ = 1 and u = −1, the extended multivariable Hermite-Genocchi
polynomials can be simplified from the extended multivariable Hermite-Apostol-type Frobenius-
Genocchi polynomials. As a result, we create the generating expression below by changing λ = 1
and u = −1 in the left side of Eq (2.5) with the EMHGP that result represented in the right side as

µHKn(h1, h2, h3, · · · , hm; β):

(2) exp(h1w)
(ew + 1) (β − (h2w2 + h3w3 + · · · + hmwm))µ

=

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; β)
wn

n!
. (4.8)

Corollary 4.9. Setting m = 2 will simplify the extended multivariable Hermite-Apostol-type Frobenius-
Genocchi polynomials to the extended 2-VHAFGP. As a result, we create the generating expression that
follows by using in Eq (2.5)’s left side the value m = 2 with the extended 2-VHAFGP that results in the
right side as

µHKn(h1, h2; λ; u; β):

(1 − u)w exp(h1w)
(λew − u) (β − (h2w2))µ

=

∞∑
n=0

µHKn(h1, h2; λ; u; β)
wn

n!
. (4.9)

Corollary 4.10. The EMHAFGP can be reduced to the extended 2-variable Hermite-Frobenius-
Genocchi polynomials (E2HFGP) by setting λ = 1, and m = 2. Therefore, the following generating
expression is generated by putting λ = 1 and m = 2 on the left side of Eq (2.5). On the right side, the
resulting E2HFGP

µHKn(h1, h2; u; β) is shown as:

(1 − u)w exp(h1w)
(ew − u) (β − (h2w2))µ

=

∞∑
n=0

µHKn(h1, h2; u; β)
wn

n!
. (4.10)

Corollary 4.11. By setting m = 2, h1 = 2h1, and h2 = −1, the EMHAFGP can be reduced to
the extended Hermite-Apostol-type Frobenius-Genocchi polynomials. As a result, we construct the
generating expression that follows by replacing m = 2, h1 = 2h1, and h2 = −1 in the left side of
Eq (2.5). The E2VHFGP that arise is represented by the right side as

µHKn(h1, h2; λ; u; β):

(1 − u)w exp(2h1w)
(ew − u) (β − (−w2))µ

=

∞∑
n=0

µHKn(h1; u; β)
wn

n!
. (4.11)

AIMS Mathematics Volume 9, Issue 7, 17291–17304.



17302

5. Conclusions

Multivariable special polynomials are fundamental to mathematical analysis, which covers the
study of functions, limits, continuity, and calculus in many variables. These polynomials give
mathematicians a flexible framework for formulating and analyzing multivariable functions, allowing
them to examine differentiability, integrability, and convergence. This study introduces and starts the
investigation of the extended multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials
using operational rules and the monomiality principle. The generalized polynomials are introduced
in Section 2, and certain characteristics are proved for the new family of polynomials. In Section 3,
the quasi-monomial properties of these polynomials are investigated with summing equations and
recurrence relations being proved at the same time. The comprehension of extended multivariable
Hermite-Apostol-type Frobenius-Genocchi polynomials and their possible applications in science and
mathematics is significantly improved as a result of this investigation.

The characteristics of extended multivariable Hermite-Apostol-type Frobenius-Genocchi
polynomials proved in this study are the starting point for further research. Hence, the investigation
of a range of algebraic and analytical properties, including differential equations and orthogonality, is
facilitated by them. It should be noted that these polynomials have applications in a wide range of
physics fields, such as quantum mechanics, statistical physics, mathematical physics, engineering, and
other branches of physics, facilitated by the development of the generating function and recurrence
relations for these hybrid polynomials. Operational techniques become extremely useful tools for
the introduction of new families of special functions and for obtaining characteristics associated
with basic and generalized special functions. They are also useful for finding explicit solutions for
families of partial differential equations, such as the Heat and D’Alembert types. When paired with
the monomiality principle, this method enables the solution analysis of a broad class of physical
problems involving many types of partial differential equations. Families of differential equations
can be examined in relation to these polynomials through the use of the factorization technique. This
approach can be implemented for research using integral equations. Also, fractional operators might
be used in future studies concerning these polynomials in more complex forms.
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Paris: Gauthier-Villars, 1926.

11. L. C. Andrews, Special functions for engineers and applied mathematicians, New York: Macmillan
Publishing Company, 1985.

12. G. Dattoli, Summation formulae of special functions and multivariable Hermite polynomials,
Nuovo Cimento B, 119B (2004), 479–488. https://doi.org/10.1393/ncb/i2004-10111-1

AIMS Mathematics Volume 9, Issue 7, 17291–17304.

https://dx.doi.org/https://doi.org/10.3390/fractalfract6040211
https://dx.doi.org/https://doi.org/10.3390/sym15040840
https://dx.doi.org/https://doi.org/10.3390/fractalfract7030233
https://dx.doi.org/https://doi.org/10.3390/sym11101307
https://dx.doi.org/https://doi.org/10.3390/axioms10020070
https://dx.doi.org/https://doi.org/10.30970/ms.55.1.10-23
https://dx.doi.org/https://doi.org/10.30970/ms.55.1.10-23
https://dx.doi.org/https://doi.org/10.1016/S0377-0427(00)00283-1
https://dx.doi.org/https://doi.org/10.1393/ncb/i2004-10111-1


17304
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