In this paper, we define the three parametric types of Apostol-type unified Bernoulli-Euler polynomials. We present fundamental properties of these polynomials through the utilization of their generating functions. Furthermore, we derive the partial derivatives of these polynomials. Subsequently, we introduce bivariate polynomials and determine their zeros, graphical representations, and approximation values for specific parameters.
Citation: William Ramírez, Can Kızılateş, Daniel Bedoya, Clemente Cesarano, Cheon Seoung Ryoo. On certain properties of three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials[J]. AIMS Mathematics, 2025, 10(1): 137-158. doi: 10.3934/math.2025008
In this paper, we define the three parametric types of Apostol-type unified Bernoulli-Euler polynomials. We present fundamental properties of these polynomials through the utilization of their generating functions. Furthermore, we derive the partial derivatives of these polynomials. Subsequently, we introduce bivariate polynomials and determine their zeros, graphical representations, and approximation values for specific parameters.
[1] | M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Washington: US Government Printing Office, 1964. |
[2] |
N. Alam, W. A. Khan, C. Kızılateş, S. Obeidat, C. S. Ryoo, N. S. Diab, Some explicit properties of Frobenius-Euler-Genocchi polynomials with applications in computer modeling, Symmetry, 15 (2023), 1358. https://doi.org/10.3390/sym15071358 doi: 10.3390/sym15071358
![]() |
[3] |
O. Agratini, On a $q$-analogue of Stancu operators, Open Math., 8 (2010), 191–198. https://doi.org/10.2478/s11533-009-0057-9 doi: 10.2478/s11533-009-0057-9
![]() |
[4] | T. M. Apostol, On the Lerch zeta function, Pacific J. Math., 1 (1951), 161–167. |
[5] | T. M. Apostol, Introduction to analytic number theory, Berlin: Springer Science & Business Media, 1998. |
[6] |
S. Araci, M. Acikgoz, Construction of Fourier expansion of Apostol Frobenius-Euler polynomials and its applications, Adv. Differ. Equ., 2018 (2018), 67. https://doi.org/10.1186/s13662-018-1526-x doi: 10.1186/s13662-018-1526-x
![]() |
[7] |
D. Bedoya, C. Cesarano, W. Ramírez, L. Castilla, A new class of degenerate biparametric Apostol-type polynomials, Dolomites Res. Notes Approx., 16 (2023), 10–19. https://doi.org/10.14658/PUPJ-DRNA-2023-1-2 doi: 10.14658/PUPJ-DRNA-2023-1-2
![]() |
[8] |
H. Belbachir, Y. Djemmada, S. Hadj-Brahim, Unified Bern oulli-Euler polynomials of Apostol type, Indian J. Pure Appl. Math., 54 (2023), 76–83. https://doi.org/10.1007/s13226-022-00232-x doi: 10.1007/s13226-022-00232-x
![]() |
[9] |
L. Castilla, W. Ramírez, A. Urieles, An extended generalized-extensions for the Apostol Type polynomial, Abstr. Appl. Anal., 2018. https://doi.org/10.1155/2018/2937950 doi: 10.1155/2018/2937950
![]() |
[10] | L. Comtet, Advanced combinatorics: The art of finite and infinite expansions, Berlin: Springer, 1974. |
[11] |
V. Gupta, New operators based on Laguerre polynomials, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 118 (2024). https://doi.org/10.1007/s13398-023-01521-8 doi: 10.1007/s13398-023-01521-8
![]() |
[12] |
V. Gupta, D. Malik, On a new Kantorovich operator based on Hermite polynomials, J. Appl. Math. Comput., 70 (2024), 2587–2602. https://doi.org/10.1007/s12190-024-02068-6 doi: 10.1007/s12190-024-02068-6
![]() |
