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Abstract: In this paper we presented a method of G2 Hermite interpolation of offset curves of regular
plane curves based on approximating the normal vector fields. We showed that our approximant is also
C1 Hermite interpolation of the offset curve. Our method is capable of achieving circular precision.
Another advantage of our method is that if the input curve is a polynomial curve, then our method
also yields a polynomial curve. Our approximation method was applied to numerical examples and its
numerical results were compared to previous offset approximation methods. It was observed that our
method is almost optimal with respect to the number of control points of the approximation curves for
the same tolerance.
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1. Introduction

Approximations of offset curves by polynomial or rational parametric curves are important tasks in
the fields of CAGD (computer aided geometric design) and CAD/CAM. Many offset approximation
methods have been developed in the last four decades. The offset approximation method by B-spline
curves using the least square method has been presented [1, 2]. A family of polynomial parametric
curves, which is called the Pythagorean hodograph (PH) curve, has a rational offset [3] and it has many
applications in CAGD and geometric modeling [4–10].

Offset curves of regular plane curves can be represented by the convolution of the regular plane
curves and a circular arc [11, 12]. The convolution of a quadratic Bézier curve and a polynomial or
rational curve is a rational curve. Based on these ideas, the offset approximation methods [11] yield
rational approximation curves which are the convolution of the polynomial or rational curve and the
quadratic Bézier curves interpolating the unit normal vector field of the polynomial or rational curve.
The offset approximation methods by G2 rational spline curves based on interpolating the unit normal
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vector fields by G2 quadratic splines exist [13, 14].
The notion of linear normal surfaces has been proposed to obtain their rational offsets [15, 16].

Another advantage of linear normal surfaces is that the convolutions of linear normal surfaces and
general rational surfaces are always rational [17, 18], and many properties of linear normal surfaces
and linear normal algebraic curves have been developed [19, 20]. The offset approximation methods
that yield rational offset using linear normal curves have been presented and analyzed [21–25].

Recently, an offset approximation method of regular polynomial curves by G1 polynomial curves
based on approximating the normal vector fields of regular polynomial curves has been proposed [26].
In this paper we present the G2/C1 Hermite interpolation of offset curves of regular plane curves based
on approximating the normal vector fields. In many applications, the G2/C1 interpolation is more
important than the G2/G1 interpolation, since the latter may lead to poorly parameterized curves [27].
Our method is also capable of achieving circular precision [28, 29] as it yields the exact offset curve
whenever the input curve is a circular arc. Another advantage of our method is that if the regular
polynomial curve is a polynomial curve of degree n, then it also yields a polynomial curve of degree
n + 3. We apply our offset approximation method to existing examples and illustrate that our method
needs the minimum number of control points within the same tolerance.

The remainder of this paper is organized as follows. In Section 2, the preliminaries for the offset
of regular plane curves and the convolution of two compatible parametric curves are introduced. In
Section 3, our offset approximation method of regular plane curves is proposed and the advantages
of our method are presented. We apply our method to existing examples and compare the numerical
results to previous offset approximation methods in Section 4, and summarize our work in Section 5.

2. Preliminaries

In this section we present the preliminaries and notions related to the offset curves and convolution
curves of regular plane curves and their approximations [11–13]. For a regular plane curve x : [a, b]→
R2,

T(t) =
x′(t)
||x′(t)||

and N(t) = RT(t) (2.1)

are the unit tangent and normal vectors of x at the point x(t), respectively, where R denotes the ninety
degree clockwise rotation operator. The curve x + rN : [a, b] → R2 is called the offset curve of x with
the offset distance r ∈ R.

Two curves x1 and x2 are said to be compatible [12, 30] if there exists a reparametrization s = s(t)
satisfying x′1(t) ∥ x′2(s(t)) and ⟨x′1(t), x′2(s(t))⟩ > 0. The convolution curve x1 ∗ x2 for two compatible
curves x1, x2 is defined by

(x1 ∗ x2)(t) = x1(t) + x2(s(t)).

The offset curve x + rN of x with offset distance r can be represented by x ∗ rN, i.e.,

x(t) + rN(t) = (x ∗ rN)(t),

since two curves x and rN are compatible [11, 12].
The Hausdorff distance between two curves x1 : [a, b]→ R3 and x2 : [c, d]→ R3 is defined by

dH(x1, x2) = max
(
max
t∈[a,b]

min
s∈[c,d]

||x1(t) − x2(s)||, max
s∈[c,d]

min
t∈[a,b]
||x1(t) − x2(s)||

)
.
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The Hausdorff distance between a circular arc and a general plane curve is easier to be obtained than
that between two general plane curves [11,31–33]. For the unit normal vector N of a plane curve x and
its approximant Na, the Hausdorff distance is invariant under convolution, i.e.,

dH(x ∗ rN, x ∗ rNa) = rdH(N,Na) (2.2)

if these curves are regular [13].

