Research article

Piecewise implicit coupled system under ABC fractional differential equations with variable order

  • Received: 23 February 2024 Revised: 13 April 2024 Accepted: 16 April 2024 Published: 28 April 2024
  • MSC : 34A08, 34A12, 47H10, 97M70

  • This research paper presented a novel investigation into an implicit coupled system of fractional variable order, which has not been previously studied in the existing literature. The study focused on establishing and developing sufficient conditions for the existence and uniqueness of solutions, as well as the Ulam-Hyers stability, for the proposed coupled system without using semigroup property. By extending the existing conclusions examined for the Atangana-Baleanu-Caputo (ABC) operator, we contributed to advancing the understanding of variable-order fractional differential equations. The paper provided a solid theoretical foundation for further analysis, numerical simulations, and practical applications. The obtained results have implications for designing and controlling systems modeled using fractional variable order equations and serve as a basis for addressing a wide range of dynamical problems. The transformation techniques, qualitative analysis, and illustrative examples presented in this work highlight its unique contributions and potential to serve as a foundation for future research.

    Citation: Saleh S. Redhwan, Maoan Han, Mohammed A. Almalahi, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi. Piecewise implicit coupled system under ABC fractional differential equations with variable order[J]. AIMS Mathematics, 2024, 9(6): 15303-15324. doi: 10.3934/math.2024743

    Related Papers:

  • This research paper presented a novel investigation into an implicit coupled system of fractional variable order, which has not been previously studied in the existing literature. The study focused on establishing and developing sufficient conditions for the existence and uniqueness of solutions, as well as the Ulam-Hyers stability, for the proposed coupled system without using semigroup property. By extending the existing conclusions examined for the Atangana-Baleanu-Caputo (ABC) operator, we contributed to advancing the understanding of variable-order fractional differential equations. The paper provided a solid theoretical foundation for further analysis, numerical simulations, and practical applications. The obtained results have implications for designing and controlling systems modeled using fractional variable order equations and serve as a basis for addressing a wide range of dynamical problems. The transformation techniques, qualitative analysis, and illustrative examples presented in this work highlight its unique contributions and potential to serve as a foundation for future research.