[13] | R. L. Graham, D. E. Knuth, O. Patashnik, S. Liu, Concrete mathematics: A foundation for computer science, Comput. Phys., 3 (1989), 106–107. |
[14] |
A. F. Horadam, Negative order Genocchi polynomials, Fibonacci Quart., 30 (1992), 21–34. https://doi.org/10.1080/00150517.1992.12429381 doi: 10.1080/00150517.1992.12429381
![]() |
[15] | B. Kurt, A further generalization of the Bernoulli polynomials and on the 2D-Bernoulli polynomials $B_{n}^2(x, y)$, Appl. Math. Sci., 47 (2010), 2315–2322. |
[16] |
G. D. Liu, H. M. Srivastava, Explicit formulas for the Norlund polynomials $B_n(x)$ and $b_n(x)$, Comput. Math. Appl., 51 (2006), 1377–1384. https://doi.org/10.1016/j.camwa.2006.02.003 doi: 10.1016/j.camwa.2006.02.003
![]() |
[17] |
Q. M. Luo, Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwan. J. Math., 10 (2006), 917–925. https://doi.org/10.11650/twjm/1500403883 doi: 10.11650/twjm/1500403883
![]() |
[18] |
M. Masjed-Jamei, M. R. Beyki, W. Koepf, A new type of Euler polynomials and numbers, Mediterr. J. Math., 15 (2018), 138. https://doi.org/10.1007/s00009-018-1181-1 doi: 10.1007/s00009-018-1181-1
![]() |
[19] |
M. Masjed-Jamei, W. Koepf, Symbolic computation of some power-trigonometric series, J. Symbolic Comput., 80 (2017), 273–284. https://doi.org/10.1016/j.jsc.2016.03.004 doi: 10.1016/j.jsc.2016.03.004
![]() |
[20] |
Y. Quintana, W. Ramírez, A degenerate version of hypergeometric Bernoulli polynomials: announcement of results, Commun. Appl. Ind. Math., 15 (2024), 36–43. https://doi.org/10.2478/caim-2024-0011 doi: 10.2478/caim-2024-0011
![]() |
[21] |
W. Ramírez, C. Cesarano, S. Díaz, New results for degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, WSEAS Trans. Math., 21 (2022), 604–608. https://doi.org/10.37394/23206.2022.21.69 doi: 10.37394/23206.2022.21.69
![]() |
[22] | W. Ramírez, M. Ortega, D. Bedoya, A. Urieles, New parametric Apostol-type Frobenius-Euler polynomials and their matrix approach, Kragujev. J. Math., 49 (2025), 411–429. |
[23] | H. M. Srivastava, Some generalizations and basic (or $q$-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci., 5 (2011), 390–444. |
[24] |
H. M. Srivastava, M. Masjed-Jamei, M. R. Beyki, Some new generalizations and applications of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Rocky Mountain J. Math., 49 (2019), 681–697. https://doi.org/10.1216/RMJ-2019-49-2-681 doi: 10.1216/RMJ-2019-49-2-681
![]() |
[25] |
H. M. Srivastava, M. Masjed-Jamei, M. RezaBeyki, A parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Appl. Math. Inf. Sci., 12 (2018), 907–916. http://doi.org/10.18576/amis/120502 doi: 10.18576/amis/120502
![]() |
[26] |
H. M. Srivastava, L. C. Kızı, A parametric kind of the Fubini-type polynomials, RACSAM, 113 (2019), 3253–3267. https://doi.org/10.1007/s13398-019-00687-4 doi: 10.1007/s13398-019-00687-4
![]() |
[27] |
M. Zayed, S. A. Wani, Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials, AIMS Math., 9 (2024), 25145–25165. https://dx.doi.org/10.3934/math.20241226 doi: 10.3934/math.20241226
![]() |
[28] |
M. Zayed, S. A. Wani, M. Subzar, M. Riyasat, Certain families of differential equations associated with the generalized 1-parameter Hermite-Frobenius Euler polynomials, Math. Comput. Model. Dyn. Syst., 30 (2024), 683–700. https://doi.org/10.1080/13873954.2024.2396713 doi: 10.1080/13873954.2024.2396713
![]() |