Existence and multiplicity of three weak solutions for a Leray-Lions $ p(x) $-biharmonic problem involving Hardy potential and indefinite weight were proved. Our main tools combined variational methods and some critical theorems.
Citation: K. Kefi, Jian Liu. Triple solutions for a Leray-Lions $ p(x) $-biharmonic operator involving Hardy potential and indefinite weight[J]. AIMS Mathematics, 2024, 9(8): 22697-22711. doi: 10.3934/math.20241106
Existence and multiplicity of three weak solutions for a Leray-Lions $ p(x) $-biharmonic problem involving Hardy potential and indefinite weight were proved. Our main tools combined variational methods and some critical theorems.
[1] | J. Leray, J. L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97–107. https://doi.org/10.24033/bsmf.1617 doi: 10.24033/bsmf.1617 |
[2] | M. Ružička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, Vol. 1748, Berlin: Springer, 2000. https://doi.org/10.1007/BFb0104029 |
[3] | V. V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris Sér. I Math., 316 (1993), 435–439. |
[4] | K. Rajagopal, M. Ružička, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn., 13 (2001), 59–78. https://doi.org/10.1007/s001610100034 doi: 10.1007/s001610100034 |
[5] | Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522 |
[6] | J. Liu, Z. Zhao, Leray-Lions type $p(x)$-biharmonic equations involving Hardy potentials, Appl. Math. Lett., 149 (2024), 108907. https://doi.org/10.1016/j.aml.2023.108907 doi: 10.1016/j.aml.2023.108907 |
[7] | X. Fan, Q. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 12 (2003), 1843–1852. https://doi.org/10.1016/S0362-546X(02)00150-5 doi: 10.1016/S0362-546X(02)00150-5 |
[8] | Y. Karagiorgos, N. Yannakaris, A Neumann problem involving the $p(x)$-Laplacian with $p=\infty$ in a subdomain, Adv. Calc. Var., 9 (2016), 65–76. https://doi.org/10.1515/acv-2014-0003 doi: 10.1515/acv-2014-0003 |
[9] | X. L. Fan, D. Zhao, On the generalized Orlicz-Sobolev space $W^{k, p(x)}(\Omega)$, J. Gansu Educ. College, 12 (1998), 1–6. |
[10] | D. Edmunds, J. Rákosnik, Sobolev embeddings with variable exponent, Studia Math., 143 (2000), 267–293. https://doi.org/10.4064/sm-143-3-267-293 doi: 10.4064/sm-143-3-267-293 |
[11] | G. Bonanno, P. Candito, G. D'Aguí, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915–939. https://doi.org/10.1515/ans-2014-0406 doi: 10.1515/ans-2014-0406 |
[12] | G. Bonanno, S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., 89 (2010), 1–10. https://doi.org/10.1080/00036810903397438 doi: 10.1080/00036810903397438 |
[13] | K. Kefi, $p(x)$-Laplacian with indefinite weight, Proc. Amer. Math. Soc., 139 (2011), 4351–4360. https://doi.org/10.1515/10.1090/S0002-9939-2011-10850-5 doi: 10.1515/10.1090/S0002-9939-2011-10850-5 |
[14] | E. B. Davis, A. M. Hinz, Explicit constants for Rellich inequalities in $L_{p}(\Omega)$, Math. Z., 227 (1998), 511–523. https://doi.org/10.1007/PL00004389 doi: 10.1007/PL00004389 |
[15] | K. Kefi, N. Irzi, M. M. Al-Shomrani, D. D. Repov$\check{s}$, On the fourth-order Leray-Lions problem with indefinite weight and nonstandard growth conditions, Bull. Math. Sci., 12 (2022), 2150008, https://doi.org/10.1142/S1664360721500089 doi: 10.1142/S1664360721500089 |
[16] | J. Simon, Régularité de la solution d’une équation non linéaire dans $\mathbb{R}^N$, In: P. Bénilan, J. Robert, Journées d’analyse non linéaire, Lecture Notes in Mathematics, Berlin: Springer, 665 (1978), 205–227. https://doi.org/10.1007/BFb0061807 |
[17] | E. Zeilder, Nonlinear functional analysis and its applications: II/B: nonlinear monotone operators, Berlin: Springer, 1990. https://doi.org/10.1007/978-1-4612-0981-2 |