3. G2 Hermite interpolation of offset curve of regular plane curve

In this section, we present a G2/C1 Hermite interpolation of offset curves of regular parametric plane
curves based on approximating the normal vector field. Let x : [0, 1] → R2 be a regular parametric
plane curve. Let N : [0, 1] → R2 be the unit normal vector field of x as in (2.1). We propose its
approximant Na : [0, 1]→ R2 by

Na(t) =
∫ t

0
x′(u)α(u)du + N(0), (3.1)

where α : [0, 1]→ R is a cubic polynomial defined by

α(t) =
3∑

i=0

αiB3
i (t),

and Bn
i (t) =

(
n
i

)
ti(1 − t)n−i, 0 ≤ i ≤ n, are the Bernstein polynomials of degree n. The reason why Na is

chosen as in Eq (3.1) is that if the derivatives of Na and x for the same parameter are parallel, then their
convolution can be directly obtained by their simple addition. This method was originally presented
by Ahn and Hoffmann [21], and Kim et al. [26] used a similar equation to Eq (3.1), which is a special
case of our method. In this paper, the coefficients α0, α1, α2, α3 in Eq (3.1) are determined such that
Na is a G2 Hermite interpolation of N. Accordingly, we show that the approximation x ∗ rNa is a G2

Hermite interpolation of the offset curve x ∗ rN with the offset distance r ∈ R.
Since Na(0) = N(0) in (3.1), the curve Na is a G0 Hermite interpolation of N if Na(1) = N(1) holds.

It follows from Na(1) = N(1) that
2∑

i=1

∫ 1

0
x′(t)B3

i (t)dtαi = (N(1) − N(0)) −
1∑

i=0

∫ 1

0
x′(t)B3

3i(t)dtα3i. (3.2)

This is a linear equation with respect to α1 and α2, i.e., (3.2) can be represented by

v1α1 + v2α2 = v,

where

vi =

∫ 1

0
x′(t)B3

i (t)dt, i = 1, 2, (3.3)

and v denotes the right side of (3.2). The linear equation in (3.2) for α1 and α2 has a unique solution,

α1 =
v × v2

v1 × v2
, α2 =

v1 × v
v1 × v2

, (3.4)

if x is convex and the length of the curve N : [0, 1] → S 1 is less than π, where (x1, y1) × (x2, y2) =
x1y2 − x2y1, and S 1 is the unit circle centered at the origin in R2.
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Proposition 3.1. If x is convex and the length of the curve N is less than π, then the linear equation
in (3.2) for α1 and α2 has a unique solution as in (3.4).

Proof. For convenience, the notation arg u for a vector u = (u1, u2) is used to the argument of
the complex number u1 + iu2, i.e., arg u = arg(u1 + iu2). We may assume that x is turning left and
arg x′(0) = 0, then arg x′(t) is increasing and arg x′(t) ∈ [0, π). Since

arg
∫ 1

0
x′(t)(1 − t)dt < arg

∫ 1

0
x′(t)tdt,

we have

arg
∫ 1

0
x′(t)B3

1(t)dt < arg
∫ 1

0
x′(t)B3

2(t)dt,

and v1 and v2 are linearly independent. Thus, the assertion follows. □

From now on we assume that the regular parametric curve x satisfies the assumption of
Proposition 3.1. If not, we can make x satisfy the assumption by subdivisions at inflection points and
bisections of x. The approximation curve Na with α1, α2 satisfying (3.4) is a G0 Hermite interpolation
of N. Now, we find the two coefficients α0, α3 such that Na is a G2 Hermite interpolation of N. Let
κx(t) be the signed curvature of x at the point x(t).

Proposition 3.2. The two curves Na and N have the same signed curvature at both endpoints if and
only if |α3i| = |κx(i)|, i = 0, 1.

Proof. It follows from (3.1) that

Na′(i) = α3ix′(i), Na′′(i) = α3ix′′(i) + 3∆α2ix′(i), (3.5)

for i = 0, 1, where ∆αi = αi+1 − αi. Thus, we have

Na′(i) × Na′′(i) = α2
3ix
′(i) × x′′(i), (3.6)

i = 0, 1, and

κNa(i) =
Na′(i) × Na′′(i)
||Na′(i)||3

=
x′(i) × x′′(i)
|α3i| ||x′(i)||3

=
κx(i)
|α3i|
.