    加载中


    [1] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1998.
    [2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives : Theory and applications, Philadelphia: Gordon and Breach Science Publishers, 1993.
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [4] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [5] S. S. Redhwan, M. Han, M. A. Almalahi, M. Alsulami, M. A. Alyami, Boundary value problem for a coupled system of nonlinear fractional q-difference equations with Caputo fractional derivatives, Fractal Fract., 8 (2024), 73. https://doi.org/10.3390/fractalfract8010073 doi: 10.3390/fractalfract8010073
    [6] S. Y. Al-Mayyahi, M. S. Abdo, S. S. Redhwan, B. N. Abood, Boundary value problems for a coupled system of Hadamard-type fractional differential equations, IAENG Inter. J. Appl. Math, 51 (2021), 1–10.
    [7] S. S. Redhwan, S. Y. Al-mayyahi, S. L. Shaikh, M. S. Abdo, A coupled non-separated system of Hadamard-type fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 6 (2021), 33–44. https://doi.org/10.31197/atnaa.925365 doi: 10.31197/atnaa.925365
    [8] M. A. Almalahi, S. K. Panchal, T. A. Aljaaidi, F. Jarad, New results for a coupled system of ABR fractional differential equations with sub-strip boundary conditions, AIMS Mathematics, 7 (2022), 4386–4404. https://doi.org/10.3934/math.2022244 doi: 10.3934/math.2022244
    [9] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [10] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92.
    [11] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [12] T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5
    [13] F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006
    [14] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel: Theory and application to heat transfer model, arXiv: 1602.03408, 2016. https://doi.org/10.48550/arXiv.1602.03408
    [15] S. S. Redhwan, M. S. Abdo, K. Shah, T. Abdeljawad, S. Dawood, H. A. Abdo, et al., Mathematical modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator, Results Phys., 19 (2020), 103610. https://doi.org/10.1016/j.rinp.2020.103610 doi: 10.1016/j.rinp.2020.103610
    [16] M. A. Almalahi, A. B. Ibrahim, A. Almutairi, O. Bazighifan, T. A. Aljaaidi, J. Awrejcewicz, A qualitative study on second-order nonlinear fractional differential evolution equations with generalized ABC operator, Symmetry, 14 (2022), 207. https://doi.org/10.3390/sym14020207 doi: 10.3390/sym14020207
    [17] C. J. Zúñiga-Aguilar, H. M. Romero-Ugalde, J. F. G ómez-Aguilar, R. F. Escobar-Jiménez, M. Valtierra-Rodrí guez, Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks, Chaos Solitons Fractals, 103 (2017), 382–403. https://doi.org/10.1016/j.chaos.2017.06.030 doi: 10.1016/j.chaos.2017.06.030
    [18] Z. Bouazza, M. S. Souid, H. Günerhan, Multiterm boundary value problem of Caputo fractional differential equations of variable order, Adv. Differ. Equ., 2021 (2021), 400. https://doi.org/10.1186/s13662-021-03553-z doi: 10.1186/s13662-021-03553-z
    [19] A. Benkerrouche, M. S. Souid, S. Chandok, A. Hakem, Existence and stability of a Caputo variable-order boundary value problem, J. Math., 2021 (2021), 7967880. https://doi.org/10.1155/2021/7967880 doi: 10.1155/2021/7967880
    [20] B. P. Moghaddam, J. A. T. Machado, H. Behforooz, An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos Solitons Fractals, 102 (2017), 354–360. https://doi.org/10.1016/j.chaos.2017.03.065 doi: 10.1016/j.chaos.2017.03.065
    [21] C. F. Lorenzo, T. T. Hartley, Initialized fractional calculus, Int. J. Appl. Math., 3 (2000), 249–265.
    [22] H. G. Sun, W. Chen, Y. Q. Chen, Variable-order fractional differential operators in anomalous diffusion modeling, Phys. A, 388 (2009), 4586–4592. https://doi.org/10.1016/j.physa.2009.07.024 doi: 10.1016/j.physa.2009.07.024
    [23] J. V. C. Sousa, E. C. de Oliverira, Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation, Comput. Appl. Math., 37 (2018), 5375–5394. https://doi.org/10.1007/s40314-018-0639-x doi: 10.1007/s40314-018-0639-x
    [24] I. Suwan, M. S. Abdo, T. Abdeljawad, M. M. Mater, A. Boutiara, M. A. Almalahi, Existence theorems for Psi-fractional hybrid systems with periodic boundary conditions, AIMS Mathematics, 7 (2022), 171–186. https://doi.org/10.3934/math.2022010 doi: 10.3934/math.2022010
    [25] H. G. Sun, W. Chen, H. Wei, Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), 185–192. https://doi.org/10.1140/epjst/e2011-01390-6 doi: 10.1140/epjst/e2011-01390-6
    [26] J. F. Gómez-Aguilar, Analytical and numerical solutions of nonlinear alcoholism model via variable-order fractional differential equations, Phys. A, 494 (2018), 52–75. https://doi.org/10.1016/j.physa.2017.12.007 doi: 10.1016/j.physa.2017.12.007
    [27] X.Y. Li, Y. Gao, B.Y. Wu, Approximate solutions of Atangana-Baleanu variable order fractional problems, AIMS Mathematics, 5 (2020), 2285–2294. https://doi.org/10.3934/math.2020151 doi: 10.3934/math.2020151
    [28] M. K. A. Kaabar, A. Refice, M. S. Souid, F. Martinez, S. Etemad, Z. Siri, et al., Existence and UHR stability of solutions to the implicit nonlinear FBVP in the variable order settings, Mathematics, 9 (2021), 1693. https://doi.org/10.3390/math9141693 doi: 10.3390/math9141693
    [29] M. B. Jeelani, A. S. Alnahdi, M. A. Almalahi, M. S. Abdo, H. A. Wahash, N. H. Alharthi, Qualitative analyses of fractional integro differential equations with a variable order under the Mittag-Leffler power law, J. Funct. Spaces, 2022 (2022), 6387351. https://doi.org/10.1155/2022/6387351 doi: 10.1155/2022/6387351
    [30] T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85–88. https://doi.org/10.1016/S0893-9659(97)00138-9 doi: 10.1016/S0893-9659(97)00138-9
    [31] O. Naifar, G. Rebiai, A. B. Makhlouf, M. A. Hammami, A. Guezane-Lakoud, Stability analysis of conformable fractional-order nonlinear systems depending on a parameter, J. Appl. Anal., 26 (2020), 287–296. https://doi.org/10.1515/jaa-2020-2025 doi: 10.1515/jaa-2020-2025
    [32] A. Ben Makhlouf, D. Boucenna, M. A. Hammami, Existence and stability results for generalized fractional differential equations, Acta Math. Sci., 40 (2020), 141–154. https://doi.org/10.1007/s10473-020-0110-3 doi: 10.1007/s10473-020-0110-3
    [33] O. Naifar, A. Jmal, A. M. Nagy, A. Ben Makhlouf, Improved quasiuniform stability for fractional order neural nets with mixed delay, Math. Probl. Eng., 2020 (2020), 8811226. https://doi.org/10.1155/2020/8811226 doi: 10.1155/2020/8811226
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(554) PDF downloads(34) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog