Research article

Modeling and simulations for the mitigation of atmospheric carbon dioxide through forest management programs

  • Received: 12 May 2024 Revised: 01 July 2024 Accepted: 03 July 2024 Published: 23 July 2024
  • MSC : 47H10, 76B15

  • The growing global population causes more anthropogenic carbon dioxide $ (CO_2) $ emissions and raises the need for forest products, which in turn causes deforestation and elevated $ CO_2 $ levels. A rise in the concentration of carbon dioxide in the atmosphere is the major reason for global warming. Carbon dioxide concentrations must be reduced soon to achieve the mitigation of climate change. Forest management programs accommodate a way to manage atmospheric $ CO_2 $ levels. For this purpose, we considered a nonlinear fractional model to analyze the impact of forest management policies on mitigating atmospheric $ CO_2 $ concentration. In this investigation, fractional differential equations were solved by utilizing the Atangana Baleanu Caputo derivative operator. It captures memory effects and shows resilience and efficiency in collecting system dynamics with less processing power. This model consists of four compartments, the concentration of carbon dioxide $ \mathcal{C}(t) $, human population $ \mathcal{N}(t) $, forest biomass $ \mathcal{B}(t) $, and forest management programs $ \mathcal{P}(t) $ at any time $ t $. The existence and uniqueness of the solution for the fractional model are shown. Physical properties of the solution, non-negativity, and boundedness are also proven. The equilibrium points of the model were computed and further analyzed for local and global asymptotic stability. For the numerical solution of the suggested model, the Atangana-Toufik numerical scheme was employed. The acquired results validate analytical results and show the significance of arbitrary order $ \delta $. The effect of deforestation activities and forest management strategies were also analyzed on the dynamics of atmospheric carbon dioxide and forest biomass under the suggested technique. The illustrated results describe that the concentration of $ CO_2 $ can be minimized if deforestation activities are controlled and proper forest management policies are developed and implemented. Furthermore, it is determined that switching to low-carbon energy sources, and developing and implementing more effective mitigation measures will result in a decrease in the mitigation of $ CO_2 $.

    Citation: Muhammad Bilal Riaz, Nauman Raza, Jan Martinovic, Abu Bakar, Osman Tunç. Modeling and simulations for the mitigation of atmospheric carbon dioxide through forest management programs[J]. AIMS Mathematics, 2024, 9(8): 22712-22742. doi: 10.3934/math.20241107

    Related Papers:

  • The growing global population causes more anthropogenic carbon dioxide $ (CO_2) $ emissions and raises the need for forest products, which in turn causes deforestation and elevated $ CO_2 $ levels. A rise in the concentration of carbon dioxide in the atmosphere is the major reason for global warming. Carbon dioxide concentrations must be reduced soon to achieve the mitigation of climate change. Forest management programs accommodate a way to manage atmospheric $ CO_2 $ levels. For this purpose, we considered a nonlinear fractional model to analyze the impact of forest management policies on mitigating atmospheric $ CO_2 $ concentration. In this investigation, fractional differential equations were solved by utilizing the Atangana Baleanu Caputo derivative operator. It captures memory effects and shows resilience and efficiency in collecting system dynamics with less processing power. This model consists of four compartments, the concentration of carbon dioxide $ \mathcal{C}(t) $, human population $ \mathcal{N}(t) $, forest biomass $ \mathcal{B}(t) $, and forest management programs $ \mathcal{P}(t) $ at any time $ t $. The existence and uniqueness of the solution for the fractional model are shown. Physical properties of the solution, non-negativity, and boundedness are also proven. The equilibrium points of the model were computed and further analyzed for local and global asymptotic stability. For the numerical solution of the suggested model, the Atangana-Toufik numerical scheme was employed. The acquired results validate analytical results and show the significance of arbitrary order $ \delta $. The effect of deforestation activities and forest management strategies were also analyzed on the dynamics of atmospheric carbon dioxide and forest biomass under the suggested technique. The illustrated results describe that the concentration of $ CO_2 $ can be minimized if deforestation activities are controlled and proper forest management policies are developed and implemented. Furthermore, it is determined that switching to low-carbon energy sources, and developing and implementing more effective mitigation measures will result in a decrease in the mitigation of $ CO_2 $.