Hence κNa(i) = κN(i), i = 0, 1 if and only if κx(i) = κN(i)|α3i|. If x is turning left or right, then the signed
curvature of N is one or negative one, respectively. Therefore, κx(i) = κN(i)|α3i|, i = 0, 1 is equivalent
to |α3i| = |κx(i)|. □

We have two choices of α3i = ±κx(i), i = 0, 1. From (2.1) it follows that

N′(i) =
(x′(i) × x′′(i))x′(i)

||x′(i)||3
= κx(i)x′(i). (3.7)

Thus, if α3i = −κx(i), then
Na′(i) = α3ix′(i) = −κx(i)x′(i) = −N′(i),
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which implies that Na has the opposite tangent direction of N at both endpoints. Hence, we choose
α3i = κx(i), i = 0, 1 for the G2 Hermite interpolation Na of N. The approximant Na is constructed by
α1, α2, satisfying (3.4) and by

α3i = κx(i) =
x′(i) × x′′(i)
||x′(i)||3

, i = 0, 1. (3.8)

Now, we show that the curve x+ rNa is a C1 and G2 Hermite interpolation of the offset curve x+ rN as
follows.

Proposition 3.3. The approximant x + rNa is a C1 and G2 Hermite interpolation of the offset curve
x + rN.

Proof. Since Na(i) = N(i), i = 0, 1, we have (x + rNa)(i) = (x + rN)(i). It follows from (3.5), (3.7)
and (3.8) that

Na′(i) = N′(i), i = 0, 1. (3.9)

Thus, we obtain
(x + rNa)′(i) = (x + rN)′(i), i = 0, 1, (3.10)

which implies that x + rNa is a C1 Hermite interpolation of the offset curve x + rN.
Since the curve N is a circular arc, we have

N′(i) × N′′(i) = sgn(N′(i) × N′′(i))||N′(i)||3, (3.11)

i = 0, 1. It follows from (3.6)–(3.9) and (3.11) that

Na′(i) × Na′′(i) = α2
3ix(i) × x′′(i) = (κx(i))3||x′(i)||3 = N′(i) × N′′(i),

x′(i) × Na′′(i) =
Na′(i) × Na′′(i)

κx(i)
=

N′(i) × N′′(i)
κx(i)

= x′(i) × N′′(i). (3.12)

By (3.9) and (3.12), we obtain

(x′(i) + rNa′(i)) × (x′′(i) + rNa′′(i)) = (x′(i) + rN′(i)) × (x′′(i) + rN′′(i)),

i = 0, 1 and (3.10) implies that x + rNa is a G2 Hermite interpolation of x + rN. □

3.1. Circular precision

In this section we show that if the regular parametric curve x is a circular arc, then our approximation
method yields the exact offset curve.

Let x be a circular arc represented by

x(t) = c0 + γ(cos(t0 + lt), sin(t0 + lt)), t ∈ [0, 1],

where c0 ∈ R
2, γ > 0 and l ∈ (0, π) are the center, radius, and length of the circular arc, respectively.

By (3.8), we have α0 = α3 = 1/γ. The unit normal vector N satisfies N(t) = 1
γ
(x(t) − c0) and (3.3)

yields

v1 = 3γ
(
RN(0)

l
−

4N(0) + 2N(1)
l2 −

6R(N(0) − N(1))
l3

)
,
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v2 = 3γ
(
RN(1)

l
+

2N(0) + 4N(1)
l2 +

6R(N(0) − N(1))
l3

)
.

It follows from the definition of v and (3.2) that

v = 3
(
R(N(0) + N(1))

l
−

2(N(0) − N(1))
l2

)
.

Thus we obtain

v1 × v2 = 9γ2
(
N(0) × N(1)

l2 +
4 − 8(N(0) × RN(1))

l3

−24
N(0) × N(1)

l4 + 24
1 + N(0) × RN(1)

l5

)
,

v × v2 = v1 × v = 9γ
(
N(0) × N(1)

l2 +
4 − 8(N(0) × RN(1))

l3

−24
N(0) × N(1)

l4 + 24
1 + N(0) × RN(1)

l5

)
.

Hence α1 = α2 = 1/γ, and α(t) = 1/γ for all t ∈ [0, 1]. Equation (3.1) yields

Na(t) =
1
γ

∫ t

0
x′(u)du + N(0) = N(t),

for all t ∈ [0, 1]. Therefore, our method yields the exact offset curve for the circular arc x.

3.2. G2/C1 Hermite interpolation of offset curve of parametric polynomial curves

An advantage of our method is that if x is a regular polynomial curve, then our method yields a
polynomial approximant for a G2/C1 Hermite interpolation of the offset of x. Let x : [0, 1] → R2 be
the parametric polynomial curve of degree n represented in Bézier form

x(t) =
n∑

j=0

b jBn
j(t),

where b j, j = 0, 1, . . . , n, are the control points of x. From (3.1) it follows that

Na(t) =
∫ t

0
x′(u)

3∑
i=0

αiB3
i (u)du + N(0), (3.13)

which is a polynomial curve of degree n + 3 and G2/C1 Hermite interpolation of N. Since (Na)′(t) ∥
x′(t), t ∈ [0, 1], the offset curve is obtained by

(x ∗ rNa)(t) = x(t) + rNa(t),

which is also a polynomial curve and its degree is n + 3.
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In the rest of this section, we obtain the cubic polynomial α(t) in the form of control points of x.
Note that (3.8) yields

α0 =
n − 1

n
∆b0 × ∆b1

||∆b0||
3 , α3 =

n − 1
n
∆bn−2 × ∆bn−1

||∆bn−1||
3 .

Using three formulas [34, 35]

x′(t) =
n−1∑
j=0

n∆b jBn−1
j (t),

Bn−1
j (u)B3

i (u) =

(
n−1

j

)(
3
i

)
(

n+2
i+ j

) Bn+2
i+ j (u),

∫ 1

0
Bn+2

k (u)du =
1

n + 3
, k = 0, 1, . . . , n + 2,

we have

∫ 1

0
x′(u)

3∑
i=0

αiB3
i (u)du =

n
n + 3

n−1∑
j=0

3∑
i=0

(
n−1

j

)(
3
i

)
(

n+2
i+ j

) αi∆b j.

Equation (3.2) and the definition of v yield

vi =
3n

n + 3

n−1∑
j=0

(
n−1

j

)
(

n+2
i+ j

)∆b j, i = 1, 2,

v = N(1) − N(0) −
n

n + 3

n−1∑
j=0

 α0(
n+2

j

) + α3(
n+2
3+ j

)
(
n − 1

j

)
∆b j.

Thus, the coefficients α1 and α2 are obtained from (3.4) in the form of control points b j of x.

4. Numerical examples and comparison

In this section we describe our approximation method and apply it to examples in the literature. The
numerical results of our method are compared to those of previous methods.

Our approximation method yields the curvature continuous polynomial spline curve of degree n+ 3
approximating the offset of the input curve when it is a polynomial spline curve of degree n. In our
approximation method, the input curve x is first subdivided such that each subdivided segment becomes
a convex polynomial segment. We use the divide-and-conquer method. If the Hausdorff distance
between the offset approximant and the offset of the polynomial segment is larger than the tolerance,
then the segment is subdivided into two segments. The offset curves are approximated separately as
shown in Figure 1. This process is repeated until the error is less than the tolerance.
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(a) (b) (c)

(d) (e) (f)
Figure 1. (a) Offset curve x + N (green-color) of the cubic Bézier curve x (blue) and our
approximation curve x + Na (magenta) whose error is larger than 10−1. (b) Unit normal
vector N (black) and our approximant Na (red). (c) Curvatures of x + N (green) and x + Na

(magenta). (d)–(f) After one subdivision at the parametric midpoint, the error is less than
10−1 and the curvature of the approximant is continuous.

The Hausdorff distance between two curves x + rN and x + rNa can be measured by (2.2), because
x+rN = x∗rN and x+rNa = x∗rNa. Since N is a circular arc and Na is a polynomial parametric curve,
it is easy to calculate dH(N,Na), which is an advantage of the offset approximation method based on
approximating the unit normal vector field [11, 13].

Subsequently, our offset approximation method is applied to three numerical examples. The first
and second examples are the offset approximations of the cubic Bézier and B-spline curves as shown
in Figures 1 and 2, respectively, which were originally presented by Lee et al. [11]. The numerical
results obtained by the previous methods can be found in Tables 1 and 2, which have been presented
in [11, 13, 26], except for the data of the ‘CL’ method in Table 2. In this paper, our results are added
to the last columns of the tables and the data of the CL method in Table 2 is newly added. It can be
observed that our approximation method yields the optimal approximation, except for the ‘Lst’ method
with respect to the number of control points within the same tolerance. The Lst method was proposed
by Lee et al. [11] and they explained that it is an extension of Hoschek and Wissel [2] while adapting
the global error bounding technique of the method in [36].

AIMS Mathematics Volume 8, Issue 12, 31008–31021.
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(a) (b) (c)
Figure 2. (a) Cubic B-spline curve composed of four Bézier curves with C2 continuity (blue
color), its offset curve (green), and our approximant (magenta) composed of 10 polynomial
curves of degree six with G2 continuity and error less than 10−1. (b)–(c) Curvature plots of
the offset curve (green) and our approximant (magenta).

Table 1. Minimum number of control points needed for offset approximation methods with
errors less than the given tolerance TOL for the cubic Bézier curve in Figure 1.

TOL Lst [2, 11, 36] M2 [11] CL [21] QS [14] QL [22] [26] Our method
10−1 7 22 10 15 23 13 13
10−2 13 29 16 22 34 21 19
10−3 19 43 28 43 45 33 31
10−4 31 71 43 71 56 57 43
10−5 50 127 79 120 78 105 61

Table 2. Minimum number of control points needed for offset approximation methods with
errors less than TOL for the cubic B-spline curve in Figure 2.

TOL Lst [2, 11, 36] M2 [11] CL [21] QS [14] QL [22] [26] Our method
10−1 16 78 37 85 111 49 61
10−2 48 92 55 92 133 61 79
10−3 84 120 100 134 144 109 103
10−4 138 176 175 204 177 168 151
10−5 240 302 310 316 243 289 199

The third example is an offset approximation of boundaries of the character ‘S’, and its left and
right boundaries are composed of seven and six Bézier curves of degree three, respectively. This
example was proposed by Kim et al. [26] and their numerical results are presented in the fifth column
of Table 3. For the example, we have added all the data that we could obtain from the previous methods
in Table 3. We have also added our numerical results to the last column of Table 3 for comparison
with those of the previous methods. As shown in Figure 3, the approximation curve has self-
intersections. In many practical applications of planar curve offsetting, the self-intersection loops need
to be removed [37]. Actually, the self-intersections of our approximation curve are the intersections
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of two Bézier segments. Many methods for finding the intersection points of two parametric curves
have been presented [38–40]. The trimmed curve of our approximant can be obtained by finding the
intersection points and eliminating the intersection loops as shown in Figure 4.

Table 3. Minimum number of control points needed for offset approximation methods with
errors less than TOL for the left and right boundaries of the character ‘S’ in Figure 3.

Left boundary
TOL CL [21] QS [14] QL [22] [26] Our method
10−1 46 106 111 45 61
10−2 88 134 144 85 85
10−3 157 197 188 121 103
10−4 289 323 254 217 163
10−5 496 526 331 373 241

Right boundary
TOL CL [21] QS [14] QL [22] [26] Our method
10−1 49 113 111 41 61
10−2 91 141 155 77 79
10−3 166 218 199 133 109
10−4 310 337 254 225 163
10−5 553 540 309 389 229

Figure 3. Left: Character ‘S’ (blue color) composed of 13 cubic Bézier curves and six line
segments, its offset curve (green) and our approximant (magenta) composed of 20 polynomial
curves of degree six with its error less than 10−1. Right top: Curvature plots of the offset
curve (green) for the left boundary curve composed of seven cubic Bézier curves and our
approximant (magenta). Right bottom: Curvature plots of the offset curve (green) for the
right boundary curve composed of six cubic Bézier curves and our approximant (magenta).

AIMS Mathematics Volume 8, Issue 12, 31008–31021.
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Figure 4. Trimmed offset approximation curve of the character ‘S’. The offset curves of
corner points are circular arcs, which can be approximated by Bézier curves of degree six
with high precision [33, 41].

For all examples, the curvatures of the offset curve and our approximant are plotted in Figures 1–3,
and we can see the curvature continuity of our offset approximant.

5. Conclusions

In this paper we presented the offset approximation method for regular plane parametric curves. Our
method has a few advantages. It yields the G2 and C1 Hermite interpolation of the offset curve. The
method achieves circular precision and yields a polynomial approximant for the offset curve whenever
the input curve is a polynomial curve. Our method facilitates the calculation of the error since it is
based on approximating the unit normal vector field. Our method also has the smallest error from
almost all previous offset approximation methods, with respect to the number of control points within
the same tolerance.
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minimal surfaces with Pythagorean normals, Appl. Math. Comput., 435 (2022), 127439.
https://doi.org/10.1016/j.amc.2022.127439
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