    加载中


    [1] E. K. Shuman, Global climate change and infectious diseases, N. Engl. J. Med., 362 (2010), 1061–1063. https://doi.org/10.1056/NEJMp0912931 doi: 10.1056/NEJMp0912931
    [2] J. Yang, M. Zhou, Z. Ren, M. Li, B. Wang, D. L. Liu, et al., Projecting heat-related excess mortality under climate change scenarios in China, Nat. Comm., 12 (2021), 1039. https://doi.org/10.1038/s41467-021-21305-1 doi: 10.1038/s41467-021-21305-1
    [3] Global monitoring laboratory, Trends in atmospheric carbon dioxide, Available from: https://gml.noaa.gov/ccgg/trends/monthly.html.
    [4] FAO, Global forest resources assessment 2020-Key findings, Rome, 2020. https://doi.org/10.4060/ca8753en
    [5] Food and agriculture organization of the united nations, Global forest resources assessment 2015, Available from: https://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/.
    [6] R. B. Jackson, J. S. Baker, Opportunities and constraints for forest climate mitigation, BioScience, 60 (2010), 698–707. https://doi.org/10.1525/bio.2010.60.9.7 doi: 10.1525/bio.2010.60.9.7
    [7] K. A. Tafoya, E. S. Brondizio, C. E. Johnson, P. Beck, M. Wallace, R. Quirós, et al., Effectiveness of Costa Ricas conservation portfolio to lower deforestation, protect primates, and increase community participation, Front. Environ. Sci., 8 (2020), 580724. https://doi.org/10.3389/fenvs.2020.580724 doi: 10.3389/fenvs.2020.580724
    [8] S. Chang, E. L. Mahon, H. A. MacKay, W. H. Rottmann, S. H. Strauss, P. M. Pijut, et al., Genetic engineering of trees: Progress and new horizons, In Vitro Cell. Dev. Biol.-Plant, 54 (2018), 341–376. https://doi.org/10.1007/s11627-018-9914-1 doi: 10.1007/s11627-018-9914-1
    [9] M. Verma, K. V. Alok, Effect of plantation of genetically modified trees on the control of atmospheric carbon dioxide: A modeling study, Nat. Resour. Model., 34 (2021), e12300. https://doi.org/10.1111/nrm.12300 doi: 10.1111/nrm.12300
    [10] H. Ledford, Brazil considers transgenic trees, Nature, 512 (2014), 357. https://doi.org/10.1038/512357a doi: 10.1038/512357a
    [11] R. J. Zomer, H. Neufeldt, J. Xu, A. Ahrends, D. Bossio, A. Trabucco, et al., Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets, Sci. Rep., 6 (2016), 29987. https://doi.org/10.1038/srep29987 doi: 10.1038/srep29987
    [12] M. van Noordwijk, J. M. Roshetko, Murniati, M. D. Angeles, Suyanto, C. Fay, et al., Agroforestry is a form of sustainable forest management: Lessons from South East Asia, In: UNFF Intersessional experts meeting on the role of planted forests in sustainable forest management conference, New Zealand: Wellington, 2003.
    [13] J. P. Basu, Agroforestry, climate change mitigation and livelihood security in India, New Zealand J. For. Sci., 44 (2014), S11. https://doi.org/10.1186/1179-5395-44-S1-S11 doi: 10.1186/1179-5395-44-S1-S11
    [14] J. Hussain, K. Zhou, M. Akbar, M. Z. khan, G. Raza, S. Ali, et al., Dependence of rural livelihoods on forest resources in Naltar Valley, a dry temperate mountainous region, Pakistan, Global Ecol. Conser., 20 (2019), e00765. https://doi.org/10.1016/j.gecco.2019.e00765 doi: 10.1016/j.gecco.2019.e00765
    [15] A. Fraser, Achieving the sustainable management of forests, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-15839-2
    [16] A. R. Saeed, C. McDermott, E. Boyd, Are REDD+ community forest projects following the principles for collective action, as proposed by Ostrom?, Int. J. Commons, 11 (2017), 572–596. https://doi.org/10.18352/ijc.700 doi: 10.18352/ijc.700
    [17] Y. T. Tegegne, M. Cramm, J. V. Brusselen, Sustainable forest management, FLEGT, and REDD+: exploring interlinkages to strengthen forest policy coherence, Sustainability, 10 (2018), 4841. https://doi.org/10.3390/su10124841 doi: 10.3390/su10124841
    [18] A. Roopsind, B. Sohngen, J. Brandt, Evidence that a national REDD+ program reduces tree cover loss and carbon emissions in a high forest cover, low deforestation country, Proc. Natl. Acad. Sci. USA, 116 (2019), 24492–24499. https://doi.org/10.1073/pnas.1904027116 doi: 10.1073/pnas.1904027116
    [19] T. Hickler, A. Rammig, C. Werner, Modelling $ CO_2 $ impacts on forest productivity, Curr. Forestry Rep., 1 (2015), 69–80. https://doi.org/10.1007/s40725-015-0014-8 doi: 10.1007/s40725-015-0014-8
    [20] N. Solomon, O. Pabi, T. Annang, I. K. Asante, E. Birhane, The effects of land cover change on carbon stock dynamics in a dry Afromontane forest in northern Ethiopia, Carbon Balance Manage., 13 (2018), 14. https://doi.org/10.1186/s13021-018-0103-7 doi: 10.1186/s13021-018-0103-7
    [21] B. C. Poudel, Forest biomass production potential and its implications for carbon balance, Mid Sweden University Licentiate Thesis, 2012.
    [22] W. Liu, F. Lu, Y. Luo, W. Bo, L. Kong, L. Zhang, et al., Human influence on the temporal dynamics and spatial distribution of forest biomass carbon in China, Ecology Evol., 7 (2017), 6220–6230. https://doi.org/10.1002/ece3.3188 doi: 10.1002/ece3.3188
    [23] T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos Solitons Fract., 156 (2022), 111825. https://doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825
    [24] Y. Guo, T. Li, Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023), 127283. https://doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283
    [25] B. Li, Z. Eskandari, Dynamical analysis of a discrete-time SIR epidemic model, J. Franklin Inst., 36 (2023), 7989–8007. https://doi.org/10.1016/j.jfranklin.2023.06.006 doi: 10.1016/j.jfranklin.2023.06.006
    [26] K. Tennakone, Stability of the biomass-carbon dioxide equilibrium in the atmosphere: Mathematical model, Appl. Math. Comput., 35 (1990), 125–130. https://doi.org/10.1016/0096-3003(90)90113-H doi: 10.1016/0096-3003(90)90113-H
    [27] A. K. Misra, M. Verma, E. Venturino, Modeling the control of atmospheric carbon dioxide through reforestation: effect of time delay, Model. Earth Syst. Environ., 1 (2015), 24. https://doi.org/10.1007/s40808-015-0028-z doi: 10.1007/s40808-015-0028-z
    [28] M. Thompson, D. Gamage, N. Hirotsu, A. Martin, S. Seneweera, Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: A perspective on root sugar sensing and hormonal crosstalk, Front. Physiol., 8 (2017), 578. https://doi.org/10.3389/fphys.2017.00578 doi: 10.3389/fphys.2017.00578
    [29] W. Fors, Population and greenhouse gas dynamics: An implementation of system dynamics, University of Vaasa, 2021.
    [30] M. Chaudhary, J. Dhar, O. P. Misra, A mathematical model for the conservation of forestry biomass with an alternative resource for industrialization: A modified Leslie Gower interaction, Model. Earth Syst. Environ., 1 (2015), 43. https://doi.org/10.1007/s40808-015-0056-8 doi: 10.1007/s40808-015-0056-8
    [31] M. Agarwal, P. Rachana, Conservation of forestry biomass and wildlife population: A mathematical model, Asian J. Math. Comput. Res., 4 (2015), 1–15.
    [32] M. Chaudhary, J. Dhar, O. P. Misra, A mathematical model for the conservation of forestry biomass with an alternative resource for industrialization: A modified Leslie Gower interaction, Model. Earth Syst. Environ., 1 (2015), 43. https://doi.org/10.1007/s40808-015-0056-8 doi: 10.1007/s40808-015-0056-8
    [33] H. Alrabaiah, M. ur Rahman, I. Mahariq, S. Bushnaq, M. Arfan, Fractional order analysis of HBV and HCV co-infection under ABC derivative, Fractals, 30 (2022), 2240036. http://dx.doi.org/10.1142/S0218348X22400369 doi: 10.1142/S0218348X22400369
    [34] Y. Guo, T. Li, Fractional-order modeling and optimal control of a new online game addiction model based on real data, Commun. Nonlinear Sci. Numer. Simul., 121 (2023), 107221. https://doi.org/10.1016/j.cnsns.2023.107221 doi: 10.1016/j.cnsns.2023.107221
    [35] A. I. K. Butt, W. Ahmad, M. Rafiq, D. Baleanu, Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic, Alexandria Eng. J., 61 (2022), 7007–7027. https://doi.org/10.1016/j.aej.2021.12.042 doi: 10.1016/j.aej.2021.12.042
    [36] N. Raza, A. Bakar, A. Khan, C. Tunç, Numerical simulations of the fractional-order SIQ mathematical model of Corona virus disease using the nonstandard finite difference scheme, Malaysian J. Math. Sci., 16 (2022), 391–411. https://doi.org/10.47836/mjms.16.3.01 doi: 10.47836/mjms.16.3.01
    [37] V. P. Dubey, S. Dubey, D. Kumar, J. Singh, A computational study of fractional model of atmospheric dynamics of carbon dioxide gas, Chaos Solitons Fract., 142 (2021), 110375. https://doi.org/10.1016/j.chaos.2020.110375 doi: 10.1016/j.chaos.2020.110375
    [38] W. E. Raslan, Fractional mathematical modeling for epidemic prediction of COVID-19 in Egypt, Ain Shams Eng. J., 12 (2021), 3057–3062. https://doi.org/10.1016/j.asej.2020.10.027 doi: 10.1016/j.asej.2020.10.027
    [39] A. A. Khan, R. Amin, S. Ullah, W. Sumelka, M. Altanji, Numerical simulation of a Caputo fractional epidemic model for the novel coronavirus with the impact of environmental transmission, Alexandria Eng. J., 61 (2022), 5083–5095. https://doi.org/10.1016/j.aej.2021.10.008 doi: 10.1016/j.aej.2021.10.008
    [40] N. Raza, S. Arshed, A. Bakar, A. Shahzad, M. Inc, A numerical efficient splitting method for the solution of HIV time periodic reaction-diffusion model having spatial heterogeneity, Phys. A, 609 (2022), 128385. https://doi.org/10.1016/j.physa.2022.128385 doi: 10.1016/j.physa.2022.128385
    [41] R. Agarwal, R. Hristova, O. R. Donal, Basic concepts of Riemann-Liouville fractional differential equations with non-instantaneous impulses, Symmetry, 11 (2019), 614. https://doi.org/10.3390/sym11050614 doi: 10.3390/sym11050614
    [42] E. Ilhan, P. Veeresha, H. M. Baskonus, Fractional approach for a mathematical model of atmospheric dynamics of $ CO_2 $ gas with an efficient method, Chaos Solitons Fract., 152 (2021), 111347. https://doi.org/10.1016/j.chaos.2021.111347 doi: 10.1016/j.chaos.2021.111347
    [43] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [44] K. M. Owolabi, Analysis and numerical simulation of multicomponent system with Atangana-Baleanu fractional derivative, Chaos Solitons Fract., 115 (2018), 127–134. https://doi.org/10.1016/j.chaos.2018.08.022 doi: 10.1016/j.chaos.2018.08.022
    [45] S. Uçar, Analysis of a basic SEIRA model with Atangana-Baleanu derivative, AIMS Mathematics, 5 (2020), 1411–1424. https://doi.org/10.3934/math.2020097 doi: 10.3934/math.2020097
    [46] M. Verma, C. Gautam, Optimal mitigation of atmospheric carbon dioxide through forest management programs: A modeling study, Comp. Appl. Math., 41 (2022), 320. https://doi.org/10.1007/s40314-022-02028-5 doi: 10.1007/s40314-022-02028-5
    [47] I. Koca, H. Bulut, E. Akçetin, A different approach for behavior of fractional plant virus model, J. Nonlinear Sci. Appl., 15 (2022), 186–202. http://dx.doi.org/10.22436/jnsa.015.03.02 doi: 10.22436/jnsa.015.03.02
    [48] M. B. Riaz, N. Raza, J. Martinovic, A. Bakar, H. Kurkcu, O. Tunç, Fractional dynamics and sensitivity analysis of measles epidemic model through vaccination, Arab J. Basic Appl. Sci., 31 (2024), 265–281. https://doi.org/10.1080/25765299.2024.2345424 doi: 10.1080/25765299.2024.2345424
    [49] A. R. Butt, A. A. Saqib, A. Bakar, D. U. Ozsahin, H. Ahmad, B. Almohsen, Investigating the fractional dynamics and sensitivity of an epidemic model with nonlinear convex rate, Res. Phys., 54 (2023), 107089. https://doi.org/10.1016/j.rinp.2023.107089 doi: 10.1016/j.rinp.2023.107089
    [50] M. Batool, M. Farman, A. S. Ghaffari, K. S. Nisar, S. R. Munjam, Analysis and dynamical structure of glucose insulin glucagon system with Mittage-Leffler kernel for type I diabetes mellitus, Sci. Rep., 14 (2024), 8058. https://doi.org/10.1038/s41598-024-58132-5 doi: 10.1038/s41598-024-58132-5
    [51] A. Zehra, P. A. Naik, A. Hasan, M. Farman, K. S. Nisar, F. Chaudhry, et al., Physiological and chaos effect on dynamics of neurological disorder with memory effect of fractional operator: A mathematical study, Comput. Methods Prog. Bio., 250 (2024), 108190. https://doi.org/10.1016/j.cmpb.2024.108190 doi: 10.1016/j.cmpb.2024.108190
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(392) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog